2017年4月 April 2017

DOI: 10.19476/j.ysxb.1004.0609.2017.04.006

基于 m 值高效法的 TA15 合金超塑性变形

孙前江, 王高潮

(南昌航空大学 航空制造工程学院 轻合金加工科学与技术国防重点学科实验室, 南昌 330063)

摘 要:对 TA15 合金在拉伸试验机上进行应变速率敏感因子(*m* 值)高效超塑性变形试验,研究合金的超塑性性能和显微组织。结果表明:在 780~950℃变形时,TA15 合金呈现出良好的超塑性能;900 ℃变形时,该合金的超塑性能最好,*m* 值达到 0.62,最大伸长率为 1287%;随着变形温度的升高,合金的超塑性能降低,950 ℃时伸长率仅为 567%。显微组织分析表明:TA15 合金在超塑性变形过程中,晶粒始终保持等轴状;由于变形温度升高,晶粒合并长大,950 ℃时发生 $\alpha \rightarrow \beta$ 相转变,初生 α 相体积分数大幅度降低。与最大*m* 值法相比较,*m* 值高效超塑性变形不仅使 TA15 合金获得了良好超塑性能,变形效率也显著提高。

关键词: TA15 合金; 超塑性; m值; 显微组织

文章编号: 1004-0609(2017)-04-0716-08

中图分类号: TG146.2

文献标志码:A

TA15 合金属一种高 Al 当量的近 α 型钛合金,既 具有 α 型钛合金良好的热强性和可焊性,又具有接近 于 α + β 型钛合金的工艺塑性^[1-2]。该合金在航空航天 等领域得到了广泛的应用,主要用于制造 500 ℃以下 长时间工作的结构零件和焊接承力零部件等,例如发 动机的各种叶片、机匣,飞机各种大的钣金件、梁、 接头、壁板和隔框等^[3-4]。

超塑性指材料在一定的内部条件和外部条件下, 呈现出较低的流变抗力和较高的流变性能的现象,具 有伸长率大、抗颈缩能力强等特点[5-6]。近年来,采用 超塑性成形工艺对钛合金进行加工已成为热门的研究 方向^[7],国内外学者对钛合金超塑性技术进行了大量 的研究,双相钛合金组织超塑性仍然是研究的热点。 ASHIDA 等^[8]采用高压扭转法(High pressure torsion, HPT)制备了晶粒尺寸约为100 nm的Ti-6Al-7Nb合金; MOTYKA 等^[9]和 BABU 等^[10]分别采用不同热机械处 理工艺对 Ti-6Al-4V 合金进行了细晶处理, 晶粒细化 后,合金超塑性能均显著提高。ROY等^[11]研究了添加 硼元素 Ti-6Al-4V 合金的超塑性能,发现加入 0.1%(质 量分数)的硼元素后,伸长率提高了17%,他们认为这 主要是由于动态球化形成了大量细晶等轴初生 α 相, 由此增强了 α/β 的晶界滑移。此外,研究人员还对超 塑性变形方法进行了研究,万菊林^[12]采用两段速率法 对非理想组织 Ti-6Al-4V 合金进行了超塑性变形,该 方法使合金获得了较好的超塑性能,在技术手段上突 破了对钛合金微观组织的苛刻要求。王高潮等^[13-14]采 用最大m值法分别对 TC11 和 Ti-6Al-4V 合金进行了 超塑性拉伸,合金的超塑性能得到大幅度提高,然而 最大m值法的变形速率较低,变形时间较长。

由于 TA15 合金具有六方晶体结构, 滑移系较少、 塑性较差、变形抗力大、成形加工过程困难^[14], 采用 超塑性技术是解决该合金高筋薄壁等复杂构件成形的 有效途径, 然而目前对近α型钛合金的超塑性变形研 究相对较少。为此,本文作者采用 *m* 值法研究 TA15 合金的高效超塑性变形,克服最大 *m* 值法变形效率低 的问题, 深入探究其超塑性变形机制和组织演变规律, 为该合金复杂航空结构件的精确成形提供相关技术参 考和理论依据。

1 实验

实验用 TA15 合金由北京航空材料研究院提供, 其化学成分如表 1 所列,金相法测定其相变点为 982 ℃。供货态合金的原始组织如图 1(a)所示,显微 组织非常不均匀, β基体上分布着大量的粗条状 α 相 和细

基金项目:国家自然科学基金资助项目(51261020);江西省自然科学基金资助项目(20142BAB206021);江西省教育厅科技项目(GJJ150735);轻合

金加工科学与技术国防重点学科实验室基金资助项目(gf201501006) 收稿日期: 2015-11-10; 修订日期: 2016-06-09 通信作者: 孙前江,副教授,博士; 电话: 0791-83863032; E-mail: cruzesun@nchu.edu.cn 条状 α 相,初生等轴 α 相的含量非常少,平均晶粒尺 寸约为 25 µm,条状 α 相的最大长度达到约 100 µm, 属典型的非理想组织,不利于合金超塑性变形。为提 高 TA15 合金的超塑性能,本文作者首先采用高低温 复合形变热处理工艺对原始组织进行了细化处理,形 变热处理后的显微组织如图 1(b)所示。由图 1 中可以 看出,与原始组织相比较,显微组织非常均匀,在复 合形变热处理工艺过程中,大变形量的锻造和热处理 工艺使粗条状 α 相得到了充分的细化和等轴化,因此 β 基体上分布着大量细小的等轴 α 相,其平均晶粒尺 寸约为 2 µm,等轴 α 相的含量约为 95%(体积分数)。

超塑性拉伸试样加工成圆棒状,试样标距为 15 mm,直径为 5 mm。超塑性拉伸试验在 Sans CMT4104 型高温电子拉伸实验机上进行,设备横梁移动速度在

表1 TA15 合金化学成分

Table 1Chemical composition of TA15 alloy (massfraction, %)

Al	Мо	V	Zr	Si	Ti
5.5-7.0	0.5-2.0	0.8-2.5	1.5-2.5	0.15	Bal.

图 1 TA15 合金形变热处理前后的显微组织

Fig. 1 Microstructures of TA15 alloy before and after thermomechanical treatment: (a) Initial microstructure; (b) Fined microstructure 0.001~500 mm/min 之间连续可调,试样采用电阻炉加 热,最高加热温度为1200 ℃,工作区温差≤±3 ℃。 为防止试样在高温加热及变形过程中发生氧化,试样 标距部分涂覆玻璃防护润滑剂进行保护,试样断裂后 立即水淬以保存试样变形后的显微组织,采用光学显 微镜和透射电镜观察和分析断口附近和夹头部位的显 微组织。

尝试采用 m 值法对 TA15 合金进行高效超塑性拉伸,其基本原理是在最大 m 值法的基础上,通过控制系统进一步对材料实验机进行调节,使得应变速率始终在图 2 中的 II 区与III 区过渡区域内循环变化,同时为保证合金始终进行超塑性变形,在控制系统中设定最小 m 值为 0.3。为实现 m 值高效超塑性变形,利用 Visual Basic 语言对拉伸试验机的控制软件进行了二次开发。

Fig. 2 Relationship between *m* and $\lg \dot{\varepsilon}^{[4]}$

2 结果与分析

2.1 超塑性变形力学行为

图 3 所示为 TA15 合金高效超塑性拉伸时的应力--应变曲线。由图 3 中可以看出,各变形温度下的应力--应变曲线均呈现明显的锯齿状波动,其主要原因是超 塑性变形过程中控制系统为追求最大 m 值,应变速率 始终在最佳应变速率附近不断的振荡变化,然而钛合 金超塑性变形对应变速率非常敏感,因此导致流动应 力也不断的振荡变化而形成了锯齿状曲线。

分析图 3 中的应力–应变曲线可知,变形温度对 TA15 合金的超塑性有着重要的影响,随变形温度逐渐 升高,峰值应力降低,如 780 ℃时的峰值应力达到 136 MPa,而 950 ℃时的峰值应力仅为 20 MPa。变形温度

升高, TA15 合金的热激活作用增强, 促进了晶界滑移 及晶界扩散能力,晶体产生滑移的临界分切应力减小, 减少了对位错运动的阻碍, 使得变形容易。在 780~ 850 ℃低温条件下, TA15 合金在变形初期表现为典型 的应变硬化效应,流动应力随应变增加而迅速增加; 当应变增加到某一数值,应力达到峰值,然后快速进 入软化阶段,应力-应变曲线为典型的应变软化型曲线 ^[16]。相反,在900 ℃和950 ℃高温条件下,TA15长 时间处于稳态变形阶段,具有典型的超塑性变形特征 [17]。稳态变形阶段是变形过程中应变硬化和软化之间 达到了动态平衡,稳态变形阶段的延长有利于合金伸 长率的增加。另外,由图3中还可以看出,在780℃ 和 800 ℃时,临近变形结束前,流动应力迅速增加, 然后又迅速降低, 直至试样断裂。这主要是由于 TA15 合金在低温条件下变形时,位错运动活跃,位错在晶 界处呈缠结组态,不利于晶界滑移运动;其次,变形 后期合金的晶粒粗化,致使位错运动受阻,晶界滑移 困难,晶界处产生应力集中,此时应力松弛机制已无 法缓解应力集中,导致试样缩颈快速发展直至试样 断裂。

2.2 变形温度对超塑性的影响

变形温度对 TA15 合金超塑性的影响如图 4 所示。 分析图 4(a)中的伸长率变化曲线可知,在 780~950 ℃ 温度范围内变形时,TA15 合金均有较好的超塑性能, 其在 780 ℃时的伸长率仍然达到 800%。随变形温度 升高,伸长率逐渐增加,900 ℃时 TA15 合金的超塑性 能最佳,伸长率达到 1287%;当变形温度升高至 950 ℃ 时,超塑性能降低,伸长率仅为 567%。因此可以推 断 900 ℃是 TA15 合金的最佳超塑性变形温度。图 4(b) 所示为 TA15 合金超塑性变形后试样的宏观形貌。由 图 4(b)中试样可以看出,超塑性能好的试样变形比较 均匀,900 ℃时试样断裂位置正好处在变形区域的中 间位置,说明在该温度下试样一直处于比较均匀的变 形状态,这与图 3 中 900 ℃下应力–应变曲线具有较长 时间的稳态变形阶段相吻合。当温度升高至 950 ℃时, 试样变形主要集中于左端部分,右端部分变形较小, 变形过程中缩颈未能很好地转移,局部应力集中,加 速了试样的断裂,从而导致 TA15 合金在该温度下超 塑性能大幅度降低。

Fig. 4 Effect of deformation temperature on superplasticity of TA15 alloy: (a) Curve of elongation versus temperature;(b) Deformed specimens

2.3 应变速率敏感性指数 m 值

应变速率敏感性指数*m*值的大小反映了抑制局部 出现缩颈的能力,*m*值越大,抑制缩颈的能力越强, 出现高伸长率的可能性也就越大。TA15 合金高效超塑 性变形后,变形工艺参数对应变速率敏感性指数*m*值 的影响如图 5 所示。由图 5 中可以看出,*m*值与 ln*ċ*的 关系曲线基本呈典型的覆罩型,类似于图 2 中的理想 曲线,尤其在低温变形条件下。分析图 5 中的曲线可 知,在各变形温度条件下,m值均大于 0.3,这也表明 TA15 合金在 780~950 ℃范围内具有良好的超塑性能。 随变形温度升高,m值逐渐增大,在 900 ℃时最大m 值达到 0.62,因此获得了 1287%的最大伸长率。当变 形温度升高至 950 ℃时,m值下降,TA15 合金在各变 形温度下获得的最大m值如表 2 所示。

图 5 变形工艺参数对 m 值的影响

Fig. 5 Effect of deformation processing parameters on *m* value

表 2 不同变形温度下的最大 m 值	Ĺ
---------------------------	---

Table 2Maximum m value at different deformationtemperature

Temperature/°C	780	800	850	900	950
Maximum <i>m</i> value	0.41	0.44	0.5	0.62	0.49

2.4 显微组织演变

图 6 所示为 TA15 合金试样超塑性变形后夹头部 位和断口附近的显微组织。由图6可以看出,超塑性 变形后,试样夹头和断口附近的显微组织均不同程度 粗化,随变形温度不断升高,晶粒粗化越来越严重。 夹头部位和断口附近的显微组织粗化程度显著不同, 夹头部位由于未变形,晶粒粗化是长时间保温发生静 态再结晶所致,晶粒粗化程度相对较小;而断口附近 晶粒粗化是变形和热效应的共同作用所致,因此晶粒 **粗化更严重。此外,由图6中还可以看出,在** 780~850 ℃温度范围内变形时,试样断口附近的显微 组织虽然发生了粗化,但在 β 基体上仍可以看到很多 细小的 α 晶粒,如图 6(b)、(d)和(f)所示。这说明 TA15 合金在相对较低变形温度下变形时,加工硬化效应显 著,合金畸变能快速增加,促进了变形晶粒的动态再 结晶,因此不断有新的细小 α 相在 β 基体上形核析 出。当变形温度升高至900℃时,夹头和断口附近显 微组织中的等轴 α 相开始互相合并长大而形成粗片 状 α 相,如图 6(g)和(h)所示。这主要是由于温度的升 高促使 α 相的相界扩散能力增强,有机会吞并附近细 小的 α 相,导致初生 α 相发生聚集再结晶而合并长 大。当变形温度继续升高至 950 °C,TA15 合金发生了 显著的 $\alpha \rightarrow \beta$ 相转变,如图 6(i)和(j)所示。与其他温 度条件下的显微组织相比,无论是夹头部位还是断口 附近,初生等轴 α 相含量急剧减少,而 β 相含量大幅 度增加,显微组织中 β 晶界清晰完整,并且 β 晶粒由 于变形和热效应共同作用也发生聚集合并长大,晶界 α 相也发生了不同程度的粗化。 α 相和 β 相比例的严 重失调和粗化导致晶界滑移运动困难,从而导致 TA15 合金在该温度下超塑性能降低,尽管最大 m 值达到了 0.49。

图 7 所示为 TA15 合金的 TEM 像, 其中图 7(a) 所示为试样原始组织,图7(b)所示为900 ℃超塑性变 形后的微观组织。由图 7(a)可知, TA15 合金经复合形 变热处理后, α 晶粒内部和晶界处存在高密度的位 错、位错网和位错缠结。900 ℃超塑性变形后,位错 密度大幅度降低,如图 7(b)所示。这说明超塑性变形 过程中 TA15 合金的大量晶内位错在晶界附近被吸 收,即在晶界附近存在强烈的晶内位错回复机制,张 俊 红^[16]在研究 TiAl 基合金的超塑性变形时也发现 了类似的现象。由图 7(b)还可以看出,变形后合金的 晶粒仍然保持了较好的等轴状,晶界圆弧化趋势非常 显 著,具有典型的超塑性变形特征,这是晶界滑移、 转动和扩散共同作用所致[18]。此外,变形后位错分布 如图中箭头所指的位置 A 和 B 处所示, 晶粒内部的位 错排列成位错墙而形成了亚晶界; α 晶界附近的位错 从晶界一侧处发出,即晶界为位错源。这说明晶界滑 移是由位错的滑移和攀移进行协调,由此可以推断这 种位错是由晶界滑移受阻所诱发的非固有晶界位 错[19-21]。因此,非固有晶界位错运动协调的晶界滑移 是 TA15 合金超塑性变形的主要机制。同时,在三叉 晶界处可以观察到较小尺寸的动态再结晶晶粒,如图 7(b)中 C 处所示。这说明在超塑性变形过程中, TA15 合金发生了显著的动态再结晶。

2.5 变形效率

为对最大 *m* 值法和 *m* 值高效超塑性变形进行比较,引入超塑性变形效率 *η*,*η*表示单位变形时间内获得的超塑性伸长率,其数学表达式如下:

$$\eta = \frac{\delta}{t} \tag{1}$$

式中: δ 为试验超塑性伸长率,%;t为变形时间,

 \min_{\circ}

图 6 TA15 合金在 780、800、850、900 和 950 ℃下超塑性变形后夹头部位和断口显微组织 Fig. 6 Micrographs of TA15 alloy after superplastic deformation at temperatures of 780, 800, 850, 900 and 950 ℃: (a), (c), (e), (g), (i) Grip part; (b), (d), (f), (h), (j) Fracture part

图 8 所示最大 m 值法和 m 值高效超塑性变形在 900 ℃下应变速率随时间变化曲线,根据两种方法不 同变形温度条件下获得的伸长率和变形时间,利用式 (1)对超塑性变形效率η进行计算,结果如表3所列。
 分析表3中的数据可知,m值高效法超塑性变形效率
 高于最大m值法的变形效率,前者约为后者的2倍左

图 7 高效超塑性变形前后 TA15 合金的 TEM 像

Fig. 7 TEM images of TA15 alloy before and after high efficient superplastic deformation: (a) Initial microstructure; (b) Deformed microstructure at 900 °C

Fig. 8 Curves of strain rate versus time during deformation at 900 °C: (a) *m* value high efficient SPD; (b) Maximum *m* value SPD^[22]

表 3 最大 m 值法 ^[22] 和 m 值高	高效法超塑性变形效率
---	------------

T.L. 2	0 1 1 1 1 0		. C	-1 - 22	1 .1 .1.1.1	-00°
I anie 3	Nuperplastic deformation	i efficiency	v of maximum	<i>m</i> value ¹ and	n <i>m</i> vanne migi	n emicient methods.
I HOIC C	Superplustic deformation	i ennerene y	or maximum	m fuide une	a m varae mgi	i entretent methodo

Temperature∕ ℃	Ma	ximum <i>m</i> va	alue method	<i>m</i> value high efficient method			
	Elongation/ %	Time/ min	Deformation efficiency/ (%·min ⁻¹)	Elongation/ %	Time/ min	Deformation efficiency (%·min ⁻¹)	
780	860	106.7	8.06	800	40.1	19.95	
800	1122	129.3	8.68	1000	45.3	22.08	
850	1433	140.9	10.17	1040	46.8	22.22	
900	1922	174	11.05	1287	54.5	23.67	

724		中国有色金属学报					
950	580	65.7	8.83	567	37.7	15.04	

右。此外,随变形温度升高,变形效率η增加,当升 高至950℃时,变形效率又开始降低。由此可见,采 用 *m* 值高效法进行超塑性变形,TA15 合金不仅获得 了良好的超塑性能,并且变形效率大幅度提高。

3 结论

 复合形变热处理工艺实现对 TA15 合金粗大原 始组织有效地细化,细化后合金等轴α相的平均晶粒 尺寸约为 2 μm,为超塑性变形作好显微组织准备。

2) 在变形温度为 780~950 ℃范围内, TA15 合金 均具有良好的超塑性能, *m* 值与 ln *ċ* 的关系曲线呈典 型的覆罩型。TA15 合金最佳超塑性变形温度为 900℃,该条件下的伸长率为 1287%,最大 *m* 值达到 0.62。

3) TA15 合金经过超塑性变形后, 晶粒仍然保持 了较好的等轴性, 晶界圆弧化的趋势非常明显, 非固 有晶界位错运动协调的晶界滑移是 TA15 合金超塑性 变形的主要机制。

4) 与最大 m 值法超塑性变形相比较, m 值高效超 塑性变形效率显著提高,后者约为前者 2 倍左右。

REFERENCES

- 黄 旭,朱知寿,王红红.先进航空钛合金材料与应用[M]. 北京:国防工业出版社,2012:27.
 HUANG Xu, ZHU Zhi-shou, WANG Hong-hong. Advanced aeronautical titanium alloys and application[M]. Beijing: National Defense Industry Press, 2012:27.
 [2] 杨 雷,王宝雨,刘 钢,赵慧俊.基于内变量的 TA15 板材
- [2] 初 亩, 工玉闲, 刈 锅, 赵志伎. 盔1 内交重的 IAI3 砍将 室温拉伸力学性能预测模型[J]. 中国有色金属学报, 2015, 25(3): 652-661.

YANG Lei, WANG Bao-yu, LIU Gang, ZHAO Hui-jun. Prediction model of tensile mechanical properties of TA15 sheet at room temperature based on internal variables[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(3): 652–661.

 [3] 姚彭彭,李 萍,薛克敏,李成铭,甘国强. β 相区加热 TA15 钛合金热变形显微组织演化[J]. 中国有色金属学报, 2014, 24(10): 2482-2489.

YAO Peng-peng, LI Ping, XUE Ke-min, LI Cheng-ming, GAN Guo-qiang. Microstructure evolution of thermal deformation TA15 titanium alloy under β phase region heating institution[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(10): 2482–2489.

[4] WU Chuan, YANG He, LI Hong-wei. Simulated and experimental investigation on discontinuous dynamic recrystallization of a near- α TA15 titanium alloy during isothermal hot compression in β single-phase field[J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 1819–1829.

[5] 陈浦泉. 组织超塑性[M]. 哈尔滨: 哈尔滨工业大学出版社, 1988: 1-4.

CHEN Pu-quan. Microstructural superplasticity[M]. Harbing: Harbing Institute of Technology Press, 1988: 1–4.

[6] 何景素, 王燕文. 金属的超塑性[M]. 北京: 科学出版社, 1993: 3-11.

HE Jing-su, WANG Yan-wen. Superplasticity of metals[M]. Beijing: Science Press, 1993: 3–11.

- [7] 曾立英,赵永庆,李丹柯,李 倩. 超塑性钛合金的研究进展[J]. 金属热处理, 2005, 30(5): 28-33.
 ZENG Li-ying, ZHAO Yong-qing, LI Dan-ke, LI Qian. Research progress on superplastic titanium alloys[J]. Heat Treatment of Metals, 2005, 30(5): 28-33.
- [8] ASHIDA M, CHEN P, DOI H, TSUTSUMI Y, HANAWA T, HORITA Z. Superplasticity in the Ti-6Al-7Nb alloy processed by high-pressure torsion[J]. Materials Science and Engineering A, 2015, 640: 449–453.
- [9] MOTYKA M, SIENIAWSKI J, ZIAJA W. Microstructural aspects of superplasticity in Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 2014, 640: 57–63.
- [10] BABU J, DUTTA A. Low temperature superplasticity through grain refinement in Ti-6Al-4V by a novel route of quench-roll-recrystallize[J]. Journal of Materials Research and Technology, 2015, 4(3): 348–352.
- [11] ROY S, SUWAS S. Enhanced superplasticity for $(\alpha+\beta)$ -hot rolled Ti-6Al-4V-0.1B alloy by means of dynamic globularization[J]. Materials and Design, 2014, 58: 52–64.
- [12] 万菊林. 非理想组织材料超塑性变形的研究[D]. 北京:清华 大学, 1995: 118-141.
 WAN Ju-lin. Superplastic deformation of materials with non-ideal SPD microstructures[D]. Beijing: Tsinghua Universtiry, 1995: 118-141.
- [13] WANG G C, FU M W. Maximum *m* superplasticity deformation for Ti-6A1-4V titanium alloy[J]. Journal of Materials Processing Technology, 2007, 192/193: 555–560.
- [14] 王高潮,曹春晓,董洪波,李臻熙,杨 刚,赵晓宾. TC11 合 金最大 m 值超塑变形机理[J]. 航空学报, 2009, 30(2): 357-361.
 Wang Gao-chao, CAO Chun-xiao, DONG Hong-bo, LI Zhen-xi, YANG Gang, ZHAO Xiao-bin. Superplastic deformation mechanism of titanium alloy TC11 at maximum m value[J] Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 357-361.
- [15] 李成铭,李 萍,赵 蒙,甘国强,薛克敏. TA15 钛合金的 热变形微观组织与织构[J]. 中国有色金属学报, 2014, 24(1): 91-96.

LI Cheng-ming, LI Ping, ZHAO Meng, GAN Guo-qiang, XUE Ke-min. Microstructures and textures of TA15 titanium alloy 58 - 60

after hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(1): 91–96.

- [16] 张俊红. TiAl 基合金的组织超塑性研究[D]. 长沙: 中南大学, 2003: 58-60.
 ZHANG Jun-hong. Research on the superplasticity of TiAl-based alloy[D]. Changsha: Central South University, 2003:
- [17] SERGUEEVA A V, STOLYAROV V V, VALIEV R Z, MUKHERJEE A K. Superplastic behaviour of ultrafine-grained Ti-6A1-4V alloys[J]. Materials Science and Engineering A, 2002, 323: 318–325.
- [18] DERBY B. The dependence of grain size on stress during dynamic recrystallization[J]. Acta Metallurgica et Materialia, 1991, 39(5): 955–962.
- [19] ALABORT E, KONTIS P, BARBA D, DRAGNEVSKI K,

REED R C. On the mechanisms of superplasticity in Ti-6Al-4V[J]. Acta Materialia, 2016, 105: 449–463.

- [20] MCLEAN D. Grain boundary dislocations: Their effect on vacancies and sliding[J]. Philosophical Magazine, 1971, 23(182): 467–472.
- [21] 周善佑, 刘 勤, 汪立勤. 晶界位错在超塑性变形中的作用
 [J]. 兵器材料科学与工程, 1988, 9:1-7.
 ZHOU Shan-you, LIU Qin, WANG Li-qin. The effect of grain boundary dislocation in superplastic deformation[J]. Ordnance Material Science and Engineering, 1988, 9:1-7.
- [22] 孙前江. 细晶 TA15 合金的制备及超塑性变形行为研究[D]. 西安: 西北工业大学, 2013: 54-57.
 SUN Qian-jiang. Fabrication and superplastic deformation behavior of the fine-grained TA15 alloy[D]. Xi'an: Northwestern Polytechnical University, 2013: 54-57.

High efficient superplastic deformation of TA15 alloy based on *m* value

SUN Qian-jiang, WANG Gao-chao

(National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China)

Abstract: The high efficient superplastic deformation experiments of TA15 alloy based on *m* value were performed on the tensile testing machine. The superplastic properties and microstructure were studied. The results indicate that TA15 alloy exhibits excellent superplasticity at temperatures of 780–950 °C. The superplasticity is the best at 900 °C. The *m* value is 0.62 and the maximum elongation is 1287%. With temperature increases, the superplasticity decreases and the elongation is only 567% at 950 °C. The microstructure analysis shows that the equiaxed grains are kept during deformation. The grains merge and grow up due to increasing temperature. The volume fraction of primary α phase decreases greatly because $\alpha \rightarrow \beta$ phase transformation occurs at 950 °C. Compared with the method of maximum *m* value, not only the excellent superplasticity of TA15 alloy is obtained by the high efficient superplastic deformation, but also the deformation efficiency is enhanced obviously.

Key words: TA15 alloy; superplasticity; m value; microstructure

Foundation item: Project(51261020) supported by the National Natural Science Foundation of China; Project (20142BAB206021) supported by the Natural Science Foundation of Jiangxi Province, China; Project(GJJ150735) supported by the Program of Jiangxi Provincial Education Department, China; Project (gf201501006) supported by Fund of National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, China

Received date: 2015-11-10; Accepted date: 2016-06-09

Corresponding author: SUN Qian-jiang; Tel: +86-791-83863032; E-mail: cruzesun@nchu.edu.cn

(编辑 王 超)