Science
Press

Available online at www.sciencedirect.com

SCIENCE @D:nscr«

Trans. Nonferrous Met. Soc. China 16(2006) 1009-1014

Transactions of
Nonferrous Metals
Society of China

www.csu.edu.cn/ysxb/

Elastic-plastic analytical solution for centric crack
loaded by two pairs of point shear forces in finite plate

ZHOU Xiao-ping(J&/NF)', LING Tong-hua(# [f] %)’

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China;
2. School of Highway, Changsha University of Science and Technology, Changsha 410076, China

Received 19 December 2005; accepted 28 June 2006

Abstract: The near crack line analysis method was used to investigate a centric crack loaded by two pairs of point shear forces in a
finite plate, and the analytical solution was obtained. The solution includes the unit normal vector of the elastic-plastic boundary near
the crack line, the elastic-plastic stress fields near the crack line, the variations of the length of the plastic zone along the crack line
with an external load, and the bearing capacity of a finite plate with a centric crack loaded by two pairs of point shear forces. The
results are sufficiently precise near the crack line because the assumptions of small scale yielding theory have not been made and no

other assumptions are taken.
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1 Introduction

A great number of cracks exist in metal materials.
Their existence and interaction often lead to high stress
concentration and become the source of weakening and
failure of metal materials[1—4]. The elastic-plastic
analysis for a cracked plate with finite dimensions is one
of the most difficult fields of elastic-plastic mechanics.
To analyze and describe failure of an -elastoplastic
material containing a centric crack loaded by two pairs of
shear point forces in a finite body, various different
methods have been developed. Among others, near crack
line analysis method has proved its usefulness in many
applications. Near crack line analysis method was
originally proposed by ACHENBACH and LI[5] and was
further studied by ACHENBACH and
DUNAYEVSKY|[6], and GUO and LI[7]. However, the
earlier crack line field analysis method solves the
problem by matching a specific solution of plastic field
near crack line with elastic singular K field near the
crack line, for which the conventional small scale
yielding condition must be taken. Based on works by
ACHENBACH and LI[51. and GUO and LII71. the crack
line analysis method with novel significance has been

proposed, which fundamentally breaks through the
limitation of the traditional small scale yielding
conditions[8—11]. The near crack line elastic-plastic
stress fields for a centric crack loaded by two pairs of
tensile and shear point forces in an infinite body of
elastic-plastic material was researched by using the
improved near crack line analysis method[12,13]. The
coalescence mechanism of splitting failure of crack-
weakened rock subjected to compressive loads was
analyzed by using the improved near crack line analysis
method[14]. The near crack line elastic-plastic stress
fields for an eccentric crack loaded by a pair of tensile
point forces in an elastic-plastic material was studied by
using the improved near crack line analysis method[15].

In this paper, the improved near crack line is
extended to the problem of mode II crack loaded by two
pairs of point shear forces in a finite body in an
elastic-plastic material . This problem often exists in the
practical engineering and can be easily investigated by
experiment, so the investigation of problem is important
both theoretically and in applications. The research in
this paper may be helpful to provide an insight into the
failure behavior of elastic-plastic material containing a
centric crack loaded by two pairs of point shear forces in
a finite plate.
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2 Theoretical model

2.1 Basic equations

Consider a crack loaded by two pairs of point shear
force in an elastic-perfectly plastic material as shown in
Fig.1. x; and x, are stationary coordinate system with x;
axis parallel to the crack front. A moving coordinate
system x, y is centered at the crack tip with its axis
parallel to the x; and x, axes. For a state of plane stress,
the o,, 7, and 7, vanish identically, hence the
equilibrium equations are
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Fig.1 Schematic diagram of centric crack loaded by two pairs

of point shear forces in finite plate
The Huber-Mises yield criterion is
o +O'}2, -0,.0, +3r§y = 3k? 2)

where £ is the yield stress in pure shear .

In the plastic loading zone near the crack line x/y
1, 0< x <x,, where x=x, defines the elastic-plastic
boundary on the crack line. The stress can be expressed
by[9]

o, =f£,(x)y+00>)
o, =m(x)y+0(") 3)
Ty =50 () +5,(x)y? +0(r*)

Here we have taken into account that o, and o,
are antisymmetric with respect to y=0, while 7, is
symmetric with respect to y=0. Substituting the
expansion (3) into equilibrium Eqn.(1), the Huber Mises
yield criterion (2), yields a system of ordinary
differential and collecting terms of the same order y

equations for the coefficients of power series expansions

of stress components, and solving the equation system
gives

o, =3k yL +0(%)

X

o, =0 )

2
7y =k -15k—2—+00")
(x+1L)

where L is integral constant. Eqn.(4) is the general
solution of stresses of the plastic region near the crack

line.

2.2 Elastic stress field and elastic-plastic boundary
near crack line
Near the crack line the stress components in the
plastic zone should be matched with the precise elastic
stress field. For a mode II crack in an infinite plate
corresponding to the finite plate in Fig.l, the
Westergaard’s complex stress function is

2pzya® —b?

n(z> —172)\/22 i

Zy(2)= )

The stress components are written as
o, =2ImZ}(2) +yRe Z{(2)

o, =—yReZjj(2) (©)
7., =ReZy(2) - yIm Z; (2)

where

24 ()= dZ(2)

z=x +ix,(i=v-1)

By transforming the Cartesian coordinate system to
polar coordinate system centered at the crack tip, the
precise elastic stresses can be expanded in a power series
of the angle to the crack line as

o, =-64AR0+0©0%) (7)

o, =24R0+0(0) (8)
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2
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a
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9
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where
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) nlrQa+ r)]%[(a +r)? —bpH)?
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B=n[rQa+ r)S]%[(a+ »n?-b*)?

For a finite plate with a centric crack loaded by two
pairs of point forces 2p as shown in Fig.1. The elastic
stresses satisfying all the boundary conditions have not
been obtained. But we may consider that its stresses near
the crack line are similar to the forms of Eqns.(7)—(9) of
the corresponding infinite plate. Then the stresses near
crack line for the finite plate that is shown in Fig.1 may
be modified from Eqns.(7)— (9) as
o, = AR +O(&P) (10)

p

X

=2QARH+0(93) (11)

Oy
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a’(258ar® +5b* —=54b°r?) +a* (279ar* +4b*r -
22621+ a(174ar’ - 2b%r* +58r°)10% +O(6%)

(12)
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where

pria® —b?

A=
nlrQa+ r)]%[(a +1)? —bpH)?

R=a"+6a’r+8ar® +2r* —a*(b* -11r%)

B=n[rQa+ r)S]%[(a+ »n?-b*)?

where QO is a parameter related to the dimension 2c, the
length of the crack 2a and the point forces 2p, etc.
Obviously, Eqns.(10)—(12) satisty the condition that
the crack surface is traction free, because they are
modified by a parameter Q from Eqns.(7)—(9) are

expanded from the exact Eqn.(6) which satisfy the
boundary condition that the crack surface is traction free.
Now if a reasonable boundary condition on the crack line
is introduced, the Eqns.(10)—(12) are valid near the crack
line and parameter O can be determined.

The boundary condition on the crack line can be
established by cutting the plate in two along the crack
lines as shown in Fig.1. We just consider the equilibrium
of a part. In order that the stresses on the crack line are in
equilibrium with the loading 2p we have

2kry + 2}@%(%)9:0& =2p (13)
7o
Substituting Eqns.(10)—(12) into Eqn.(13) yields
T
Q:7(P—k”o) (14)

where

G(\/c2 ~5? —a? —sz
(\/c2 —-b? +\/a2 —sz

t=In
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2.3 Matching results near crack line at elastic-plastic
boundary
The elastic-plastic boundary is defined by r=ry(6),
since 7,(6) 1s symmertric with respect to 6=0, for small ¢
we have (Fig.2)

n(O)=r, +1,0° (15)

It follows from Eqn.(15) that the unit normal vector
n=(n,,n,)of the elastic-plastic boundary is

n

<P

Fp

Fig.2 Schematic diagram of elastic-plastic boundary

n, =1—13392
2 (16)

n, =50

where
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B = 25
)

At the elastic-plastic boundary, by use of Eqn.(15),
we have

X=r, +r0(r—2—l\}92
r, 2

y=rb

(a7

Substituting Eqn.(15) into Eqns.(10)—(12), the stress
field on the side of the elastic zone can be obtained as

604,R 0
" —_&4_0(6)3) (18)
p
204,R,0
o, :ﬂJFO(gﬁ) (19)
p
2Q(a+r0)\laz—b2 0 5 32
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a
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204,R,0°?
Q 00 +O(94)
(12)
where

pro\/a2 -b*

zlrya+ Vo)]%[(a +r)? — b))

Ry=a* +6a’r, +8arg +2r) —a*(b* -111})

By =n{roQa +1)° 12l r0)? b7

At the elastic-plastic boundary, the expressions of

o,, and o, are
(o +O' n +27_n.n
Oxn xptxty (21)
s
Ops = (nx _ny)T)gy +(O-y _O-x)nxny

Substituting Eqns.(4), (16) and (17) into (21), the
traction components o, on the side of the
plastic zone can be obtained. Substituting Eqns.(16), (18),
(19) and (20) into (21) , the traction components o,
on the side of the elastic zone can be obtained.
and o, are continuous

and o,

and o,
From the condition that o,

ZHOU Xiao-ping, et al/Trans. Nonferrous Met. Soc. China 16(2006)

across the elastic-plastic boundary, and by collecting
terms of the same order of 0°, 6' and 0% we can
obtain ry, L, B;:

2(p—kro)(a+r0)\/a2 —-b?

= (22)
t[ro (2a+r0)]% [(a+r0)2 —bz]
3kBir, l.5kr022 Iy
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where
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Ry=a" +6a’r, +8ar +2ry —a*(b* -1113)

From Eqn.(22), we can find the length of the plastic
region on the crack line. Substituting Eqn.(22) into
Eqns.(23) and (24) we can obtain the analytical solutions
L and B, .

By introducing three dimensionless variable &=r¢/a,
n=2p/(2ak), A=b/a, m=c/a, Eqn.(22) can be rewritten by

1E+EH"2 p?

=+
201+ EW1- A2
where

(\/m R -2 p+A1-2)
(\/m _ 2 1= 2 Y p-A1-2)
PP =0+ =7
According to Eqn.(22), the bearing capacity of a

finite plate with a centric crack loaded by two pairs of
point shear forces can be determined. The numerical

(25)
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results are shown in Fig.3.
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Fig.3 Variations of r¢/a () with 2p/2ak (¢) under different b

and m

It is shown in Fig.3 that the bearing capacity of
finite plate with a centric crack loaded by two pairs of
point shear forces is sensitive to different values of m
and A. The predicted bearing capacity is higher as value
of m 1s larger. It is seen for m=1.2 that the bearing
capacity of a finite plate will decrease when the external
loads reach critical value. The above result implies that
the crack will experience unstable growth when the
external loads reach critical value.

3 Results and discussion

From Eqns.(22) or (25), the lengths of the plastic
zone on the crack line, #, or £ can be determined.

L, the integral constant in expressions of the plastic
stresses, can be found from Eqns.(23) and (24). In the
stress fields of plastic zone there are not usually
singularities near crack tip because of the integral
constant L. However, if L <20, stress in plastic zone near
the crack tip may display singularities. The singularity is
not different from the one in the classical case or small
scale yielding case because it appears at any position on
the crack line, but also the crack might not keep in static
which might fall into crack initiation and propagation or
buckling propagation. On the other hand, if the integral
constant 1. <<0, unacceptably, the strains near the crack
tip (x—0) will be negative. Therefore, in this paper, we
must take >0, and 2=0 is a limit case. So according to
Eqns.(23) and (24) we can find out the maximum lengths
of the plastic zone which are related to the position of
point forces. The corresponding maximum point forces
at different position of the point forces on the crack
surface can be determined by Eqn.(22).

By Eqns.(23) and (24), the unit normal vector of
the elastic-plastic boundary near the crack line is
obtained, so the probable change of the whole plastic
zone can be predicted.

When (c¢—a)/a or m—1 less than the value &, in
Table 1, the dimensionless limit length of plastic zone on
the crack line is m—1.

Table 1 Maximum loads 2p,,./2ak corresponding to different A

values

A & cla=2 b/a=1 b/la=o
0 0.618 0.973 1.897 2.104
0.1 0.613 0.971 1.883 2.087
02 0.596 0.963 1.842 2.038
0.3 0.567 0.948 1.77 1.953
04 0.527 0.923 1.665 1.830
0.5 0.472 0.833 0.524 1.665
0.6 0.404 0.821 0.338 1.452
0.7 0.319 0.724 1.099 1.181
0.8 0218 0.573 0.792 0.846
0.9 0.108 0.342 0.427 0.445

4 Conclusions

Crack line field analysis method greatly simplifies
the complexity of crack elastic-plastic problem and
difficulty in mathematics, which
transforms the partial differential equation into ordinary
differential equation. As have been done above, the near
crack line elastic stress, satisfies the far field boundary

overcomes the
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conditions and the boundary conditions of the crack

surfaces, has been used to match with the general

solutions of the plastic region near the crack line, and no

assumptions have been made during the analyses, so the

analyses are precise and not confined by small scale

yielding conditions. The stress fields of plastic zone are

not usually singularities near crack tip because of the
integral constant L.
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