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Abstract: Fly ash has congregated considerable attention as a potential reinforcement for aluminum matrix composites (AMCs) to 

enhance selective properties and reduce the cost of fabrication. However, poor machinability of such AMCs limits their application. 

The present study focuses on the preparation of cenosphere fly ash reinforced Al6061 alloys by compo casting method. X-ray 

diffraction analysis of the prepared AMCs exposes the presence of cenosphere particles without any formation of other intermetallic 

compounds. In this study, electrical discharge machining (EDM) was engaged to examine the machinability of the prepared metal 

matrix composite (MMCs). The measured performance characteristics for the various combinations of input process parameters were 

considered to be MRR, EWR and SR. Face centered central composite design (CCD) of response surface method (RSM) was 

employed to design the number of experimental trials required and a hybrid approach of grey-based response surface methodology 

(GRSM) was imposed for predicting the optimal combination of processing parameter in EDM process. Generous improvement was 

observed in the performance characteristics obtained by employing both the optimal setting of machining parameters. The optical 3D 

surface profile graphs of the ED machined surface also revealed the improvement in surface quality and texture employing the 

optimal processing conditions proposed by hybrid GRSM approach. 

Key words: compo casting; electrical discharge machining; response surface method; grey-based response surface methodology; 

analysis of variance; desirability analysis 

                                                                                                             

 

 

1 Introduction 
 

The advances in the field of material science 

influence the growing need for lightweight high strength 

structural materials in technologically advanced 

industries. Aluminum based metal matrix composites 

have been receiving considerable attention in the present 

material world owing to their superior strength, stiffness, 

resistance to high temperature and high wear resistance 

compared to unreinforced alloys [1−3]. Metal matrix 

composites (MMCs) with silicon carbide (SiC), 

aluminum oxide (Al2O3) and boron carbide (B4C) as 

reinforcements have significant advantage over 

conventional materials. However, the most essential 

factor that limits the application of AMCs is the high 

fabrication cost, which can be minimized by using 

inexpensive reinforcements such as natural minerals and 

fly ash. Fly ash is a waste by-product of coal combustion 

in thermal power plants, which is easily available in 

large quantities at minimal cost [4,5]. Several processing 

techniques (conventional and specific patented methods) 

have been attempted to fabricate Al-based MMCs 

reinforced with different kinds of ceramic particles, 

which include but not limited to stir casting [6], powder 

metallurgy [7], squeeze casting [8], mechanical  

alloying [9], and spray deposition [10]. The processing 

methods influence the microstructure and mechanical 

properties of the MMCs. The property enhancement of 

AMC requires the successful incorporation and 

distribution of the reinforcement particles into the molten 

matrix and acquires good bonding between them. Among 

those processing routes, stir casting is the most widely 

employed liquid casting process to prepare AMCs where 

the matrix is to melt completely and reinforcement 

particles are to be added into the molten metal in a vortex 

created using a mechanical stirrer [11]. Wettability is the 

major setback in stir casting between the molten matrix 

and the ceramic particle. Several techniques have been 

attempted to improve the wettability by many researchers, 

which include adding wettability agents [12] and   

fluxes  [13],  coating  the  ceramic  particle  [14]  and 
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preheating the reinforcement particles [15]. Implementa- 

tion of those techniques results in increase of the cost of 

fabrication. Another conventional processing route to 

improve the wettability of the casting is to reduce the 

casting temperature and incorporate the reinforcement 

particles into the aluminum matrix when the matrix is in 

a semi-solid state. This processing method is a 

modification of stir casting process and accordingly 

known as compo casting or slurry casting [16]. Several 

studies have been reported for enhanced wettability and 

better distribution of reinforcement particles in the 

Al-based MMCs produced by compo casting [17−19]. 

AMCs produced by such processing technique have been 

extensively used as structural material in aerospace and 

automotive industries. 

However, the applications of existing MMCs are 

limited whereas the machinability is the major concern. 

Poor machinability of the material results in poor surface 

finish and excessive tool wear. Most of the time, the 

MMCs are difficult for machining with high accuracy by 

traditional techniques due to possession of higher 

hardness and reinforcement strength [20]. Hence, 

electrical discharge machining (EDM) process becomes a 

feasible method that does not require any mechanical 

energy to remove the material from the work material. In 

EDM process, material remove rate is not influenced by 

the mechanical properties like hardness, toughness, 

strength. Materials like composites and cemented 

tungsten carbide that have very poor machinability may 

also be processed by the EDM process without any major 

difficulties [21−23]. Moreover, it has been reported in 

several studies that the EDM machining parameters also 

play a significant role in deciding the performance 

characteristics likes material removal rates (MRR), 

electrode wear rates (EWR) and surface roughness   

(SR) [24]. The solution of multi-response optimization 

problems could be done by using methods like grey 

relational analysis (GRA), genetic algorithm (GA), 

artificial neural network (ANN), response surface 

methodology (RSM) and fuzzy logic [25,26]. However, 

the above techniques do not predict the non-linear 

relationship obtained between the design variables and 

responses. Taguchi-based technique has been employed 

to study the effects of input machining parameters in 

electrical discharge machining. Analysis of variance 

(ANOVA) has been performed to identify the 

contribution of each input variable [27−29]. However, 

Taguchi-based arrays which are used for single response 

optimization was failed to describe the important 

interaction effects. An evolutionary algorithm of genetic 

approach has also been utilized to model the surface 

roughness and kerf in laser processing and the effect of 

pulse frequency was observed to be more significant than 

the cutting speed [30]. The algorithm was then refined by 

using ANN for generating the models and GA to 

optimization [31]. However, difficulty was found in 

interpreting the non-linear relationship among various 

factors, while GA cannot fit well with the complexity of 

experimental domain. The RSM-based Taguchi approach 

was also implemented effectively in optimizing the 

multi-responses in laser cutting process [32,33]. Grey- 

based PCA, a hybrid approach, was also observed to 

effectively perform the multi-objective optimization [34]. 

In the past, the multi-objective optimization using 

RSM has been characterized by an indefinite saddle 

function in the form of quadratic response surface model. 

Thus, the grey relational grade was an effective choice 

for quality index in grey-based response surface 

methodology (GRSM) approach. Traditionally, RSM 

approach employing the second order central composite 

design (CCD) for observation of response surface, 

individual mathematical models has been produced for 

each of the observed response variable. This restricts the 

approach in observing the effects of individual 

parameters on that particular response alone. Moreover, 

the generated response surface model could be used to 

predict the effects of the parameter on those responses 

only and thereby restricted the use of traditional RSM 

employing CCD in the study related to simultaneous 

optimization. The disclosed approach of GRSM aims at 

amalgamating the grey theory with RSM to permit the 

feasibility of simultaneous optimization of the multiple 

objective problems. Face centered CCD of RSM 

approach was employed for design of the experiments. 

The grey relation theory was implemented to minimize 

the variability among the responses and integrate them 

into the grey relational grade, which was selected as the 

prototypical of responses in the disclosed methodology 

of GRSM. This integrated performance measure has been 

examined by using RSM, generating the scope for 

simultaneous optimization of the multi-objective 

responses. From the comprehensive survey of the 

literature, it was acknowledged that research work in the 

area of die sinking EDM process of MMCs was limited. 

Though the implementation of RSM and desirability 

approach was existent in literature, the concomitant 

optimization of multiple response characteristics in die 

sinking EDM was scarce. It was most solicit from an 

industrial standpoint to process in EDM with good 

quality characteristics like maximum MRR, good surface 

finish and lesser EWR. Hence, the present investigation 

focuses towards divining the optimal process parameter 

for AA6061/cenosphere composites using a hybrid 

approach of grey-based RSM. 

 

2 Preparation of AMC 
 

Aluminum AA6061 block was placed in a coated 

https://www.google.co.in/search?biw=1280&bih=899&q=define+feasibility&sa=X&ved=0ahUKEwjw7IaJ_e_JAhVGEywKHfM4CfYQ_SoIJjAA
https://www.google.co.in/search?biw=1280&bih=923&q=define+acknowledge&sa=X&sqi=2&ved=0ahUKEwj5n5esu5DKAhVRbY4KHbgyA0IQ_SoISDAA
https://www.google.co.in/search?biw=1280&bih=923&q=define+concomitant&sa=X&ved=0ahUKEwj8qNzNwZDKAhUDCY4KHSF8DYkQ_SoIHjAA
https://www.google.co.in/search?biw=1280&bih=923&q=define+solicit&sa=X&sqi=2&ved=0ahUKEwj_zsqDw5DKAhUCBI4KHXbLB2AQ_SoIKDAA
https://www.google.co.in/search?biw=1280&bih=923&q=define+standpoint&sa=X&sqi=2&ved=0ahUKEwjM_MnPw5DKAhVHbY4KHWIaBisQ_SoIKjAA
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graphite crucible to avoid contamination and heated 

using an induction electrical furnace. The hollow fly ash 

particles were collected from NTPC Thermal Power 

Station, Farakka, India. The chemical compositions of 

AA6061 alloys and cenosphere particles are shown in 

Table 1 and Table 2, respectively. The FESEM image and 

EDS pattern of the cenosphere particles are shown in  

Fig. 1. The average size and density of cenosphere 

particles were 30−45 μm and 2300 kg/m3, respectively. 

The temperature of the induction furnace was maintained 

at 610 °C. Cenosphere particles with measured quantity 

were added to the semi-solid aluminum. Mechanical  

 

Table 1 Chemical composition of AA6061 alloy (mass 

fraction, %) 

Mg Si Fe Mn Cu 

0.95 0.51 0.25 0.12 0.13 

Cr Zn Ni Ti Al 

0.09 0.07 0.02 0.02 Bal. 

 

Table 2 Chemical composition of cenosphere fly ash (mass 

fraction, %) 

SiO2 Al2O3 Fe2O3 MgO 

52.8 25.52 8.91 1.7 

TiO2 K2O MnO Others 

2.38 0.9 0.5 Bal. 

 

 
Fig. 1 Microstructure of cenosphere particles: (a) FESEM 

image; (b) EDS analysis of cenosphere particle 

stirrer was used for the simultaneous stirring of the 

semi-solid slurry. Stirring was continued until all the 

cenosphere particles were mixed with the semi-solid 

aluminum. The slurry was then poured into the heated 

mould for the preparation of specimen after stirring. To 

enhance the fluidity of semi-solid slurry, the pouring 

temperature was kept slightly higher than the casting 

temperature. Castings were made of various amounts of 

cenosphere particles (2%, 4%, 6% and 8%). The various 

casting process parameters are given in Table 3. 

Composites were prepared from the castings to carry out 

microstructural characterization. The composite samples 

were polished using standard metallographic technique 

and etched with Keller’s reagent. The etched specimens 

were observed under high-resolution optical microscope 

LEICA-DFC295. X-ray diffraction patterns (XRD) were 

recorded using Panalytical X-ray diffractometer. The 

microhardness of the specimen was measured using a 

microhardness tester at 500 g load applied for 15 s. 

 

Table 3 Compo casting process parameters 

Parameter Value 

Preheated temperature of 

cenosphere particles/°C 
280 

Preheated temperature of mold/°C 350 

Temperature of melt charge/°C 610 

Stirring speed/(r·min−1) 500 

Stirring time/min 5 

Particles feed rate/(g·s−1) 0.8−1.3 

 

3 Machine setup and experimental details 
 

To obtain a more accurate result, the experiments 

were carried out on a die-sinking EDM of type 

Sparkonix S−25, performed for 20 min. The work piece 

materials of sizes 20 mm × 20 mm × 5 mm and 

electrolytic circular copper electrode of 10 mm in 

diameter were used. The electrode was promoted over 

the other types and shapes of electrodes with anticipated 

higher material remove rate and lower electrode wear 

rate [35]. The dielectric fluid employed for the 

experiments was commercial grade hydrocarbon oil and 

impulse jet flushing system was utilized to flush away 

the eroded particles from the machining zone. The 

material removal rate and electrode wear values have 

been measured using a digital mass balance of precision 

0.001 g by counting the difference in mass between the 

work piece and electrode before and after the machining. 

The quality characteristics of the machining surface 

were controlled by dominant process parameters like 

peak current (Ip), pulse on time (Ton), volume fraction of 

reinforcement (φr) and flushing pressure (Pflu) [36]. The 

exploratory machining trials were executed to lessen the 



A. DEY, et al/Trans. Nonferrous Met. Soc. China 27(2017) 998−1010 

 

1001 

allowable range of process variables and to categorize 

the adequate upper and lower bounds of parameters, for 

which machining surface quality remained ample with 

marginal heat affected zone and minimum detritus. The 

process parameters were assorted at three levels and 

face-centered CCD of RSM was considered to conduct 

the machining trials. Table 4 shows both actual and 

coded values of all the machining parameters and their 

feasible ranges. A uniform gap was ensured between the 

surfaces of the work piece and electrode materials during 

each trial. The measured quality characteristics include 

the material removal rate (MRR), electrode wear rate 

(EWR) and surface roughness (SR). EWR indicates the 

loss of electrode material and roughness of machining 

surface represents the surface texture. The Taylor 

Hobson−80G (optical surface roughness tester) was 

employed to measure the surface roughness of the 

composite samples. The surface roughness (Ra) values 

for centre-line average were acquired for a cut-off length 

of 0.6 mm. The parametric combination during various 

machining trials and the quality characteristics (average 

response of two replicated machining trials) acquired are 

shown in Table 5. 

 

Table 4 EDM machining parameters with their levels 

Parameter Label 
Level 

−1 0 +1 

Pulse current, Ip/A A 6 8 10 

Pulse on time, Ton/µs B 210 604 1010 

Volume fraction of 

reinforcement/% 
C 2 4 6 

Flushing pressure, 

Pflu/MPa 
D 0.2 0.4 0.6 

 

4 Multi-response optimization using grey- 
based response surface methodology 
(GRSM) 

 

The multi-response optimization technique is an 

offline quality control approach contributing a practical 

framework to the requirement for good surface finish on 

machined surfaces. Grey relational analysis is an 

affecting measurement method in grey system theory that 

demonstrates uncertain relations among each response 

characteristics and all the other process parameters in a 

given system [37]. The grey relation analysis 

recompenses the snag of regression analysis by 

establishing the relationship between elements based on 

the amount of deviation or resemblance of trends among 

those elements [38]. The grey relational grade 

deliberated using the grey analysis is used as a quality 

illustrative of all the responses characteristics, which 

further is modeled by employing the RSM approach 

furnishing the scope for concurrent optimization of the 

responses. The method of grey-based response surface 

methodology (GRSM) imparted in two phases. 

 

Table 5 Design layout and experimental results 

Exp. 

No. 

Factor  Response 

Ip/ 

A 

Ton/ 

μs 

φN/ 

% 

Pflu/ 

MPa 
 

MRR/ 

(g·min−1) 

EWR/ 

(g·min−1) 

SR/ 

µm 

1 6 210 2 0.2  0.0999 0.0028 7.7919 

2 10 210 2 0.2  0.1619 0.0041 10.5094 

3 6 1010 2 0.2  0.4156 0.0013 10.7293 

4 10 1010 2 0.2  0.6248 0.0028 13.8752 

5 6 210 6 0.2  0.0751 0.0032 8.9826 

6 10 210 6 0.2  0.1698 0.0192 12.8739 

7 6 1010 6 0.2  0.3856 0.0029 12.9837 

8 10 1010 6 0.2  0.4867 0.0108 16.7853 

9 6 210 2 0.6  0.1006 0.0047 7.8934 

10 10 210 2 0.6  0.1721 0.0051 11.1073 

11 6 1010 2 0.6  0.3554 0.0015 10.9973 

12 10 1010 2 0.6  0.6843 0.0019 9.2872 

13 6 210 6 0.6  0.0887 0.0034 9.0183 

14 10 210 6 0.6  0.1997 0.012 12.8641 

15 6 1010 6 0.6  0.3891 0.0025 13.4281 

16 10 1010 6 0.6  0.4998 0.0028 16.8724 

17 8 604 4 0.4  0.1057 0.001 10.9279 

18 8 604 4 0.4  0.6248 0.0028 13.8752 

19 8 604 4 0.4  0.4867 0.0108 16.7853 

20 8 604 4 0.4  0.1049 0.0016 10.6884 

21 6 604 4 0.4  0.0875 0.0009 9.1284 

22 10 604 4 0.4  0.1893 0.0037 11.8073 

23 8 210 4 0.4  0.0985 0.0061 8.829 

24 8 1010 4 0.4  0.3928 0.0012 11.9719 

25 8 604 2 0.4  0.1142 0.0017 9.2943 

26 8 604 6 0.4  0.0929 0.0023 11.0981 

27 8 604 4 0.2  0.1011 0.0032 10.6172 

28 8 604 4 0.6  0.1092 0.0014 10.9891 

29 8 604 4 0.4  0.1049 0.0021 10.6503 

30 8 604 4 0.4  0.1042 0.0033 10.5173 

 

4.1 Grey relational analysis 

Step 1: Data pre-processing. Data pre-processing is 

recommendable when the sequence disperse range is too 

immense, or when the directions of the target in the 

sequences are divergent. Data pre-processing is also 

preferred since the unit and range in one data 

concatenation may differ from the others. Data 

pre-processing is a means of converting the original 

sequence to a comparable sequence. There are various 

methodologies of data pre-processing obtainable for the 

https://www.google.co.in/search?biw=1280&bih=923&q=define+categorize&sa=X&ved=0ahUKEwjU-PSAvZfKAhUEJI4KHZV7A7wQ_SoIajAA
https://www.google.co.in/search?biw=1280&bih=923&q=define+marginal&sa=X&ved=0ahUKEwiS1L-cvpfKAhVSHo4KHbPqDdAQ_SoIHzAA
https://www.google.co.in/search?biw=1280&bih=923&q=define+detritus&sa=X&ved=0ahUKEwjEt8TEvpfKAhUFjo4KHQzXCAUQ_SoIITAA
https://www.google.co.in/search?biw=1280&bih=923&q=define+approach&sa=X&ved=0ahUKEwj4ot786pnKAhUNJI4KHVMJDhIQ_SoINTAA
https://www.google.co.in/search?biw=1280&bih=879&q=define+recompense&sa=X&ved=0ahUKEwiEvMnA8pnKAhXQTY4KHdWKDTMQ_SoIHDAA
https://www.google.co.in/search?biw=1280&bih=879&q=define+resemblance&sa=X&ved=0ahUKEwiw8uLL85nKAhWLjo4KHWWZD18Q_SoIHDAA
https://www.google.co.in/search?biw=1280&bih=879&q=define+illustrative&sa=X&sqi=2&ved=0ahUKEwi4m4-t9ZnKAhWEkI4KHaqEAMwQ_SoIHjAA
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grey relational theory depending on the attributes of a 

data sequence [39]. 

If the goal of original sequence is unbounded, then 

it has a characteristic of the “higher is better”. To 

normalize the original sequence, the followings are 

employed: 
 

0 0
*

0 0

min ( )
( )

max ( ) min ( )

i i
i

i i

x x k
x k

x k x k





                  (1) 

 
When the attribute of the original sequence is a 

“lower is better”, then the original sequence should be 

normalized as follows: 
 

0 0
*

0 0

max ( ) ( )
( )

max ( ) min ( )

i i
i

i i

x k x k
x k

x k x k





                  (2) 

 
However, if there is a definite goal (desired value) 

to be attained, then the original sequence will be 

normalized in form: 
 

0 0
*

0 0

| ( ) |
( ) 1

max ( )

i
i

i

x k x
x k

x k x


 


                     (3) 

 

where i=1, … , m; k=1, … , n. m is the number of 

observation and n is the number of response. 0 ( )ix k  

represents the original data sequence, after data 

pre-processing, the sequence is designated as *( ),ix k  
0max ( )ix k  is the largest value of 0 ( )ix k , 0min ( )ix k  is 

the smallest value of 0 ( )ix k  and x0 is the target value. 

Step 2: Generation of grey relational coefficient and 

grey relational grade. To measure the relevancy between 

two systems or two sequences, the grey relational grade 

is required. When only one sequence, x0(k), is obtainable 

as the reference sequence, and all other sequences 

perform as comparable sequences which are denoted as 

local grey relation measurement. After data 

pre-processing is carried out, compute the grey relation 

coefficient (GRC(ξi(k))) for the kth performance 

characteristics in the ith observation to explore the 

correlation among the perceived and original normalized 

experimental results [40] using Eq. (4) [39,41,42]. 
 

min max

0 max

( )
( )

i
i

k
k

 


 





                         (4) 

 
where Δ0i is the deviation sequence between reference 

sequence and the comparable sequence. 
 

* *
0 0|| ( ) ( ) ||i ix k x k    

 
min min * *

min 0 || ( ) ( ) ||j i k jx k x k     

 
max max * *

min 0 || ( ) ( ) ||j i k jx k x k     

 
*
0 ( )x k is the referential sequence; *( )ix k is the 

comparative secquence. 

ζ is the distinguishing or identification coefficient 

whose value is (ζ∈[0,1], the value may be different 

based on the requirements of real system) chosen to 

magnify the significant difference between the relational 

coefficients. A value of ζ is smaller and the eminent 

capability is greater. ζ=0.5 is generally used. 

After deriving the GRC value, the average of GRC 

values was computed using Eq. (5) to obtain the grey 

relational grade (GRG). The GRG is apprehending as  

the single representative of the multiple quality 

characteristics or responses [38]. 
 

1

1
( )

n

i i

k

k
n

 


                                 (5) 

 

4.2 Response surface methodology 

The response surface methodology is an effective 

tool, which demonstrates the relationship between the 

design variables and quality characteristics for attaining 

either maximization or minimization of the responses. 

The convolution increases with the number of quality 

characteristics perceived during testing [32]. In 

consequence, the GRG representing the multiple 

responses considers a single performance and is 

employed for the creation of response surfaces. A 

mathematical model is established for the GRG, which is 

a second order polynomial regression equation of 

(quadratic model) developed to explain the performance 

within the system domain [33]. 

Step 3: Analysis of variance (ANOVA) is performed 

with obtained GRG values. The ANOVA has executed to 

companion the GRSM approach and to recognize the 

contribution of each independent variable (parameters) in 

affecting the quality characteristics. 

Step 4: Generate the response surfaces to examine 

the effects of different parameter levels and their 

interactions on the GRG. 

Step 5: Govern the optimal EDM processing 

condition employing the desirability function. 

Step 6: The confirmation experiment is conducted 

to validate the optimal parameter setting. 

 

5 Results and discussion 
 

5.1 Microstructural characterization 

The high-resolution optical micrographs and the 

XRD patterns of the prepared AMCs are shown in Figs. 2 

and 3, respectively. The diffraction peaks of SiO2, Al2O3 

and Fe2O3, which represent the major elements of the 

cenosphere particles, are distinctly identified. The 

intensities of the peaks rise as cenosphere content within 

the matrix increases. It is noticed in Fig. 3 that the 

diffraction peaks of aluminum in the composites are 

slightly shifted to lower 2θ compared to that of base 

alloy due to the addition of cenosphere particles in the 

aluminum matrix. It is obvious from Fig. 3 that there are  
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Fig. 2 Optical images of AA6061/cenosphere: (a) 2%; (b) 4%; (c) 6%; (d) 8% 

 

 

Fig. 3  XRD patterns of AA6061/cenosphere compocast 

composites 

 

no other diffraction peaks detected except the peaks for 

elements Al, SiO2, Al2O3 and Fe2O3. This observation 

leads to a conclusion that during the casting of AMCs, 

the integrity of cenosphere particles was conserved. At 

the processing temperature of compo casting, cenosphere 

particles are thermodynamically stable. The occurrence 

of any interfacial reaction between fly ash particles and 

aluminum matrix during casting has not been observed. 

Such interfacial reactions in the composites would often 

result in the formation of brittle intermetallic compounds 

and degrade the significant properties. A wider zone of 

interfacial reaction and consequently the formation of 

brittle MgAl2O4 spinal were observed at the interface of 

aluminum–fly ash in A356/fly ash AMC prepared by stir 

casting as reported by RAJAN et al [43]. Iron-rich 

intermetallic compounds were noticed by ZAHI and 

DAUD [5] at the interface of Al/fly ash AMC produced 

by stir casting. The processing temperature of compo 

casting is the reason for absence of such intermetallic 

compounds in the XRD patterns of the prepared 

composites. The processing temperature of compo 

casting is considerably low in comparison to that of stir 

casting, which is inadequate to initiate any interfacial 

reactions. This semi-solid processing route to fabricate 

AMCs assists in abolishing the interfacial reactions. 

 

5.2 Grey relational generation 

The grey relation theory was employed to transmute 

the unkempt original experimental data into a systematic 

sequence to obtain the relationship among the different 

elements [38]. The responses observed for SR and EWR 

were treated as the-lower-the-better characteristics and 

the responses observed for MRR considered as the- 

higher-the-better with a target value of zero. A linear 

normalization has been attempted on the perceived 

responses and the corresponding values for 

pre-processed data and GRG are listed in Table 6 and 

Table 7, respectively. The values of GRG provide the 

sole representation for the three responses and an inflated 

value of GRG was desired nevertheless of the essence of 

https://www.google.co.in/search?biw=1280&bih=879&q=define+nevertheless&sa=X&sqi=2&ved=0ahUKEwiAiOLxj6HKAhUHQI4KHcpDCGcQ_SoIHjAA
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the experimental responses. The GRG values plotted for 

the various trials for experiments are shown in Fig. 4. 

The crest GRG value was observed for the twelfth trial, 

demonstrating the proximity of the operating condition to 

the optimum setting of the parameter. 

 

Table 6 Pre-processed data and corresponding deviation 

sequences 

Trial  

No. 

Pre-processed data *( )ix k   Deviation Seq. Δ0i(k) 

MRR/ 

(g·min−1) 

EWR/ 

(g·min−1) 

SR/ 

μm 
 

MRR/ 

(g·min−1) 

EWR/ 

(g·min−1) 

SR/ 

μm 

1 0.0407 0.9010 1  0.9593 0.0989 0 

2 0.1424 0.8296 0.7007  0.8575 0.1703 0.2992 

3 0.5589 0.9835 0.6765  0.4410 0.0164 0.3234 

4 0.9023 0.9010 0.3300  0.0976 0.0989 0.6699 

5 0 0.8791 0.8688  1 0.1208 0.1311 

6 0.1554 0 0.4403  0.8445 1 0.5596 

7 0.5096 0.8956 0.4282  0.4903 0.1043 0.5717 

8 0.6756 0.4615 0.0095  0.3243 0.5384 0.9904 

9 0.0418 0.7967 0.9888  0.9581 0.2032 0.0111 

10 0.1592 0.7747 0.6348  0.8407 0.2252 0.3651 

11 0.4601 0.9725 0.6470  0.5398 0.0274 0.3529 

12 1 0.9505 0.2846  0 0.0494 0.7153 

13 0.0223 0.8681 0.8649  0.9776 0.1318 0.1350 

14 0.2045 0.3956 0.4414  0.7954 0.6043 0.5585 

15 0.5154 0.9175 0.3793  0.4845 0.0824 0.6206 

16 0.6971 0.9010 0  0.3028 0.0989 1 

17 0.0502 1 0.6546  0.9497 0 0.3453 

18 0.9023 0.9010 0.3300  0.0976 0.0989 0.6699 

19 0.6756 0.4615 0.0095  0.3243 0.5384 0.9904 

20 0.0489 0.9670 0.6810  0.9510 0.0329 0.3189 

21 0.0203 1.0054 0.8528  0.9796 0.0054 0.1471 

22 0.1874 0.8516 0.5577  0.8125 0.1483 0.4422 

23 0.0384 0.7197 0.8857  0.9615 0.2802 0.1142 

24 0.5215 0.9890 0.5396  0.4784 0.0109 0.4603 

25 0.0641 0.9615 0.8345  0.9358 0.0384 0.1654 

26 0.0292 0.9285 0.6359  0.9707 0.0714 0.3640 

27 0.0426 0.8791 0.6888  0.9573 0.1208 0.3111 

28 0.0559 0.9780 0.6479  0.9440 0.0219 0.3520 

29 0.0489 0.9395 0.6852  0.9510 0.0604 0.3147 

30 0.0477 0.8736 0.6998  0.9522 0.1263 0.3001 

 

5.3 Mathematical model for GRG 

The RSM approach employs a mathematical 

technique to map the decision variables with the quality 

characteristics and generate a second order polynomial 

equation (quadratic model). The formed mathematical 

model appraises the association and explores the discrete 

Table 7 Calculated values of GRC and GRG for various 

experimental trials 

Trial No. 

GRC values ξi(k) 

GRG, γi MRR/ 

(g·min−1) 

EWR/ 

(g·min−1) 

SR/ 

μm 

1 0.3426 0.8348 1 0.725830667 

2 0.3683 0.7459 0.6255 0.57993122 

3 0.5313 0.9680 0.6071 0.70219035 

4 0.8365 0.8348 0.4273 0.69960699 

5 0.3333 0.8053 0.7922 0.643625467 

6 0.3718 0.3333 0.4718 0.392351367 

7 0.5048 0.8272 0.4665 0.59956285 

8 0.6065 0.4814 0.3354 0.474496867 

9 0.3429 0.7109 0.9781 0.677324417 

10 0.3729 0.6893 0.5779 0.546757603 

11 0.4808 0.9479 0.5861 0.67163524 

12 1 0.91 0.4114 0.773806787 

13 0.3383 0.7913 0.7873 0.639000623 

14 0.3859 0.4527 0.4723 0.43700872 

15 0.5078 0.8584 0.4461 0.60415988 

16 0.6227 0.8348 0.3333 0.596990777 

17 0.3448 1 0.5914 0.64544973 

18 0.8365 0.8348 0.4273 0.69960699 

19 0.6065 0.4814 0.3354 0.474496867 

20 0.3445 0.9381 0.6105 0.63107645 

21 0.3379 1.0111 0.7725 0.707202793 

22 0.3809 0.7711 0.5306 0.560932903 

23 0.3420 0.6408 0.8140 0.598996493 

24 0.5109 0.9784 0.5206 0.670046313 

25 0.3482 0.9285 0.7513 0.676057453 

26 0.3399 0.875 0.5786 0.597864157 

27 0.3430 0.8053 0.6164 0.58827399 

28 0.3462 0.9578 0.5867 0.630312643 

29 0.3445 0.8921 0.6136 0.616795417 

30 0.3442 0.7982 0.6248 0.58914549 

 

 

Fig. 4 Variation in GRG values during different experimental 

trials 
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and interaction effects of process parameters on the 

response characteristics, hence offering the extent to 

investigate the behaviour of the system [32,33]. Face 

centered CCD of RSM was employed for the design of 

experiment. A mathematical model was generated for the 

response surface to describe the effect of EDM process 

parameters on the GRG. Design expert software (version 

9.0.0) was used to formulate the model coefficients and 

the precise quadratic model after eliminating the 

insignificant terms (model reduction) was disclosed in 

Eq. (6). 
 

GRG=0.56+3.823×10−3A−0.036B+8.000×10−3D+ 
 

0.054AC+0.034AD−0.018BD+8.235×10−3A2+ 
 

0.043B2+9.787×10−3C2+0.051D2                    (6) 

 

5.4 Model fitness and adequacy verification 

The analysis of variance (ANOVA) was performed 

to realize the adequacy of the model and consequently 

determine the significance of coefficients and fitness of 

the model in establishing a  methodical relationship 

between the observed quality characteristics and the 

process parameters. The established quadratic model for 

GRG obtained from the ANOVA analysis (Table 8) was 

found to be significant which has been proved by     

the model F-value (36.136). The probability of a greater 

F-value caused by the unmanageable noise factors was 

noticed to be less by 0.01%. The influence of various 

terms in the model was demonstrated by the lesser 

probability value. Hence, the results of ANOVA had 

revealed the significance of model terms A, B, D, the 

interaction terms AC, AD, BD and second order 

(quadratic) of factors A, B, C and D. The model 

developed for GRG was further refined by eliminating 

the insignificant terms. The results for ANOVA had 

manifested the ability of developed model (Eq. (6)) in 

representing the operating conditions in die sinking EDM 

process. The values of R-squared and adequate precision 

were spelled out using the design expert software 10.0. 

The value of R-square for the generated model had 

noticed to be 0.9607 (close to unity), evidence for a 

better fit between the mathematical model and the actual 

responses obtained within the domain of experiment. The 

adjusted and predicted R-squared values were in 

reasonable consensus with each other, demonstrating the 

fitness of observed experimental data to the developed 

model. The adequate precision value (20.8709) was 

remarkably larger than 4.0, attesting the desired model 

discrimination. Hence, the developed mathematical 

model exhibits the higher values of determination 

coefficient and adequate precision could be deemed fit to 

estimate the GRG values. 

 

Table 8 ANOVA table for GRG 

Source Sum of squares DOF Mean square F-value p-value Prob>F 

Block 1.095×10−3 1 1.095×10−3    

Model 0.15 14 0.010 36.136 <0.0001 Significant 

A(Ip) 2.631×10−4 1 2.631×10−4 44.053 <0.0001  

B(Ton) 0.023 1 0.023 8.7212 0.0276  

C(φr) 2.560×10−4 1 2.560×10−4 1.0526 0.1228  

D(Pflu) 1.152×10−3 1 1.152×10−3 6.2308 0.0335  

AB 2.174×10−3 1 2.174×10−3 0.4406 0.5169  

AC 0.047 1 0.047 9.6018 0.0078  

AD 0.018 1 0.018 8.9105 0.0248  

BC 2.151×10−4 1 2.151×10−4 2.044 0.0974  

BD 5.013×10−3 1 5.013×10−3 5.0219 0.0299  

CD 4.317×10−3 1 4.317×10−3 0.8801 0.1648  

A2 1.722×10−4 1 1.722×10−4 10.035 0.0054  

B2 4.765×10−3 1 4.765×10−3 12.9701 0.0017  

C2 2.432×10−4 1 2.432×10−4 8.769 0.0273  

D2 6.635×10−3 1 6.635×10−3 10.3052 0.0049  

Residual 0.039 14 4.919×10−3    

Lack of fit 0.018 10 3.173×10−3 0.34 <0.0001 Significant 

Pure error 2.095×10−3 4 9.285×10−4    

Cor total 0.3233 29     
 

https://www.google.co.in/search?biw=1280&bih=923&q=define+consequently&sa=X&ved=0ahUKEwjq3Jiek6LKAhVkd3IKHWGSBEUQ_SoIHDAA
https://www.google.co.in/search?biw=1280&bih=923&q=define+methodical&sa=X&ved=0ahUKEwibr_eKlKLKAhUl_HIKHWAND5IQ_SoIJzAA
https://www.google.co.in/search?biw=1280&bih=923&q=define+relationship&sa=X&ved=0ahUKEwj88KOtlKLKAhUK_XIKHc0cADUQ_SoIHTAA
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5.5 Study of response surfaces 

Based on the generated quadratic polynomial 

equation (Eq. (6)), the response surface plots (Fig. 5) 

were drawn correlating the dependent variable GRG with 

 

 
Fig. 5 Response surface plots for illustrating effects of 

parameter interactions on GRG: (a) Effect of pulse on time and 

pulse current; (b) Effect of reinforcement content and pulse on 

time; (c) Effect of flushing pressure and pulse current 

the independent process variables such as pulse current, 

pulse on time, volume fraction of reinforcement and 

flushing pressure. Three different plots of response 

surface were developed and displayed, evading the plot 

of interaction with insignificant effect. A lower level of 

pulse on time and a higher level of peak current were 

desired (Figs. 5(a) and (b)) to enhance the value of GRG 

and hence the responses. This is attributed to high 

instantaneous energy in pulses at high current, resulting 

in melting and re-solidification and thus affecting the 

finish of the EDMed surface. The use of flushing 

pressure leads to easy removal of eroded materials from 

the machining surface, minimizing the dross (Fig. 5(c)). 

The purging out of dross at higher flushing pressure 

could reduce the surface roughness improving the value 

of GRG [44]. The adequate eviction of debris particles 

by high flushing pressure also enhanced the 

machinability of the prepared AMCs. A higher level of 

pulse current (Figs. 5(a) and (b)) was found to increase 

the energy content of each spark which is utmost crucial 

in melting and evaporating the matrix alloys. The assist 

flushing pressure unfastens a portion of reinforcements 

along with it, while some allocation of the reinforcement 

particles requires more thermal energy for vaporizing 

them. However, higher pulse energy at higher pulse on 

time may cause thermal damage to the ED machined 

surface, while a higher reinforcement content causes 

striations and spoils the surface finish. Hence, a lower 

level (2%) of reinforcement content is desired while 

machining for better surface finish. 

 

5.6 Desirability analysis 

The desirability analysis can be of three types, viz. 

the-smaller-the-better, the-larger-the-better, and the- 

nominal-the-better. The desirability study was performed 

on the derived GRG values using the-larger-the-better 

desirability function for MRR and the operating 

condition generating the maximum value of desirability 

was considered as optimal processing condition   

(Table 9). The desirability function for EWR and SR was 

chosen as the-smaller-the-better characteristics. The 

optimal level of EDM process parameters was identified 

as pulse current of 9.9126 A, pulse on time of 210.002 µs, 

reinforcement content of 3.6936% and flushing pressure 

of 0.5999 MPa. The desirability values indicating the 

preferred level of different process parameters are 

depicting in the ramp function graph (Fig. 6). The level 

of desirability was located by a dot on each ramp and the 

altitude of the dot indicates the aggregates of desirability. 

The optimal desirability value was observed at the peak 

rising part of the graph representing a desirability value 

of 1.00 and asserting a significant degree of contiguity 

between the target value and responses. The plot 

revealing the original and predicted values of GRG 
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produce evidence for degree of proximity (Fig. 7). Most 

of the data fall near to a straight line demonstrating the 

normal distribution of noises. Hence, the divination can 

be regarded as dependable. 

 

Table 9 Selection of optimal level of EDM machining 

parameters 

Symbol Parameter 
Optimal 

value 

Low 

level 

High 

level 

A 
Pulse current, 

Ip/A 
9.9126 6 10 

B 
Pulse on time, 

Ton/µs 
210.002 210 1010 

C 
Content of 

reinforcement/% 
3.69364 2 6 

D 
Flushing 

pressure/MPa 
0.59999 0.2 0.6 

Response Prediction SE mean 
95% CI 

low 

95% CI 

high 

GRG 0.745208 0.024 0.51 0.61 

 

 

Fig. 6 Ramp function graphs of desirability for 

AA6061/cenosphere AMCs 

 

 

Fig. 7 Plot of predicted versus actual GRG values 

 

The optimal value of pulse current was observed as 

9.9126 A. A greater level of pulse current could enlarge 

the spark discharge energy to facilitate the action of 

melting and vaporization thereby increasing the    

MRR [45]. However, the electrode wear rate could be 

severe at lower values of pulse on time, while a higher 

value increases the MRR. Hence, a low Ton of 210.002 µs 

was obtained as the optimal level from desirability 

analysis. As the cenosphere particles are nonconductive 

in nature, a higher level of reinforcements could cause 

lower MRR and spoil the surface finish. Hence, a lower 

level of content of reinforcement (3.6936) was chosen as 

the optimal level. A higher value of flushing pressure 

(0.5999 MPa) was considered as the optimal level for 

easy and effective ejection of debris and spark eroded 

particles. 

 

5.7 Confirmation experiment 

A confirmation experiment has been required to 

validate the hybrid approach of GRSM implemented for 

optimization. The combination of process parameter 

(Trial 12) for which the quality characteristics yielded 

the peak value of GRG (0.7738) was selected as the 

initial setting of process parameter. The responses 

obtained for the initial parameter setting were compared 

with those observed with the optimal parameter setting, 

predicted by the hybrid GRSM approach (Table 10). It 

has been noticed that the hybrid GRSM technique had 

marginally improved the quality characteristics. The 

surface roughness of the EDMed surface was significant 

in appraising the quality of machined parts. The 

functional aspects of the components made of aluminum- 

based MMCs in automotive and aerospace applications 

demand attributes such as wear resistance, lubricant 

holding capabilities and heat dissipation, which 

significantly depend on the surface roughness. A good 

finished surface could avert further processing and 

thereby reducing the cost and time as well. Significant 

reduction of 17.936% was observed in surface roughness 

of the machined surface achieved with the GRSM setting. 

Figures 8 and 9 show the 3D optical EDMed surfaces 

generated with initial settings of machining parameter 

and the GRSM setting, respectively. An appreciable 

depletion in striations was noticed with the ED 

machining  with  optimal  setting  of  parameter.  The 

 

Table 10 Responses obtained with initial setting of parameter 

and GRSM setting 

Parameter 

setting 
GRG 

Response 

MRR/ 

(g·min−1) 

EWR/ 

(g·min−1) 

SR/ 

µm 

Initial setting 0.773807 0.6843 0.0019 9.2872 

Optimal setting 

using GRSM 
0.745208 0.7083 0.0020 7.6214 

Improvement 0.028599 0.0240 −0.0001 1.6658 

Improvement 

rate/% 
3.696 3.5072 −5.2613 17.9365 
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Fig. 8 3D optical image of EDMed surfaces obtained: (a) Initial 

parameter settings; (b) P-profile graphs of surface roughness 

 

 

Fig. 9 3D optical image of EDMed surfaces obtained: (a) 

GRSM settings; (b) P-profile graphs of surface roughness 

 

P-profile graphs were also displayed to explain the 

decrement in surface roughness obtained with optimal 

parameters settings. The images of 3D optical surface 

profilometer show an improved texture of the EDMed 

surface acquired with the GRSM setting. The improved 

surface texture was indicated by the variations in peak 

heights as visualized from Fig. 9(a). 

 

6 Conclusions 
 

1) The hybrid GRSM approach was found to be 

effective, fit and adequate in predicting the optimal 

setting of ED machining parameters for Al6061/ 

cenosphere AMCs (pulse current of 9.9126 A, pulse on 

time of 210.002 µs, reinforcement content of 3.6936% 

and flushing pressure of 0.5999 MPa). 

2) The experimentally obtained values of grey 

relational grade (GRG) and the predicted values matched 

reasonably well, demonstrating an adequate fitness of the 

model. 

3) The machining parameters investigated in the ED 

machining process (pulse current, pulse on time, 

reinforcements content and flushing pressure) were 

found to be significant in affecting the responses 

illustrated by GRG. The developed model for response 

surface has been found to be adequate and substantial in 

establishing the relationship among various ED 

machining parameters. 

4) The GRA was employed to generate the single 

representative (GRG) for the three conflicting process 

variables or responses studied in EDM and RSM 

technique was utilized to generate a model for GRG 

values. Hence, the ambivalence handling ability of grey 

relation theory was united with the modelling 

competencies of RSM approach, permitting the 

implementation of hybrid GRSM technique for multi 

objective optimization problems in manufacturing 

industries. 
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采用基于灰度的混合方法优化 

Al6061/空心微珠复合材料电火花切割工艺参数 
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摘  要：粉煤灰作为铝基复合材料的增强剂已得到越来越多的关注，其可以增强特定的性能，还可以减少制备成

本。然而，铝基复合材料的加工性能较差限制了其发展。本研究采用复合铸造方法制备粉煤灰增强 Al6061 合金。

X 射线衍射分析表明铝基复合材料中只含有粉煤灰颗粒，不含其他金属间化合物。采用电火花切割评价所制备金

属基复合材料的加工性能。采用不同的电火花切割工艺参数组合对材料去除率、电极磨损率、表面粗糙度等性能

参数进行评价。采用响应曲面方法的中心复合设计对所需实验的数量进行优化，获得基于灰度的响应曲面方法，

并用以预测电火花切割最佳工艺组合。采用基于灰度响应曲面方法预测得到的最佳工艺参数组合时，所得性能参

数得到明显提高，电火花切割表面的 3D 轮廓图表明材料的表面质量和织构都得到提升。 

关键词：复合铸造；电火花切割；响应曲面方法；基于灰度的响应曲面方法；方差分析；期望值分析 
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