

Available online at www.sciencedirect.com

ScienceDirect

Trans. Nonferrous Met. Soc. China 27(2017) 863–867

Transactions of
Nonferrous Metals
Society of China

www.tnmsc.cn

Optical properties and magnetic properties of antisite-disordered $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ spinels

Yu GAO, Hong CHANG, Qiang WU, Hong-yan WANG, Yan-bo PANG, Fang LIU, Hong-jing ZHU, Yue-hou YUN

School of Physics, Inner Mongolia University, Hohhot 010021, China

Received 29 February 2016; accepted 8 July 2016

Abstract: From the UV–Vis absorption spectra, the FT-IR absorption spectra and the Raman spectra, it is deduced that Co ions primarily occupy the tetrahedral (A) site, with a minor number of them entering into the octahedral (B) site in the $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ compounds. The origin of the position disorder of the Co ions is consistent with the similar ionic radii of the Co ion (0.65 Å) and the Cr ion (0.62 Å) at B site. The FT-IR peak at about 510 cm^{-1} shifts towards high frequency side with the increasing cobalt content. It is resulted from the reduction of the cation–oxygen distance in the octahedron by the replacement of the Ni^{2+} with the Co^{2+} ions. The magnetic measurement shows that Curie temperatures (T_C) are 75 and 90 K for the compounds with $x=0.2$ and 0.8, respectively.

Key words: spinel; antisite defect; electronic transition; optical properties; magnetic properties

1 Introduction

Chromium-based spinel-type compounds with a general formula ACr_2O_4 have received considerable attention due to their interesting magnetic properties and prospective applications [1,2]. For example, both of the NiCr_2O_4 and CoCr_2O_4 can be used as catalysts, gas sensors, pigment, and magnetic materials [3]. Cobalt chromite (CoCr_2O_4) crystallizes in cubic $Fd\bar{3}m$ space group and no structural phase transition is reported, while NiCr_2O_4 has a cubic $Fd\bar{3}m$ to tetragonal $I4_1/\text{amd}$ phase transition caused by the Jahn–Teller distortion [4,5]. It is suggested that upon doping NiCr_2O_4 with Co ions, Co ions replace Ni ions at A site. The ionic radius of Co^{2+} (0.58 Å) is greater than that of Ni^{2+} (0.54 Å) at A site, which may explain the variation of cation–cation and ion–oxygen distances, and the distortion of tetrahedrons and octahedrons containing A^{2+} and Cr^{3+} , respectively [4]. In single-crystal samples, collinear ferrimagnetic ordering occurs at $T_c=93$ K and 74 K for NiCr_2O_4 and CoCr_2O_4 , respectively [6]. CoCr_2O_4 exhibits a multiferroic ordering below 26 K. In perfect normal AB_2O_4 spinel, A^{2+} ions occupy the tetrahedral (A) site and B^{3+} ions occupy the octahedral

(B) site [4,7]. However, EWAIS et al [8] discovered that some A sites were occupied by Al^{3+} ions and some B sites were occupied by Mg^{2+} ions for MgAl_2O_4 spinel. GABAL et al [9] found that a half of the iron ions preferentially located at A sites and the others were at B sites, nickel ions and chromium ions occupied mostly B sites for $\text{NiFe}_{2-x}\text{Cr}_x\text{O}_4$. Therefore, a certain degree of disorder could occur in ACr_2O_4 , i.e., some of the A site are occupied by Cr^{3+} ions and some of the B site are occupied by A^{2+} . This departure from the normal spinel structure causes the antisite defect. These antisite defects play an important role in ion-surface interaction process and influence the electrical and optical behaviors of ACr_2O_4 spinel powders [8]. The $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ solid solution samples were studied by KOCHUR et al [4] using the method of X-ray photoelectron spectroscopy (XPS) and displayed that Ni ions occupied A sites and B sites and chromium ions located at B sites. In this work, we concentrate on studying the crystal structure, the locations of Co^{2+} , the optical properties and the magnetic properties of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ with the X-ray diffraction (XRD) patterns, the Fourier transform infrared spectroscopies (FT-IR), UV-Vis spectra, Raman spectroscopy and magnetic property measurements.

Foundation item: Project (11264024) supported by the National Natural Science Foundation of China; Projects (2015MS0102, 2015MS0524) supported by Natural Science Foundation of Inner Mongolia, China

Corresponding author: Hong CHANG; Tel: +86-731-4993141; E-mail: changhong@imu.edu.cn
DOI: 10.1016/S1003-6326(17)60099-2

2 Experimental

Polycrystalline samples of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.7, 0.8, 0.85, 0.9, 0.95$ and 1.0) were prepared by solid-state reaction. The starting materials NiO , Co_2O_3 and Cr_2O_3 were ground in an agate mortar, heated at $850\text{ }^\circ\text{C}$ in air for 12 h and then heated at $1150\text{ }^\circ\text{C}$ in air for 48 h 2 times in order to ensure complete reaction. Powder X-ray diffraction (XRD) measurements were carried out using a RigakuD/max-2500 powder X-ray diffractometer with $\text{Cu K}\alpha$ ($\lambda_1=0.15406\text{ nm}$ and $\lambda_2=0.15443\text{ nm}$) radiation. The diffraction data were collected for structure analysis, and the scan range 2θ was from 5° to 80° , with a scanning step of $2\theta=0.014^\circ$ and a sampling time 1 s . UV-Vis spectra were recorded in the $200\text{--}800\text{ nm}$ domain with a PerkinElmer Lambda750 UV-Vis spectrometer at room temperature. Fourier transform infrared (FT-IR) spectra were recorded with a NICOLET AVATAR 330 spectrometer in the range of $4000\text{--}400\text{ cm}^{-1}$. The samples were mixed with KBr in the mass ratio of $1:200$, and then were pressed into pellets. Raman spectra were recorded in the $100\text{--}900\text{ cm}^{-1}$ domain with Renishaw inVia Laser confocal Raman spectrometer. Magnetization measurements were carried out on a Quantum Design superconducting quantum interference device (SQUID) magnetometer. Magnetization as a function of temperature was measured in the range of $5\text{--}200\text{ K}$ with an applied field of $4\times 10^4\text{ A/m}$. Magnetization as a function of field was measured up to a maximum field of $5.57\times 10^6\text{ A/m}$.

3 Results and discussion

3.1 XRD patterns

The XRD pattern shows that the NiCr_2O_4 has the tetragonal structure with the space group $I4_1/\text{amd}$. However, the structure of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ with $x\geq 0.05$ is cubic with the space group $Fd\bar{3}m$. Figure 1 shows the XRD patterns of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0, 0.05$) as representatives. The diffraction peaks shift to lower diffraction angles as x increases, and it indicates that the lattice constant increases with the increasing cobalt content. This lattice expansion is due to the larger ionic radius of Co^{2+} ($r=0.58\text{ \AA}$) than that of Ni^{2+} ($r=0.55\text{ \AA}$) at the A site.

3.2 UV-Vis spectra

The UV-Vis reflectance spectra transform to the UV-Vis absorbance spectra with the formula $A=\lg(1/R)$, where A is the absorbance factor and R is the reflectance factor. Figure 2 shows the UV-Vis absorbance spectra of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0.05, 0.1, 0.15, 0.2, 0.85, 0.9$ and 0.95) in the range of $200\text{--}800\text{ nm}$.

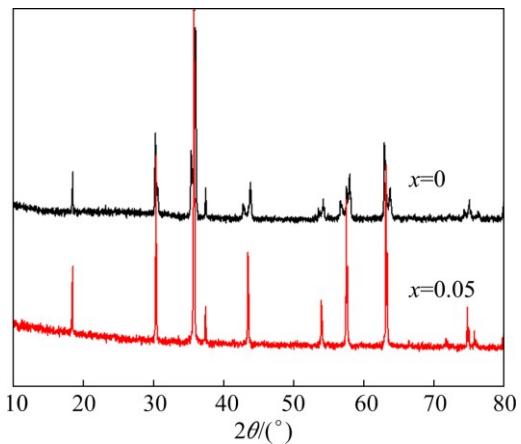


Fig. 1 XRD patterns of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0, 0.05$) in range of $5^\circ < 2\theta < 80^\circ$

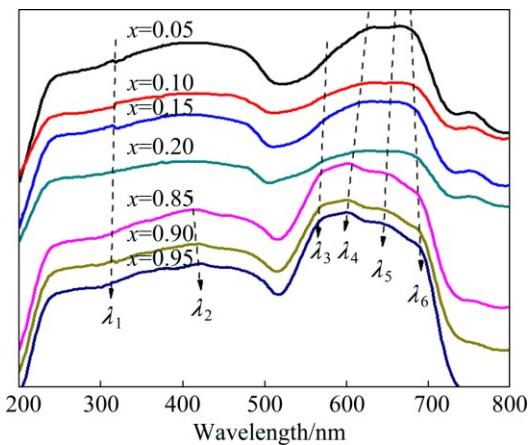


Fig. 2 UV-Vis absorbance spectra of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0.05, 0.1, 0.15, 0.2, 0.85, 0.9$ and 0.95)

0.95). The peak λ_1 at about 315 nm is due to a charge transfer between the cation and the oxygen at high energy. The absorption peaks, λ_3 at about 570 nm , λ_4 at about 610 nm and λ_5 at about 645 nm , are attributed to the spin-allowed electronic transition ${}^4\text{A}_2(\text{F})\rightarrow{}^4\text{T}_1(\text{P})$ of Co^{2+} ions at the A site. The UV-Vis spectra of the compounds with $x\leq 0.2$ have delicate characteristics, the comparatively weak peaks include λ_3 at about 570 nm and λ_5 at about 645 nm , while the peak λ_4 at about 610 nm is relatively strong. This illustrates that λ_4 at about 610 nm is assigned to not only the transition ${}^4\text{A}_2(\text{F})\rightarrow{}^4\text{T}_1(\text{P})$ of the high spin Co^{2+} ion at the A site, but also the transition ${}^4\text{A}_{2g}\rightarrow{}^4\text{T}_{2g}$ of Cr^{3+} ion at the B site. λ_6 at about 680 nm is attributed to the superposition of the spin forbidden transitions ${}^4\text{A}_{2g}\rightarrow{}^2\text{T}_{1g}$ and ${}^4\text{A}_{2g}\rightarrow{}^2\text{E}_g$ of Cr^{3+} ions at the B site. A weak absorption peak, λ_2 , appears at about 415 cm^{-1} for the compounds with $x\geq 0.85$, which is related to the spin-forbidden transition ${}^4\text{A}_2(\text{F})\rightarrow{}^2\text{T}(\text{G})$ of the Co ions at the B site, as reported by ZAYAT and LEVY [10]. In a perfect normal ACr_2O_4 ($\text{A}=\text{Ni}$ and Co) spinel, the A^{2+} ions occupy the A site and

Cr^{3+} ions occupy the B site. However, λ_2 implies that some of the B sites are occupied by Co^{2+} ions. The departure from the normal spinel structure causes the antisite defect. All the observed bands suggest that Co ions locate at both A and B sites, while Cr ions locate only at B site in $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$. The origin of the antisite defect is probably due to the similar ionic radii of Co ions (0.65 Å) and Cr ions (0.62 Å) at the B site.

3.3 FT-IR spectra

The FT-IR spectra of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ is shown in Fig. 3. There are two strong peaks at about 510 cm^{-1} and 620 cm^{-1} , which are the characteristic peaks of the spinel and depend on the vibration of the cations at the B site [11]. Each oxygen ion in the spinel is shared by a cation at the A site and three cations at the B site. The replacement of small Ni ions by large Co ions at the A site leads to the increase of the A cation—O distance in the tetrahedron. As a compensation, it compresses the octahedron and results in a shrinking of the B cation—O distance in the octahedron, and increases the B cation—O bond energy. Consequently, the band at around 510 cm^{-1} shifts towards the high frequency side with the increasing cobalt content. The intensity of the peak at about 600 cm^{-1} is rather weak and delicate and it increases gradually with the increasing cobalt content. This indicates that some of the Co ions enter into the B site instead of the A site and confirms that the antisite defects exist in $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$. Meanwhile, the peak at 600 cm^{-1} shifts towards high frequency side with the increasing cobalt content. It has the same origin as the shift of the peak around 510 cm^{-1} in the FT-IR spectra described above.

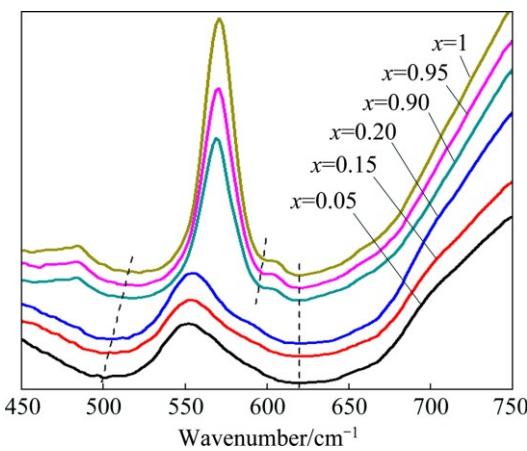


Fig. 3 FT-IR spectra of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0.05, 0.15, 0.2, 0.9, 0.95, 1.0$)

3.4 Raman spectra

Raman spectra of the $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0.2$ and $x=0.8$) samples are shown in Fig. 4. All the values of these peaks are listed in Table 1. According to group

theory, the normal spinel have five Raman-active phonon modes ($\Gamma=1A_{1g}+1E_g+3F_{2g}$ or alternatively $3T_{2g}$) [12,13], corresponding to the five peaks (v_1 (T_{2g}), v_2 (E_g), v_3 (T_{2g}), v_4 (T_{2g}), and v_7 (A_{1g})), respectively. The five peaks of the $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ samples shift to high frequency side with the increasing cobalt content. The increasing Raman-active phonon mode energy reflects that the doping Co ions tend to influence the tetragonal structure [12]. The peak v_5 is owed to the stretching modes of Cr—O—Cr [14]. Compared with the Raman spectra of ZnCr_2O_4 by WANG et al [14], the broad Raman band v_6 at about 640 cm^{-1} is attributed to the partial position disorder of the cations in the spinel structure, i.e., so-called antisite defect.

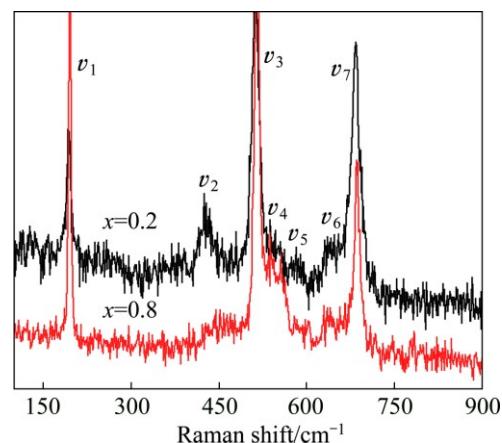


Fig. 4 Raman spectra of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0.2$ and 0.8)

Table 1 Raman absorption peaks of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$

x	v_1/cm^{-1}	v_2/cm^{-1}	v_3/cm^{-1}	v_4/cm^{-1}	v_5/cm^{-1}	v_6/cm^{-1}	v_7/cm^{-1}
0.2	192	425	512	538	582	640	684
0.8	195	449	513	540	556	635	687

3.5 Magnetic properties

The thermal magnetization of $\text{Ni}_{0.8}\text{Co}_{0.2}\text{Cr}_2\text{O}_4$ and $\text{Ni}_{0.2}\text{Co}_{0.8}\text{Cr}_2\text{O}_4$ with different Co^{2+} contents are carried out with the temperature ranging from 5 to 200 K at a magnetic field of $4\times 10^4\text{ A/m}$, as shown in Fig. 5. The magnetization of $\text{Ni}_{0.8}\text{Co}_{0.2}\text{Cr}_2\text{O}_4$ decreases slowly with the temperature ranging from 5 to 31 K, then decreases sharply to the paramagnetic region at $T_C=73\text{ K}$, which is the Curie temperature. For $\text{Ni}_{0.2}\text{Co}_{0.8}\text{Cr}_2\text{O}_4$, the magnetization decreases slowly with the temperature ranging from 5 to 25 K, and then increases smoothly to a maximum at about 65 K. Two transitions are visible at $T_s=25\text{ K}$ and $T_C=90\text{ K}$. Below $T_C=90\text{ K}$, the spin is long-range linearly ferrimagnetically ordered. A short-range-ordered spiral magnetic structure transforms into a conical magnetic structure at $T_s=25\text{ K}$ [6]. Figure 5 shows that the value of T_C increases with the substitution

of Co ions for Ni ions. The replacement of Ni by Co ions leads to a change of the radii at the A site and B site. It alters the magnitude of the well-known super-exchange interaction, resulting in an increase of the value of T_C with the increasing cobalt content [15]. The saturation magnetization (M_s), coercivity (H_c), the Curie temperature (T_C), the transition temperature for linear to conical alignment (T_s) are listed in Table 2. Figure 6 shows the magnetization curves of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0.2, 0.8$) at 5 K. The unsaturation magnetization of both $\text{Ni}_{0.8}\text{Co}_{0.2}\text{Cr}_2\text{O}_4$ and $\text{Ni}_{0.2}\text{Co}_{0.8}\text{Cr}_2\text{O}_4$ at $5.57 \times 10^4 \text{ A/m}$ is consistent with the conical alignment of the magnetic moments. Both H_c and M_s decrease with the increasing cobalt content. The decrease of M_s can be explained on the basis of the Neel two sub-lattice model [16]. The net

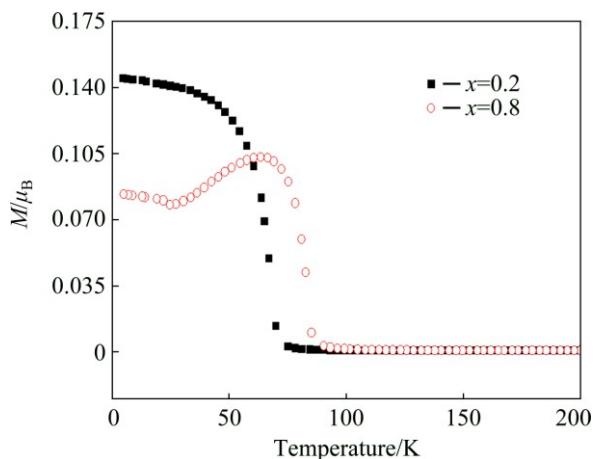


Fig. 5 Temperature-dependent magnetization measured with external magnetic field of 0.05 T for $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0.2$ and 0.8)

Table 2 Magnetic parameters of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$

x	M_s / μ_B	H_c / T	M_{cal} / μ_B	T_C / K	T_s / K
0.2	0.31	1.17	4.6	79	–
0.8	0.25	0.57	4	91	25

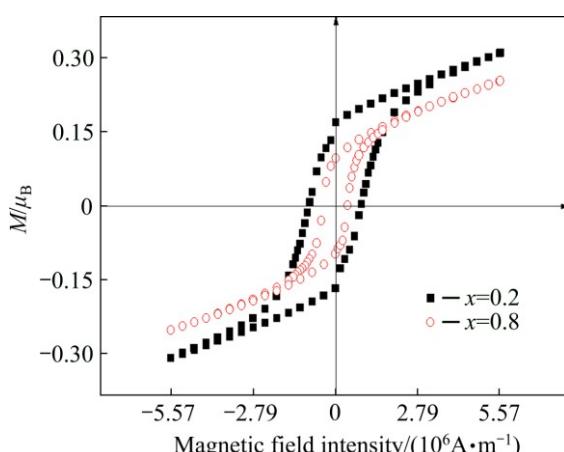


Fig. 6 Magnetization hysteresis of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0.2$ and 0.8) at 5 K

magnetization can be expressed as: $M_{\text{cal}}=M_B(x)-M_A(x)$, where M_A and M_B are the magnetic moments at A site and B site, respectively. The magnetic moments are calculated with $\mu=2\sqrt{S(S+1)}\mu_B$, where S is the total spin. Using this formula, it leads to $\mu(\text{Cr}^{3+})=\mu(\text{Co}^{2+})=3.8 \mu_B$, and $\mu(\text{Ni}^{2+})=2.8 \mu_B$. The calculated values M_{cal} are also listed in Table 2. Even though it is much higher than the measured M_s , probably due to the unsaturated magnetization of the conically aligned magnetic moments, the calculated magnetizations reflect the decreasing trend with the Co substitution.

4 Conclusions

1) Polycrystalline $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ ($x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.7, 0.8, 0.85, 0.9, 0.95, 1.0$) were synthesized by solid-state reaction. The XRD pattern shows that the NiCr_2O_4 has the tetragonal structure with the space group $I4_1/\text{amd}$. However, the structure of $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ with $x \geq 0.05$ is cubic with the space group $Fd\bar{3}m$.

2) The UV-Vis bands $\lambda_3, \lambda_4, \lambda_5$ and λ_6 suggest that the Co ions locate at the A site, and the Cr ions locate at the B site in $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$. The weak UV-Vis absorption at about 415 cm^{-1} , the FT-IR peak at about 600 cm^{-1} , and the broad Raman band at about 640 cm^{-1} , indicate that some of the Co ions enter the B site. Therefore, although the Co ions primarily occupy the A site, a minor part of them enter into the B site in the $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ compounds.

3) The Curie temperatures are 75 K and 90 K for the compounds with $x=0.2$ and 0.8 , respectively. The replacement of Ni by Co ions leads to a change of the radii at the A site and B site. This alters the magnitude of the well-known super-exchange interaction, resulting in an increase of the value of T_C with the increasing cobalt content.

References

- [1] MOUSAVI Z, ESMAEILI-ZARE M, SALAVATI-NIASARI M. Magnetic and optical properties of zinc chromite nanostructures prepared by microwave method [J]. Transactions of Nonferrous Metals Society of China, 2015, 25: 3980–3986.
- [2] LUO Guang-sheng, ZHOU Wei-ping, LI Jian-de, JIANG Gui-wen, TANG Shao-long, DU You-wei. Effect of Cu ion substitution on structural and dielectric properties of Ni-Zn ferrites [J]. Transactions of Nonferrous Metals Society of China, 2015, 25: 3678–3684.
- [3] BARMAN J, RAVI S. Study of exchange bias behavior in $\text{Ni}(\text{Cr}_{1-x}\text{Fe}_x)_2\text{O}_4$ [J]. Solid State Communications, 2015, 201: 59–63.
- [4] KOCHUR A G, KOZAKOV A T, GOOGLEV K A, MIKHEYKIN A S, TORGASHEV V I, BUSH A A, NIKOLSKII A V. Chemical bonding and valence state of 3d-metal ions in $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ spinels from X-ray diffraction and X-ray photoelectron spectroscopy data [J]. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195: 208–219.

[5] PTAK M, MACZKA M, GAGOR A, PIKUL A, MACALIK L, HANUZA J. Temperature-dependent XRD, IR, magnetic, SEM and TEM studies of Jahn–Teller distorted NiCr_2O_4 powders [J]. *Journal of Solid State Chemistry*, 2013, 201: 270–279.

[6] MUFTI N, NUGROHO A A, BLAKE G R, PALSTRA T T M. Magnetodielectric coupling in frustrated spin systems: The spinels MCr_2O_4 ($\text{M} = \text{Mn, Co and Ni}$) [J]. *Journal of Physics*, 2010, 22: 075902.

[7] GINGASU D, MINDRU I, CULITA D C, PATRON L, CALDERON-MORENO J M, OSICEANU P, PREDA S, OPREA O, PARVULESCU V, TEODORESCU V, WALSH J P S. Structural, magnetic and catalytic properties of cobalt chromite obtained through precursor method [J]. *Materials Research Bulletin*, 2015, 62: 52–64.

[8] EWAIS E M M, BESISA D H A, EL-AMIR A A M, EL-SHEIKH S M, RAYAN D E. Optical properties of nanocrystalline magnesium aluminate spinel synthesized from industrial wastes [J]. *Journal of Alloys and Compounds*, 2015, 649: 159–166.

[9] GABAL M A, KOSA S, ALMUTAIRI T S. Cr-substitution effect on the structural and magnetic properties of nano-sized NiFe_2O_4 prepared via novel chitosan route [J]. *Journal of Magnetism and Magnetic Materials*, 2014, 356: 37–41.

[10] ZAYAT M, LEVY D. Blue CoAl_2O_4 particles prepared by the sol-gel and citrate-gel methods [J]. *Chemistry of Materials*, 2000, 12: 2763–2769.

[11] LI Shan-dong, BI Hong, TIAN Zong-jun, XU Feng, GU Ben-xi, LU Mu, DU You-wei. Surface spin pinning effect of polymer decomposition residues in CoCr_2O_4 nanocrystallites system [J]. *Journal of Magnetism and Magnetic Materials*, 2004, 281: 11–16.

[12] WANG Zhong-wu, SAXENA S K, LAZOR P, O'NEILL H S C. An in situ Raman spectroscopic study of pressure induced dissociation of spinel NiCr_2O_4 [J]. *Journal of Physics and Chemistry of Solids*, 2003, 64: 425–431.

[13] SUCHOMSKI C, REITZ C, BREZESINSKI K, SOUSA C T, ROHNKE M, IIMURA K, ARAUJO J P E, BREZESINSKI T. Structural, optical, and magnetic properties of highly ordered mesoporous MCr_2O_4 and $\text{MCr}_{2-x}\text{Fe}_x\text{O}_4$ ($\text{M} = \text{Co, Zn}$) spinel thin films with uniform 15 nm diameter pores and tunable nanocrystalline domain sizes [J]. *Chemistry of Materials*, 2012, 24: 155–165.

[14] WANG Zhong-wu, LAZOR P, SAXENA S K, ARTIOLI G. High-pressure raman spectroscopic study of spinel (ZnCr_2O_4) [J]. *Journal of Solid State Chemistry*, 2002, 165: 165–170.

[15] GABAL M A, EL-SHISHTAWY R M, ANGARI Y M A. Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor [J]. *Journal of Magnetism and Magnetic Materials*, 2012, 324: 2258–2264.

[16] SERTKOL M, KOSEOGLU Y, BAYKAL A, KAVAS H, BOCKURT A, TOPRAK M S. Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles [J]. *Journal of Alloys and Compounds*, 2009, 486: 325–329.

反位紊乱 $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ 尖晶石的光学特性与磁学特性

高 玉, 常 虹, 武 强, 王宏艳, 庞艳波, 刘 芳, 朱宏静, 云月厚

内蒙古大学 物理科学与技术学院, 呼和浩特 010021

摘要: 通过对化合物 $\text{Ni}_{1-x}\text{Co}_x\text{Cr}_2\text{O}_4$ 的紫外吸收光谱, 红外吸收光谱和拉曼光谱分析, 说明 Co 离子中绝大多数占据了四面体(A)位置, 少部分占据了八面体(B)位置。Co 离子占位紊乱是由于八面体中 Co 离子的半径($r=0.65 \text{ \AA}$)接近于八面体中 Cr 离子的半径($r=0.62 \text{ \AA}$)引起的。随着 Co 含量的增加, 在 510 cm^{-1} 附近出现的红外吸收峰向高频方向移动, 这是由于 Co 离子替代四面体中 Ni 离子使八面体中阳离子与氧之间的距离减小, 导致键能增强引起的。磁性测量展示了 $x=0.2$ 和 0.8 的居里温度(T_C)分别为 75 K 和 90 K。

关键词: 尖晶石; 反位缺陷; 电子跃迁; 光学性能; 磁学性能

(Edited by Yun-bin HE)