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Abstract: This paper seeks to model and forecast the Chinese nonferrous metals futures market volatility and allows new insights 
into the time-varying volatility of realized volatility and leverage effects using high-frequency data. The LHAR-CJ model is  
extended and the empirical research on copper and aluminum futures in Shanghai Futures Exchange suggests the dynamic 
dependencies and time-varying volatility of realized volatility, which are captured by long memory HAR-GARCH model. Besides, 
the findings also show the significant weekly leverage effects in Chinese nonferrous metals futures market volatility. Finally, 
in-sample and out-of-sample forecasts are investigated, and the results show that the LHAR-CJ-G model, considering time-varying 
volatility of realized volatility and leverage effects, effectively improves the explanatory power as well as out-of sample predictive 
performance. 
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1 Introduction 
 

Nonferrous metal commodities play a very 
significant role in national economies, since they are 
more and more demanded by other types of market 
participants and their prices have an impact on the 
extraction, processing and manufacturing sectors. For 
example, aluminum is an energy-intensive commodity 
and copper is a base metal, and they all have major role 
in industrial production and manufacturing. However, 
nonferrous metals prices are easily influenced by 
speculators, especially in our recent emerging economies. 
The increase of uncertain factors such as the change of 
exchange rates, import and export policies and the fund’s 
trading direction will bring about great fluctuations to the 
price of nonferrous metals. Volatility forecasting can help 
investors make decisions for portfolio allocation and 
value at risk management for financial traders. Hence, it 
is of great importance to improve volatility modeling and 
forecasting in nonferrous metals futures market. 

Although the volatility forecasting in stock and 

energy markets attracts considerable attention of the 
empirical and theoretical research, relatively little is 
considered in base (or industrial) metals commodities. 
The study of metal price is considerably limited and 
there exist only 45 refereed publications over the period 
from 1980 to 2002 [1]. In the recent years, the literatures 
about metals commodities mainly focus on several 
aspects: volatility properties [2−5], the spillover effect 
for different markets [6−11] and the information flows 
between precious metals futures markets [12,13]. 
Besides, some researchers are trying to analyze the 
behavioral influences in nonferrous metal prices [14], the 
impact of speculation [15−17], the price−volume 
correlation [18] and the role of outliers and oil price 
shocks on volatility of metal prices [19,20]. 

As we all know, the impetuous development of 
Chinese economy triggers high dynamics in the 
nonferrous metals futures market, which in turn makes 
the understanding of the time-varying volatility of 
realized volatility an increasingly important issue. 
However, none of the above mentioned issues is 
concerned with the time-varying volatility of realized 
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volatility other than TODOROVA [4]. In addition, most 
researches discussed above do not consider the leverage 
effects of nonferrous metals futures market, which are 
very important for policy makers and investors. The 
time-varying volatility of realized volatility and leverage 
effects in nonferrous metals futures market will be our 
focus in this work. 

Several contributions are made to the existing 
literature. Firstly, in contrast to energy and precious 
metals commodities, volatility forecasting in nonferrous 
metals futures market is less studied, while nonferrous 
metals commodities play a very significant role in 
national economies. Secondly, in contrast to the 
LHAR-CJ model proposed by CORSI and RENO [21], 
we go one step further and account for the conditional 
heteroscedasticity of residual and volatility clustering by 
incorporating a GARCH specification. The idea is 
similar to the work of CORSI et al [22] and ANDERSEN 
et al [23]. Finally, the sample covers the period from July 
1, 2010 to July 1, 2015 and hence may be more 
significant in volatility forecasting in the light of most 
recent nonferrous metals futures market history. 
 
2 Volatility estimation and jump detection 

test statistics 
 
2.1 Volatility estimation 

Realized volatility (RV), proposed by ANDERSEN 
and BOLLERSLEV [24], is an estimation of volatility 
based on intraday data. It is defined as the sum of 
squares of daily return. A trading day is divided into M 
time periods, and then the discrete-time within-day 
geometric return can be written as 
 

 , , , 1100( )t j t j M t j Mr p p    (j=1, 2, 3, …, M)    (1) 

 
where pt,j/M is the jth closing price of the trading day t, M 
refers to the number of intraday equally return 
observations over the trading day, which depends on the 
sampling frequency. 

Considering the effect of overnight return on 
realized volatility, the squared overnight return is added 
to the realized volatility to forecast the course of daily 
volatility in Chinese nonferrous metals futures    
market like BLAIR et al [25] and GONG et al [26]. 
Therefore, the RV of trading day t (RVt) in this paper can 
be given as 
 

2 2
, ,

1

M

t t j t n
j

RV r r


                              (2) 

 
where 2

,t nr  is the squared overnight return, which 
reflects the overnight logarithmic price change from day 
t−1 to day t. 

2.2 Jump detection test statistics 
According to the conclusions of BARNDORFF- 

NIELSEN and SHEPHARD [27,28], the price volatility 
of financial asset is not continuous due to the influence 
of information shock on the market and the investors’ 
behavior. In order to separate the continuous variation 
and jump variation in RV, the realized bipower variation 
method and jump test statistics are used. The realized 
bipower variation (RBV) which is the consistent 
estimator of integrated volatility, is defined as  

2
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where 1 2/π  is the excepted absolute value of a 

standard normal random variable and 
2

M

M 
 is the 

amendment to sample capacity. According to        
the research of BARNDORFF-NIELSEN and  
SHEPHARD [27,28], the difference between RVt(M) and 
RBVt(M) converge in probability to the discontinuous 
jump variation as the sampling frequency goes to 
infinity. 
 

    p
t t tM

RV M RBV M J
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                 (4) 
 

In order to select statistically significant jumps from 
the discontinuous jump variation, the jump test statistics 
Zt, proposed by HUANG and TAUCHEN [29], is 
adopted. The expression of test statistics Zt is defined by  
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  (5) 

 
where RQVt is an estimator of forth-power variation, 
which is defined by  
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According to ANDERSEN et al [30], RBVt is not a 

robust estimator to test the discontinuous jump variation 
since it is greatly influenced by sampling frequency. Due 
to the impact of factors like microstructure noise of the 
market, the estimate value of RBVt cannot even converge 
to integrated volatility with the increase of sampling 
frequency. ANDERSEN et al [30] proposed MedRVt as 
the robust estimator instead of RBVt. MedRVt is defined 
as 
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Accordingly, RQVt of the jump test statistics Zt is 
also amended by MedRTQt, which was proposed by 
ANDERSEN et al [30] and can be defined as 
 

3π

9π 72 52 3
t

M
MedRTQ  

 
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        (8) 

 
By replacing RBVt and RQVt with MedRVt and 

MedRTVQt respectively in jump test statistics Zt, the 
jump variation component of daily volatility can be 
given as 
 

   t t t tJ I Z RV MedRV                   (9) 
 
where I(·) is an indicative function, Φα means the 
corresponding trigger value at the significance level of α 
in standard normal distribution. According to previous 
researches, α=0.99 is adopted. Correspondingly, the 
continuous variation can be written as 
 

   t t t t tC I Z RV I Z MedRV               (10) 

 
3 Data and summary statistics 
 
3.1 Data 

Empirical research data used in this paper are from 
the Shanghai Futures Exchange, China. The sample 
period covered from July 1, 2010 to July 1, 2015 (1214 d 
in total) for 3 months copper and aluminum futures, 
which consists of (1 min) frequency and daily price data. 
The transaction prices are obtained from CSMAR 
(http://www.gtarsc.com/). Within the sample interval, the 
Shanghai Futures Exchange trading hours are from 8:59 
a.m. to 11:29 a.m., and from 13:30 p.m. to 15:00 p.m., 
which has 227 min in total every day, resulting in M=227 
in this work. 

Figure 1 shows the price series of copper and 
aluminum futures in sample period, which clearly 
illustrates that the price trend of copper futures resembles 
that of aluminum futures. The price trend plots illustrate 
that at the beginning of the sample period, the price level 
exhibits an upward trend, while the price experiences a 
persistent decline from the second half of 2011, despite 
occasional modest increase over the sample period. That 
may be explained by the increase in the metal supply due 
to unsustainable rapid expansion of metal producer at the 
beginning, while the demand decreases. 
 
3.2 Summary statistics 

Based on Section 2, the daily return rt, realized 
volatility RVt and its continuous variation Ct and jump 
variation Jt are calculated. In order to better analyze the 
characteristics of different components that make up the 

total daily return variation for copper and aluminum 
futures markets, Figs. 2 and 3 are plotted. The figures 
clearly illustrate that for copper or aluminum futures, 
each component exhibits volatility clustering, which 
indicates rather distinct dynamic dependence in each of 
the different components. 
 

 

Fig. 1 Closing prices of copper (a) and aluminum (b) futures 

 
Tables 1 and 2 give the descriptive statistics of daily 

volatility RVt defined in Eq. (2) and its logarithmic form 
of copper and aluminum futures, respectively. The 
sample mean indicates that the volatility of copper is 
obviously higher than that of aluminum futures. 
Correspondingly, copper futures prices are more volatile 
than those of aluminum futures, which is reflected by 
standard deviations. The standard deviations also reflect 
time-varying nature. Moreover, daily volatilities for the 
two metal futures both exhibit positive skewness and 
excess kurtosis. Ljung-Box Q-statistics of daily realized 
volatility RVt and daily logarithmic realized volatility 
ln(RVt) reveal that they all have strong sequence 
autocorrelation. The comparison of daily volatility and 
its logarithmic form for skewness and kurtosis also 
indicates that the distribution of logarithmic form of 
daily volatility is closer to normal distribution, which is 
beneficial for statistical purposes. Therefore, the 
logarithmic form of daily realized volatility in volatility 
equation is adopted. 
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Fig. 2 Daily return (a), realized volatility (b) and its continuous (c) and discontinuous jump (d) components of copper futures from 

July 1, 2010 to July 1, 2015 
 

 
Fig. 3 Daily return (a), realized volatility (b) and its continuous (c) and discontinuous jump (d) components of aluminum futures 

from July 1, 2010 to July 1, 2015 
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Table 1 Descriptive statistical analysis of daily (logarithmic) 

realized volatility in cooper and aluminum futures 

Statistics 
Copper futures  Aluminum futures 

RVt ln(RVt)   RVt ln(RVt) 

Mean 1.480 −0.242  0.496 −1.285 

Std. Dev. 3.426 0.943  1.154 0.887 

Skewness 8.615 0.999  8.811 1.091 

Kurtosis 96.530 4.464  100.519 5.172 

Min 0.098 −2.322  0.032 0.000 

Max 49.642 3.905  17.305 45.273 

Obs 1214 1214  1214 1214 

 
Table 2 Ling-Box Q-statistics of daily (logarithmic) realized 

volatility in copper and aluminum futures 

Lag 
Copper futures  Aluminum futures 

RVt ln(RVt)  RVt ln(RVt) 

5 
332.82 
(0.000) 

1686.4 
(0.000) 

 
 

410.19 
(0.000) 

1427.5 
(0.000) 

10 
465.89 
(0.000) 

2870 
(0.000) 

 
 

471.28 
(0.000) 

2355.8 
(0.000) 

15 
589.4 

(0.000) 
3698.3 
(0.000) 

 
 

514.13 
(0.000) 

3032.9 
(0.000) 

20 
670.7 

(0.000) 
4358.8 
(0.000) 

 
 

541.04 
(0.000) 

3592.2 
(0.000) 

p values are shown in parentheses 

 

4 Volatility model 
 

HAR model was proposed by CORSI [31]. 
Generally, participants in financial market trade at 
different frequencies. Short-term participants will be 
easily influenced by both short-term and long-term 
volatilities, but not vice versa. Hence, the volatility over 
longer time period has a strong influence on the volatility 
over short-time period. The HAR model aggregates the 
volatility over different periods, on daily, weekly and 
monthly bases to capture the long memory feature. Since 
it is concise, easy to estimate and well fit long-term 
memory feature of RVt, this model is widely used by the 
majority of scholars in research. ANDERSEN et al [32] 

considered the continuous and jump decomposition of 
realized volatility separately within a univariate version 
of the HAR-CJ model. CORSI and RENO [21] went one 
step further and accounted for the fact that volatility 
tends to increase more after a negative shock than after a 
positive shock of the same magnitude, which is the 
leverage effect. Defining the leverage effect comprising 
negative shocks over the last day, week and month 

respectively as tr
 =min(rt, 0), 5

tr
 =min[

1

5
(rt−4+rt−3+…

rt), 0], 22
tr

 =min[
1

22
(rt−21+rt−20+…+rt), 0]. CORSI 

and RENO [21] incorporated the asymmetry in the 
original LHAR-CJ model and proposed the new 
LHAR-CJ model, which is in the following form: 
 

1 0 5,ln( ) ln + lnt CD t CW t tRV C C       
 

22, 5,ln ln( 1)+ ln( 1)+CM t t JD t JW t tC J J       
 

5 22
22, 1ln( 1)JM t t d t w t m t tJ r r r      

       

          (11) 
 

Similar with the study of ANDERSEN et al[23], the 
Ljung-Box Q-statistics of the squared and absolute 
residuals (available upon request) reveal clear evidence 
for significant conditional heteroskedasticity. Hence, 
considering the time-varying volatility of volatility, the 
LHAR-CJ model is augmented by combining a GARCH 
error structure. Further, allowing for the possibility of 
fat-tails, the model under the assumption of conditionally 
t-distribution errors is considered. To keep the model 
parsimonious, the GARCH(1,1) specification for the 
conditionally variance of logarithmic realized volatility 
is used. Hence, the proposed LHAR-CJ-G model can be 
written as 
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       (12)            

 

where , 1
1

( ),t h t t h tC C C
h     ,

1
t h tJ

h    

1( t hJ    )tJ . 

In the original analysis, besides the negative shocks 
over the last week, the daily and month leverage effects 
are also included in the equation. However, the 
corresponding parameters are not significant in copper 
and aluminum futures markets and are hence omitted. 

The estimation results of LHAR-CJ model and our 
LHAR-CJ-G model for copper and aluminum futures 
price volatilities are shown in Table 3. The left columns 
in Table 3 report the OLS estimate results and the right 
columns report the estimate results of incorporating a 
GARCH specification. As we can see, all of the 
coefficients of three lagged continuous components are  
positive and highly significant for copper and aluminum 
futures, which implies strong heterogeneity in realized 
volatility and dynamic dependencies. The lagged squared 
jumps for copper and aluminum futures are generally 
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Table 3 Estimation results from LHAR-CJ and LHAR-CJ-G model 

Parameter 
Copper futures Aluminum futures 

Homoskedastic GARCH-t Homoskedastic GARCH-t 

βCD 
0.257*** 
(0.055) 

0.252*** 
(0.045) 

0.337*** 
(0.045) 

0.338*** 
(0.036) 

βCW 
0.224** 
(0.075) 

0.274*** 
(0.065) 

0.123 
(0.068) 

0.146** 
(0.056) 

βCM 
0.366*** 
(0.078) 

0.302*** 
(0.061) 

0.323*** 
(0.067) 

0.275*** 
(0.054) 

βJD 
−0.026 
(0.052) 

−0.020 
(0.045) 

0.181 
(0.109) 

0.193* 
(0.094) 

βJW 
0.120 

(0.080) 
0.143* 
(0.069) 

0.110 
(0.141) 

0.233 
(0.151) 

βJM 
0.112 

(0.093) 
0.122 

(0.074) 
−0.143 
(0.193) 

−0.159 
(0.164) 

rw 
−0.453*** 

(0.071) 
−0.380*** 

(0.059) 
−0.408** 
(0.143) 

−0.273* 
(0.113) 

β0 
0.135 

(0.073) 
0.025 

(0.060) 
−0.085 
(0.090) 

−0.205** 
(0.071) 

α  
0.0561* 
(0.029) 

 
0.047** 
(0.017) 

β  
0.752*** 
(0.141) 

 
0.927*** 
(0.025) 

ω  
0.092 

(0.061) 
 

0.012 
(0.006) 

v  
4.089*** 
(0.556) 

 
4.685*** 
(0.635) 

Standard errors are shown in parentheses. *,** and *** denote significance at levels of 1%, 5% and 10%, respectively 

 

insignificant in LHAR-CJ model, which is in line with 
the study of ANDERSEN et al [32] and the S&P 500 
futures in ANDERSEN et al [23], while the lagged week 
and day squared jumps for copper and aluminum futures 
in LHAR-CJ-G model are significant respectively, which 
reflects that there exist some evidences of squared jumps 
in Chinese nonferrous metals futures market. Moreover, 
for copper futures, the coefficients of one day or one 
week lagged continuous variation are less than those of 
one month lagged, which implies that one month lagged 
continuous variation has greater impact on daily realized 
volatility. This on one side implies that there is long 
memory in copper futures market and on the other side 
illustrates that the daily realized volatility in copper 
futures market is mainly determined by long-term 
investors’ trading behavior, which reflects that the 
Chinese copper futures market may be relatively mature. 

Next, the leverage effects are analyzed in Chinese 
nonferrous metals futures market. The leverage effect 
refers to that the change trend of returns is negatively 
related to the change trend of fluctuation. In practical 
terms, this means that volatility arising from negative 
returns is greater than that of positive returns. The 

coefficient of negative return over the last week is 
significantly negative in both markets, which shows the 
existence of mid-term leverage effects in Chinese 
nonferrous metals futures market. 
    Finally, Table 3 shows that the ARCH and GARCH 
coefficients (α and β, respectively) are statistically 
significant. They can capture the clustering of volatility 
of realized volatility. Moreover, the GARCH coefficients 
are relatively large and positive, which implies that 
previous period’s volatility has positive effect on current 
volatility of realized volatility. This also confirms that 
there exists volatility clustering of realized volatility in 
Chinese nonferrous metals futures market. 
 
5 Forecasting 
 

Besides gaining a basic understanding of Chinese 
nonfans metals futures market volatility, volatility 
forecasting is a potential useful application for hedging, 
derivative pricing and performance evaluation. The 
question of calculating one-day-ahead return volatility 
forecasts Var(rt+1|Ft) is considered. The conditional 
variance of this framework proposed here can be defined 
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as Var(rt+1|Ft)= E(RVt+1|Ft). As a benchmark comparison, 
the one-day-ahead forecasts of HAR-RV, HAR-CJ and 
LHAR-CJ models proposed by CORSI and RENO [21] 
are also calculated. One-day-ahead forecasts of the four 
HAR models are compared with the actual realized 
variation measures (i.e., RVt+1) to assess which model is 
more accuracy in forecasting daily realized volatility. 
The first subsection below discusses the full in-sample 
forecasts and the subsequent section reports the results 
from the out-of-sample forecasts. 
 
5.1 In-sample forecasts 

In order to assess the accuracy of the new 
LHAR-CJ-G model forecasts, the loss functions are 
adopted to evaluate the volatility forecasting 
performance in Chinese nonferrous metals futures 
market. Loss functions in this work include mean 
absolute error (MAE) and mean square error (MSE), 
which are in the following forms: 
 

1
1 1,

1

MAE | ln( ) ln( ) |
N

t t M
i

N RV V
 


             (13) 

 

1 2
1 1,

1

MSE [ln( ) ln( )]
N

t t M
i

N RV V
 


            (14) 

 
where RVt+1 and Vt+1,M denote the actual and 
one-day-ahead forecasts of daily volatility from model M, 
respectively. N is the number of sample days observed. 

Table 4 shows the MAE and MSE values of 
one-day-ahead in-sample forecasts for copper and 
aluminum futures of our LHAR-CJ-G model and other 
three HAR models based on the data over the full sample 
period. The corresponding P-values of the Diebold and 
Mariano  test  reported  in  parentheses  in  Table  4  are 
shown. The Diebold and Mariano test was proposed to 
formally test for the statistical significance of the 
observed differences in the MAE and MSE criteria. The 
Diebold and Mariano test here is a pairwise comparison 
of the forecasts from each of the three HAR models to 
 
Table 4 Results of loss functions and R2 statistic from M−Z 

regression of in-sample prediction 

Model 
Copper futures  Aluminum futures 

MAE MSE R2  MAE MSE R2

HAR-RV 
0.532 0.505 

0.431  
0.518 0.486

0.384
(0.000) (0.011) (0.000) (0.000)

HAR-CJ 
0.512 0.472 

0.470  
0.499 0.450

0.431
(0.000) (0.170) (0.002) (0.418)

LHAR-CJ 
0.504 0.453 

0.491  
0.497 0.446

0.436
(0.000) (0.028) (0.003) (0.074)

HAR-CJ-G 0.491 0.464 0.490  0.488 0.454 0.434
P-values of Diebold and Mariano test are shown in parenthese. The bold 
numbers are the optimal results 

the forecasts from the LHAR-CJ-G model. 
From Table 4, it can be inferred that complicated 

LHAR-CJ-G model holds the lowest in the MAE criteria 
for copper and aluminum futures. Moreover, the 
corresponding p-values reported in parentheses in Table 
4 are indeed statistically significant. However, for MSE 
criteria, the lowest in the copper and aluminum futures is 
the LHAR-CJ model, instead of LHAR-CJ-G model，and 
the corresponding p-values are slightly statistically 
significant. Therefore, in summary, the LHAR-CJ-G and 
LHAR-CJ models present good in-sample forecasting 
performance among the four models. 

To further analyze relative performance of the 
LHAR-CJ-G model, the M−Z regression is also taken 
into consideration. M−Z regression is widely used to 
evaluate sample prediction, which is proposed by 
MINCER and ZARNOWITZ [33]. Its regression 
equation is 
 

1 1, 1ln( ) ln( )t t M tRV V                     (15) 
 
where Vt+1,M refers to one-step forecasts at time t from 
model M. If the model is correctly established, then 
E[ln(Vt+1,M)]=ln(RVt+1). Therefore, the larger the 
coefficient of determination R2 is, the better the 
forecasting performance is. The R2 statistic values from 
the M−Z regressions are reported in Table 4. The results 
of M−Z regressions seem to more favor the LHAR-CJ 
model in both markets. This may be explained by the fact 
that more estimate parameters lead to parameter 
uncertainty in the LHAR-CJ-G model than LHAR-CJ 
model, which may lower the forecast performance due to 
the innovation of considering the conditional 
heteroskedasticity of realized volatility. 
 

5.2 Out-of-sample forecasts 
Compared with the in-sample forecasts, 

out-of-sample forecasts may be more significant since 
they can mimic the real-world forecast situation more 
closely. In order to better evaluate the out-of-sample 
forecast performance of the model, the whole sample 
interval is divided from July 1, 2010 to July 1, 2015 into 
two parts. The trading data of copper and aluminum 
futures in Shanghai Futures Exchange from July 1, 2010 
to September 31, 2013 are adopted as the estimation 
sample. On the premise of this, out-of-sample daily 
volatility from January 1, 2014 to July 1, 2015, which 
has 364 samples, is forecasted. The method to evaluate 
the forecast performance of out-of-sample is the same 
with in-sample performance, that is, using the loss 
functions and M−Z regression. 

Table 5 shows the values of loss functions and R2 
statistic from the M−Z regressions for out-of-sample 
forecasts in copper and aluminum futures. The MAE and 
MSE criteria achieve their lowest values for the 
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LHAR-CJ-G model whether in copper or aluminum 
futures and the corresponding p-values reported in 
parentheses in Table 5 are indeed statistically significant. 
The results generally favor the LHAR-CJ-G model. As to 
copper futures, the R2 value from M−Z regressions of 
LHAR-CJ-G model is the highest, while to aluminum 
futures, the highest value of R2 is from the HAR-CJ 
model. But the difference with that of LHAR-CJ-G 
model is not noticeable. In summary, the complicated 
LHAR-CJ-G model considering the leverage effects and 
its time-varying volatility of realized volatility exhibits 
the best out-of sample forecast performance among the 
four models. 

 
Table 5 Loss function values and M−Z regressions of 

out-of-sample prediction 

Model 
Copper futures  Aluminum futures 

MAE MSE R2  MAE MSE R2

HAR-RV 
0.477 0.358 

0.283  
0.399 0.282

0.198
(0.945) (0.802) (0.712) (0.005)

HAR-CJ 
0.505 0.377 

0.298 
 0.409 0.268

0.247
(0.000) (0.000)  (0.171) (0.200)

LHAR-CJ 
0.519 0.389 

0.300 
 0.425 0.280

0.232
(0.000) (0.000)  (0) (0.045)

LHAR-CJ-G 0.476 0.355 0.303  0.396 0.265 0.228
P-values of the Diebold and Mariano test are shown in parentheses. The 
bold numbers are the optimal results 
 

6 Conclusions 
 

1) Chinese nonferrous metals futures market 
volatility has strong heterogeneity and dynamic 
dependencies, which implies the long memory in daily 
realized volatility. Moreover, the volatility clustering is 
observed in the RV series, which is in accordance with 
the changing nature of the commodity futures market. 

2) There exists significant mid-term leverage effect 
in realized volatility of Chinese nonferrous metals 
futures market, which reflects that bad news increases 
the volatility of Chinese nonferrous metals futures 
market in mid-term. 

3) The daily realized volatility in copper futures 
market is mainly determined by long-term investors’ 
trading behavior, while the volatility in aluminum futures 
market is mainly determined by short and long term 
investors’ trading behavior, which reflects that the 
Chinese copper futures market may be relatively mature. 

4) Based on the loss function values and M−Z 
regression results, it can be concluded that the 
LHAR-CJ-G model, considering time-varying volatility 
of realized volatility and leverage effects, and LHAR-CJ 
models both present good in-sample forecast 
performance among the four models. However, for 

out-of-sample forecasts, the LHAR-CJ-G model will be 
more optimal and substantially improves the explanatory 
power as well as predictive performance. 
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摘  要：运用高频金融数据建模和预测中国有色金属期货市场波动率，并探索已实现波动率的波动时变性和杠杆

效应。拓展了 LHAR-CJ 模型，并对上海期货交易所铜和铝期货进行实证研究。研究表明，已实现波动率存在动

态依赖性和时变性，它们均可通过长记忆性的 HAR-GARCH 结构体现。此外，中国有色金属期货市场波动率存

在显著的周杠杆效应。最后，样本内预测和样本外预测的结果表明，考虑了已实现波动率的波动时变性和杠杆效

应的 HAR-CJ-G 模型能有效地提高解释能力和样本外预测能力。 
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