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Abstract: A unified linear expression of plastic work rate per unit volume is deduced from the unified linear yield criterion and the 
associated flow rule. The expression is suitable for various linear yield loci in the error triangle between Tresca’s and twin shear 
stress yield loci on the π-plane. It exhibits generalization in which the different value of criterion parameter b corresponds to a 
specific linear formula of plastic work rate per unit volume. Finally, with the unified linear expression of plastic work rate and 
upper-bound parallel velocity field the strip forging without bulge is successfully analyzed and an analytical result is also obtained. 
The comparison with traditional solutions shows that when b=1/(1+ 3 ) the result is the same as the upper bound result by Mises’ 
yield criterion, and it also is identical to that by slab method with m=1, σ0=0. 
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1 Introduction 
 

Nowadays, the studies on metal forming are most of 
numerical analysis, such as FEM[1−4] and UBEM[5]. 
However, almost no theoretical analytical solution can be 
obtained without simplifying the Mises’ yield criterion 
because of its non-linearity. In recent years, one concern 
regarding linearization of yield criteria has been put 
forward and become much more extensive. In 1983, 
YU[6] proposed a linear twin shear stress yield criterion, 
called TSS criterion for short. HUANG and ZENG[7] 
deduced its plastic work rate per unit volume in 1989. 
The works of YU gave us much interesting to apply his 
criterion in metal forming. However, it showed a greater 
calculated result than that by Mises’ yield criterion[8−9]. 

By notice of non-linearity of Mises’ criterion, YU 
[10] proposed a unified linear yield criterion, called UY 
criterion, in which yield criterion parameter b represents 
the effect of the intermediate principal shear stress on the 
yield of materials and 0≤b≤1. The UY criterion is not a 
single yield criterion but a series of continuously variable 
linear yield criteria. Therefore, its application will play 
significant role in metal forming, and the plastic work 
rate per unit volume must be the key procedure. 

This work is to deduce the linear plastic work rate 
per unit volume by UY criterion firstly and then apply it 
in strip forging, and compare its calculated results with 
traditional solutions. 
 
2 Derivation of plastic work rate 
 

The UY criterion is usually presented by  
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where b is the yield criterion parameter, σ1, σ2 and σ3 are 
principal stresses. 

Assuming the stress tensor satisfies f(σij)=0, then 
Levy-Mises’ flow rule[11] gives  
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From Eq.(2) and the first formula in Eq.(1), there is  
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From Eq.(2) and the second formula in Eq.(1), there  
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Because λ≥0, μ≥0, taking linear combination of 

above two formulas yields  
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Since magnitudes of λ and μ are arbitrary, taking 
=1ε& μ/(1+b)+λ, it yields  
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Taking note of Eq.(3) and σ2=(σ1+σ3)/2 at the point 
E, as shown in Fig.1, plastic work rate per unit volume    
is 
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Fig.1 Yield loci in π-plane 
 

Simultaneously solving formulas in Eq.(1) as 
angular point E yields 
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Substituting Eqs.(6) and (4) into Eq.(5), the plastic 
work rate done per unit volume for UY criterion is 
derived by 
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3 Generalization of Eq.(7) 
 

Substituting b=1 into Eq.(7) yields the specific 
plastic work rate per unit volume for TSS criterion as 
follows: 
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Substituting b=0 into Eq.(7), the specific plastic 
work rate per unit volume for Tresca’s criterion is  
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Substituting b=2/5=0.4 into Eq.(7), the specific 

plastic work rate for geometric midline(GM) criterion 
[12] also results in   
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In the same way, substituting b=1/3 and b=0.529 
into Eq.(7) yields the single plastic work rate for mean 
yield (MY) criterion[13] and equi-area(EA) criterion[11]. 
They are respectively  
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Above deduction shows generalization of Eq.(7). It 

is not a single plastic work rate per unit volume, but a 
series of linear plastic work rate expressions 
corresponding to different specific yield criteria with b 
values from 0 to 1. So, it can be called unified or 
generalized linear plastic work rate per unit volume. 
 
4 Representation on π-plane 
 

The projection of the principal stress components on 
the π-plane[14] is shown in Fig.2, where 
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Fig.2 Polar coordinates of point P on π-plane 
 

and 
31

3122
σσ

σσσ
−

−−  is lode stress parameter[14]. 

As shown in Fig.1, θ is also the included angle 
between any linear yield locus (hypotenuse B′E) with 
Tresca’s locus (right angled side B′F) in error triangle 
FB′B on π-plane. As shown in Fig.3, sides of the angle 

are perpendicular to those of θ=π/6, B′F= ,
2

3/2
sσ  for 

any θ in the triangle FB′B: 
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Fig.3 Linear locus and polar angle on 30˚ sector on π-plane 
 

Eq.(14) shows that the presentation of UY linear 
criterion on π-plane is a cluster right lines lying in the 
error triangle FB′B made of TSS yield locus B′B 
(hypotenuse) and Tresca’s yield locus B′F (right angled 
side), which starts from point B′ and aims at different 
points on FB. As criterion parameter b changes from 0 to 
1, the included angle θ is from 0 to π/6 covering all 
regimes from the lower bound (Tresca’s) to the upper 
bound (TSS). 
 
5 Application of Eq.(7) 
 

In order to verify practicability and precision of 
Eq.(7), strip forging without bulge between two parallel 
platens is taken as an example. As shown in Fig.4. the 
top platen moves at a velocity, −v0, while the bottom 
platen moves at a velocity, v0. Assuming that the velocity 
component vy varies linearly with the y coordinate, the 

 

 
Fig.4 Strip forging without bulge 
 
kinematically admissible velocity and strain rate fields 
are respectively[15]  
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Above strain rates satisfy 
 

0  ,/2 ,/2 203min01max =−====== εεεεεεε &&&&&&& hvhv yx  

               (17) 
 
Substituting Eq.(7) into following and noticing 

Eq.(17) yield 
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From Eq.(15), velocity discontinuity at interface is 
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Noticing Eq.(15), the power to overcome the 
resistance of external pressure σ0 is  
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Summing Eqs.(18), (19) and (20) results in upper 
bound power:  
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Eq.(16) belongs to plane strain, where[16], the 

parameter ).31(/1 +=b  Substituting it into Eq.(21) 
and taking ,3/sσ=k then rearranging yields 
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It is obviously that Eq.(22) is the same result with 

upper bound solution deduced by AVITZUR[15] with 
Mises’ criterion. When m=1, σ0=0, it becomes 
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Eq.(23) is also identical to that of strip forging 

solved by Slab method[17] with sticking friction without 
resistance of external pressure. 

According to the universality of Eq.(7), we can also 
get specific linear plastic work rate per unit volume for 
plane stain by substitute parameter )31(/1 +=b [16] 
into Eq.(7): 

3/)()( sminmax σεεε &&& −=ijD                   (24) 

Eq.(24) is specific linear plastic work rate per unit 
volume with )31(/1 +=b . For plane strain, it is the 
same with plastic work rate per unit volume by Mises’ 
criterion, because the yield locus corresponding to 
Eq.(24) is a inscribed dodecagon, with its apex just lying 
on Mises’ yield locus[16], as shown in Fig.1. Therefore, 
integrating Eq.(24) yields directly also the result of 
Eq.(22). For other plane strain deformations, integrating 
Eq.(24) to get internal deformation power is also 
recommended. 
 
6 Conclusions 
 

1) The unified linear plastic work rate done per unit 
volume is first deduced for the UY criterion. It 
corresponds to various specific linear criteria according 
to suitable b values. 

2) The representation of UY yield criterion on the 
π-plane is a cluster right lines lying in the error triangle, 
which includes different angles with Tresca’s yield locus 
and passes apex of Tresca’s hexagon. 

3) With the parallel velocity field, the unified linear 
plastic work rate per unit volume is first applied to 
analysis of strip forging and an analytical solution of 
average pressure is obtained. 

4) For plane strain, taking )31(/1 +=b for Eq.(21) 
or integrating Eq.(24) all yields the same upper bound 
solution with that by Mises’ criterion. When m=1, σ0=0, 
it is the same with solution by Slab method. 
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