Article ID: 1003 - 6326(2005) 06 - 1425 - 04

Synthesis and electrochemical characterization of layered Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O₂ cathode material for Li-ion batteries^①

YU Xiao-yuan(禹筱元)^{1,2}, HU Guo-rong(胡国荣)², PENG Zhong-dong(彭忠东)², XIAO Jin(肖 劲)², LIU Ye xiang(刘业翔)² (1. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; 2. School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China;

Abstract: Layered LiN $i_{1/3}$ Co_{1/3} M $n_{1/3}$ O₂ materials were synthesized using a nickel cobalt-manganese carbonate precursor obtained by chemical co-precipitation. The [Ni_{1/3} Co_{1/3} M $n_{1/3}$] CO₃ precursor and the LiN $i_{1/3}$ Co_{1/3} M $n_{1/3}$ O₂ powders were characterized by X-ray diffraction(XRD) and scanning electron micrograph(SEM). The SEM analysis shows that these particles possess uniform and spherical morphology. The electrochemical properties of the LiN $i_{1/3}$ Co_{1/3} M $n_{1/3}$ O₂ cathode material for rechargeable lithium-ion batteries such as the galvanostatic charge discharge performance and cyclic voltammetry(CV) were measured. The results show that an initial discharge capacity of 190. 29 mA • h • g⁻¹ is obtained in the voltage range of 2. 5 - 4. 6 V and at a current rate of 0. 1 C at 25 °C. The discharge capacity increases linearly with the increase of the upper cut-off voltage limit.

Key words: lithium-ion batteries; cathode material; layered structure; nickel-cobalt-manganese oxides CLC number: TM 911.1 Document code: A

1 INTRODUCTION

Due to the high cost of LiCoO₂, a commonly used cathode material in commercial rechargeable lithium-ion batteries, much efforts have been made to develop cheaper cathode materials than LiCoO₂, LiNiO₂ and LiMnO₂ have been studied extensively as possible alternatives to $LiCoO_2^{[1-4]}$. Stoichiometric LiNiO₂ is known to be difficult to synthesize and its multiphase reaction during electrochemical cycling leads to structural degradation, and layered LiMnO₂ has a significant drawback in its crystallographic transformation to spinel structure during cvcling^[5-7]. Recently, a concept of one-to-one solid solution of LiCoO₂, LiNiO₂ and LiMnO₂, i. e., $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$, was adopted to overcome the disadvantage of LiNiO₂ and LiMnO₂^[8-12]. The lay-</sup> ered LiNi_{1/3} Co_{1/3} Mn_{1/3} O₂ is an attractive cathode material for rechargeable lithium-ion batteries in several aspects. In this research, layered LiNi_{1/3}-Co1/3 Mn1/3 O2 was prepared using the nickel-cobaltmanganese carbonate precursor, and the electrochemical properties of LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ were investigated.

2 EXPERIMENTAL

 $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders were synthesized

by mixed carbonate method, an aqueous solution of metal nitrates was made with a cation ratio, n(Ni) : n(Co) : n(Mn) = 1 : 1 : 1, the precipitation of $[Ni_{1/3}Co_{1/3}Mn_{1/3}]CO_3$ was achieved by slowly dripping the nitrate solution to a NH₄HCO₃ solution with continuous stirring. The filtrated precipitate was washed with de-ionized water and dried in air, then mixed with stoichiometric amount of Li₂CO₃ by ball-milling. The mixed powders were heated at 480 °C for 6 h and then calcined at 950 °C for 16 h in air.

The thermal behavior of the precursor was examined by thermogravimetric analysis(TGA). The powder was characterized by X-ray powder diffraction measurements using a diffractometer PW 1710 with $Cu K_{\alpha}$ radiation (Japan). The morphology of sample was observed using scanning electron microscopy (SEM, KYKY 2800, Japan). The electrochemical properties of $LiNi_{1/3} Co_{1/3} Mn_{1/3} O_2$ as cathode materials were evaluated using prototype cell on LAND-2001A battery program-control test system, using a lithium metal foil as the anode and 1 mol/L LiPF₆ in a 1: 1 solvent of Ethylene carbonate (EC) and Dimethyl carbonate (DMC) as electrolyte. The separator was made from a Celgard 2400 film microporous polypropylene membrane. The cells were assembled in argon gas filled glove box.

① Received date: 2005 - 03 - 10; Accepted date: 2005 - 06 - 03

The microelectrode was produced in glove box with the mixture of the samples and carbon black as the working electrode in ratio of 8: 1 and with the pure-lithium foil as the count-electrode. The cyclic voltammetry curves were measured by Potentiostat/Gallanostat Model (Perkin-Elmer 273A, EG& E).

3 RESULTS AND DISCUSSION

The thermal behavior of the $[Ni_{1/3}Co_{1/3}-Mn_{1/3}]CO_3$ precursor and Li₂CO₃ was examined by thermogravimetric analysis (TGA). From the TG and DTA results of the precursor, it reveals that below 350 °C, there is a mass loss due to the decomposition process of the carbonate compound. The mass loss of the specimens stops at temperatures above 480 °C until to 1 080 °C (Fig. 1).

Fig. 1 TG and DTA curves of mixture of [Ni_{1/3}Co_{1/3}Mn_{1/3}]CO₃ precursor and Li₂CO₃

The XRD pattern of [Ni_{1/3} Co_{1/3} Mn_{1/3}] CO₃ precursor obtained by co-precipitation method is shown in Fig. 2(a). Although the XRD pattern of precursor has a low crystallinity, it is found that the precursor has a similar well-defined Ni_{1/3}Co_{1/3}- $M n_{1/3}CO_3$ hexagonal structure (a = 4.52 Å, c =15.6 Å) with no impurity phase, This would be attributed to the homogeneous powder precursor, in which Ni, Co and Mn are uniformly distributed in an atomic scale. The powder X-ray diffraction pattern of LiNi_{1/3} Co_{1/3} Mn_{1/3} O₂ finial sample is shown in Fig. 2(b). The XRD pattern is well defined and shows the hexagonal doublets (006)/ (102) and (108)/(110) a clear splitting, which indicate that they have a high degree of crystallization, good hexagonal ordering and greater layered characteristics. The integrated intensity ratio of the (003) peak to (104) peak(R) in the XRD patterns is shown to be a measure of "cation mixing" and a value of R < 1.2 is an indication of undesirable cation mixing^[13, 14]. The ratio of the intensity

of the (003) peak to (104) peak of the LiNi_{1/3}Co_{1/3}-Mn_{1/3}O₂ sample reported here was calculated to be R=1.42, well above the values reported of undesirable cation mixing. The lattice parameters of LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ are: a=2.866 Å, c=14.262Å and match with the values observed by Shaju et al^[4] and Yabuuchi et al^[15] (a=2.867 Å and c=14.246 Å), and the c/a ratio is 4.976. The high value of c/a means that the de-intercalation/ intercalation of Li⁺ is more flexible.

Fig. 2 XRD pattern of [Ni_{1/3}Co_{1/3}Mn_{1/3}]CO₃ precursor(a) and LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ final sample(b)

The SEM images of precursor and final powders is shown in Fig. 3. It can be seen that particles in $Ni_{1/3} Co_{1/3} M n_{1/3} CO_3$ precursors and the LiNi_{1/3}- $Co_{1/3} M n_{1/3} O_2$ powders possess spherical morphology. However, the size of LiNi_{1/3} Co_{1/3} M n_{1/3} O₂ particles is more uniform and in the range of $1 - 2 \mu$ m.

Fig. 4 shows the charge and discharge curves for the Li/ LiNi_{1/3} Co_{1/3} Mn_{1/3} O₂ cell at a current rate of 0. 1 *C* in voltage window 2. 5⁻⁴. 6 V at room temperature. As seen in Fig. 4, the initial discharged capacity of 190. 29 mA • h • g⁻¹ is obtained. On starting the current, the voltage suddenly increases to about 4 V and then slowly decreases to 3. 75 V and stays along an almost horizontal line at 3. 75 V, until the charge capacity rea-

Fig. 3 SEM images of $[Ni_{1/3}Co_{1/3}Mn_{1/3}]CO_3$ precursor(a) and $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ final sample(b)

Fig. 4 Charge and discharge curves (at 0.1 C) of LiN i_{1/3} Co_{1/3} M n_{1/3} O₂ powder at 25 ℃

ches about 95 mA • h • g^{-1} . The slope in the voltage versus capacity curves increase at 95 mA • h • g^{-1} and voltage curves linearly increase until voltage reaches 4. 6 V, similar to that observed by Yabuuchi and Ohzuku^[15]. The irreversible capacity observed in the first cycle is about 40 mA $\, \bullet \, h \, \bullet \, g^{-1}.$

Fig. 5 shows the specific discharge capacity vs number of cycle for Li/ LiN $i_{1/3}$ Co_{1/3} M $n_{1/3}$ O₂ cell at 25 °C at a constant current density of 0. 1 mA/cm² in the different voltage range of 2. 5 – 4. 3, 2. 5 – 4. 4, 2. 5 – 4. 5 and 2. 5 – 4. 6 V. The specific discharge capacity increases linearly with the increase of the upper cut-off voltage limit, the discharge capacities of LiN $i_{1/3}$ Co_{1/3} M $n_{1/3}$ O₂ electrode are 190. 29, 172. 25, 164. 27 and 156. 12 mA • h • g⁻¹, respectively, with good cycleability. The discharge capacities remain at 158. 73, 153. 59, 149. 35 and 146. 86 mA • h • g⁻¹ after 20 cycles, which are 83. 42%, 89. 17%, 90. 92% and 94. 07% of initial capacities, respectively.

Fig. 6 shows the cyclic voltammetry curve of the Li/ $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cell between 2.8V and 4.6V at a scan rate of 0.05 mV/s at room

Fig. 5 Discharge capacity vs number of cycle for Li/ LiN $i_{1/3}$ Co_{1/3} M $n_{1/3}$ O₂ cell at 0. 1 *C* in different voltage range at 25 °C

temperature. As can been seen from Fig. 6, the main oxidation peak is observed at 3.9 V, while the reduction peak appears at 3.7 V, corresponding to Ni^{2+ /4+}. The material has a couple of redox peak representing the de-intercalation of Li⁺ from the initial structure that is observed in a narrow potential range. This implies that the extraction of Li⁺ occurs easily from an ordered and stabilized layered structure of LiNi_{1/3}Co_{1/3}M n_{1/3}O₂.

4 CONCLUSIONS

The layered LiNi_{1/3} Co_{1/3} Mn_{1/3} O₂ was synthesized using a nickel-cobalt-manganese carbonate precursor and characterized by means of XRD, SEM, galvanostatic charge discharge performance and cyclic voltammetry(CV). The lattice parameters obtained are: a= 2.866 Å, and c= 14.262 Å The nicely split (006)/(102) and (108)/(110)peak in the XRD patterns reveal the layered structure of the compound. The initial discharge capacity of 190. 29 mA \cdot h \cdot g⁻¹ was obtained in the range of 2.5 - 4.6 V and at a current rate of 0.1 C at 25 °C, and the discharge capacity increases linearly with the increase of the upper cut-off voltage limit. Cyclic voltammetry shows the major redox process at 3. 7 - 3. 9V corresponding to $Ni^{2+/4+}$. The results indicate that the layered LiNi_{1/3}-Co_{1/3}Mn_{1/3}O₂ is an attractive cathode material for rechargeable lithium-ion batteries.

REFERENCES

- Humg S T , Park H S, Choy J H. Evolution of local structure around manganese in layered LiMnO₂ upon chemical and electrochemical delithiation/ relithiation
 Chem Mater, 2000, 12: 1818 - 1826.
- [2] Ceder G, Mishra S K. Stability of orthorhombic and monoclinic layered LiMnO₂ [J]. Electrochem Solid State Lett, 1999, 2: 550 - 552.
- [3] Wang G X, Horvat J, Bradhurst D H, et al. Structural physical and electrochemical characterization of LiNi_x Co_{1-x}O₂ solid solutions [J]. J Power Sources,

2000, 85: 279 - 283.

- [4] Kelley T E, Mitchell P H. Lithium manganese oxidebased active material [P]. US 2002031667, 2002 - 03 - 14.
- [5] Li G H, Iijima Y, Kudo Y, et al. Structural changes of manganese spinel at elevated temperatures [J]. Solid State Ionics, 2002, 146: 55-63.
- [6] Aral H, Okada S, Sakurai Y, et al. Electrochemical and thermal behavior of LiNi_{1-z} M_zO₂ (M = Co, Mn, Ti) [J]. J Electrochem Soc, 1997, 144(9): 3117 3125.
- [7] Horn Y S, Hackney S A, Armstrong A R, et al. Structural characterization of layered LiMnO₂ electrodes by electron diffraction and lattice imaging [J]. J Electrochem Soc, 1999, 146: 2404-2412.
- [8] Hwang B J, Tsai Y W, Carlier D, et al. A combined computational experimental study on LiNi_{1/3}Co_{1/3}-Mn_{1/3}O₂ [J]. Chem Mater, 2003, 15: 3676-3682.
- [9] Kim J M, Chung H T. The first cycle characteristics of Li[Ni_{1/3} Co_{1/3} Mn_{1/3}] O₂ charged up to 4.7 V [J]. Electrochimica Acta, 2004, 49: 937-944.
- Park S H, Yoon C S, Kang S G, et al. Synthesis and structural characterization of layered Li[Ni_{1/3}-Co_{1/3}Mn_{1/3}]O₂ cathode materials by ultrasonic spray pyrolysis method [J]. Electrochimica Acta, 2004, 49: 557 - 563.
- [11] Li D Ch, Muta T, Zhang L Q, et al. Effect of synthesis method on the electrochemical performance of LiNi_{1/3} Co_{1/3} M n_{1/3} O₂ [J]. J Power Sources, 2004, 132: 150-155.
- [12] Wu Q, Cheng Y, Xu H, et al. Electrochemical properties of nano-sized LiNi_{1/3} Co_{1/3} Mn_{1/3} O₂ prepared by sol-gel method [A]. IMLB 12 Meeting [C]. Nara, Japan: The Electrochemical Society, Inc, 2004.
- [13] Koyama Y, Tanaka I, Adachi H, et al. Crystal and electronic structures of superstructural Li_{1-x} [Ni_{1/3}-Co_{1/3}Mn_{1/3}]O₂ [J]. J Power Sources, 2003, 119 – 121: 644 – 648.
- [14] Shaju K M, Subba G V, Chowdari B V R. Performance of layered LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ as cathode for Linion batteries [J]. Electrochimica Acta, 2002, 48: 145 151.
- Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ for advanced lithium-ion batteries [J]. J Power Sources, 2003, 119-121: 171-174.

(Edited by LI Xiang qun)