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Abstract: Higher order stress fields for a mode 1 crack perpendicular to the direction of property variation in a

functionally gradient material( FGM), which has an exponential variation of elastic modulus along the gradient direc

tion, were obtained through an asymptotic analysis. The Poisson's ratio of the FGMs was assumed to be constant

throughout the analysis. The first five terms in the asymptotic expansions of crack tip stress fields were derived to

bring out the influence of nonhomogeneity on the structure of the stress field explicitly. The analysis reveals that on-

ly the higher order terms in the expansion are influenced by the material nonhomogeneity. Moreover, it can be seen

from expressions of higher order stress fields that at least three terms must be considered in the case of FGMs in or-

der to explicitly account for the nonhomogeneity effects on the structure of crack tip stress fields.
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1 INTRODUCTION

More and more attention has been paid to the
investigation of so called functionally gradient ma-
terials (FGMs) in recent years as their advantages
are realized' . FGMs consist of two distinct mate-
rial phases, such as ceramic and metal alloy pha-
ses, and are the mixture of them such that the
composition of each changes continuously along
one direction. FGMs used in high temperature ap-
plications have metal and ceramic as their constitu-
ents and offer good balance between strength and
high temperature resistance. FGMs are unique in
that they offer the possibility of tailoring their con-
stituents and gradation to match the end use. Even
though the initial research on FGMs is largely mo-
tivated by the practical applications of the concept
in a wide variety of thermal shielding problems,
materials with graded physical properties have al-
most unlimited potential in many other technologi-
cal applications.

Experiments have shown that cracks occur in
FGMs although the absence of sharp interfaces
does alleviate problems with interface fracture and
fracture remains a key failure mode of these mate-
rials. Obviously, successful application of FGMs
depends on an understanding of their fracture be-
havior. A large body of work has been reported on
fracture mechanics of FGMs. Erdogan'” reviewed
the elementary concepts of fracture mechanics of
FGMs and identified a number of typical problems

relating to fracture of FGM. Gu and Asaro'” con-

sidered a semrinfinite crack in a strip of FGM un-
der edge loading and obtained stress intensity fac
tor( SIF) relations for many commonly used frac
ture specimen configurations. Santare and Lam-
bros'” and Marur and Tippur'” carried out numeri-
cal analysis of particulate FGM, and studied the
influence of material gradient and crack location on
the size of singular fields and the singular behavior
of the stress and displacement fields by comparing
the FGMs results with that obtained for homoge-
neous medium. Li and Wang'® obtained neartip
stress fields for antiplane crack in functionally gra-
dient piezoelectric materials. Crack deflection in
FGM was considered by Gu and Asaro'” who re-
ported the strong influence of material gradient on
the crack kink angle when the crack was in the
middle of the gradient zone. Shbeeb et al'®* stud-
ied interactive multiple crack problems in FGMs
and revealed the effects of nonhomogeneity con-
stant, crack orientation, and crack-tip distance on
stress intensity factors (SIFs). Surface cracks in
FGMs under mode I

were considered by Matthew et al''” using the do-

thermomechanical loading

main integral method. Delamination and cracking
of FGMs at coating/ substrate interfaces due to
thermal loads were the focus of investigations by
Lee and Erdogan''"! and Gaudette et al''”' . Fujimo-
to and Noda'"” examined the influence of material
gradient and thermal shock on crack propagation.
Mentioned above all, the classical inverse square
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root singular nature of the crack-tip stress field is
the SIF is influ-
enced by the nonhomogeneity of the material. In

addition, the SIFs for cracks in FGMs for different

geometry and loading conditions are provided.

preserved in FGMs, however,

The asymptotic behavior of the stress field
structure near a crack tip has received very little
attention. Most of stress fields currently available
are obtained through integral transform method.
However, the inversion has to be carried out nu-
merically making these stress field expressions not
feasible for extraction of fracture parameters from
experimental data. The structure of the stress
fields away from crack tip is significantly altered by

nonhomogeneity, as demonstrated by Eischen''".

Parameswaran and Shukla "™ '%

developed the
structure of the first stress invariant and the out of
plane displacement to bring out the effects of non-
homogeneity. However, nonhomogeneity specific
terms for individual stress components have not
been developed. Such stress fields are necessary in
the analysis of full fields experimental data ob-
tained through techniques such as photoelasticity,
coherent gradient and sensing( CGS). In this pa-
per, the asymptotic expansions of stress fields for
a mode I crack perpendicular to the direction of
property variation in a FGM are provided and non-
homogeneity specific terms for individual stress
components are developed. The solutions are ob-
tained through an asymptotic analysis assuming an
exponential variation of elastic modulus along the

gradient direction.
2 THEORETICAL CONSIDERATIONS

The stress function approach of solving plane
crack problems leads to a brharmonic equation for
in the case of

homogeneous materials. However,

FGMs,

ties, the governing differential equation contains

due to spatial variation of elastic proper-

many lower order differential terms as discussed
below in this section, making the solution proce-
dure more involved. Hence, an asymptotic analysis
is performed to obtain explicit expressions for the
stress field in a series form. The elastic and physi-
cal properties of FGMs vary from point to point in
the material and the variation is in general limited
to a single direction. At a given point in the mate-
rial, the properties can be assumed to be isotropic,
and at a continuum level FGMs are isotropic non-
homogeneous solids.

Consider the plane elastic problem shown in
Fig. 1 where the medium contains a finite crack on
the y= 0 plane. 2L is the length of the crack. In
previous studies''”!, it is shown that the effect of
the Possion' s ratio Von the crack tip stress field is

rather negligible. Thus, it is assumed to be con-

Fig.1 Crack geometry in FGM medium

stant too. The elastic modulus is assumed to vary
exponentially in the y direction as given in Eqn.
(1):

E = Eoe"” (1)
where Eo is the elastic modulus at the crack tip
and B is the nonhomogeneity parameter having di-
mension [ Length] '. The implane stress compo-
nents (G, i, j €{x, y}) can be defined in terms of

the Ariy s stress function F= F(x, y), as given by

Eqn. (2):
F F O°F
0, = 0, = , G, = -
Substituting Eqn. (2) into the compatibility e
quation through the HooKes law, for the plane
problem, the compatibility equation may be writ-

ten in rectangular Cartesian coordinates as below:

VF - 2B-avF+ BZLF BZVLF— 0

P o
(3)

Expressing F(x, y) in terms of polar coordi-
nates as (r, 0), Eqn.(3) can be written in terms of

polar coordinates (r, 0) as

2,2 2 12 228
ot P odorr o roor’

_Z_L _]__& _4__& _]__Q

S orar Port et Pl
25(5in9%+ sm@'L i— sin@'L 'a

or or’ or ¥
sine'r]; a_r%_ sin@'r23' 'a%+ cose']“ a_%_ae+
0056;12-5%64- cos@ e 863)F+ B (sin® 9'8&2+
2sinecose']“5% coszel'aa— 2sinecose'r]2“ «
'9%+ 00526 e aez)F BV cos’ 'a%— 2sin0 *
COSe_L 5%+ sin G'L '9%+ 2smecoqe'% '9%
sin® 0% aez)F— 0 (4)

Eqn. (3) or (4) is for the generalized plane
stress. The differential equation for plane strain is
obtained by replacing Vby ' 1- V. It may be ob-
served from Eqn. (3) that the first term is the br
harmonic term and the additional lower differential
terms occur due to the nonhomogeneity parameter.

The solution for Eqn. (3) or (4) is obtained
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through an asymptotic analysis approach as ex-
plained in the follow section.

3 STRESS FUNCTIONA

For FGMs,
have the conventional inverse square-root singular-
(18]
ity
F(r, 0) that the stress function can be expanded as

the stresses near the crack tip

Therefore, it is assumed at this stage

follows:
F= ZFH(r 0) = Zrz” .(0) (5)
where F.(r, 0) = rZHf,l(r, 0) .

The above series on substitution into Eqn. (4)
leads to an infinite series involving differential e
quations associated with each power of r as written
below:

P+ S0+ 0]+
LY+ (] et
PO+ (S DT+ (T 1)

(L= 1) a0 - 2B[‘L“L@sin9f a(0) +
( — 2)sinff 250+ ‘L cosf " 2(0) +

cosf (22(0)] + BZ{[( - 1)(12L— 2)sin’0+

(lzL— 1)cos0f wa(0) + (n— 4)sinBeost () +

cos> O (2u(0)) - Bzw(lzL— 1)(12L— 2) cos” 0+

(lzL— 1)sin®0/fa(0) = (n— 4)sin0° cos0
Fla(0)+ sin®@FZu(0)})+ .= 0 (6)
For Eqn. (6) to be valid for any arbitrary r,

the differential equations corresponding to each

power of r (r" "2, ¢, ", r', r’?) should be i

dentically zero. This leads to the following set of

differential Eqns.

L0+ 2P0+ 1o 1(0) = 0 (7)
S0+ 48 (0 = 0 (8)
£+ S o By - 28

[(- 8)%1n9" 1(0) - sm@”z) (0) +

4cosf1(9)+ cos 1V (0)] = 0 (9)
[5700)+ 10757 (0) + 9f4(6) -

28 4cos 5V (0) + cosF Y (0)] = 0 (10)
S0+ sz§”(6)+ 41‘4'6]‘]‘5(6)— 28

[cos@ 57 (0) + 3

'2Lsin9" 00 + 4 cos0*
S50+

23 : o 3
851n9(3(9)]+ 3[(4+

'i'cosze)f1(e)] + sinbeos® 1(0) + cos’0*

L0 = BY (5 + Ssin0)f1(0) -
sinfeosf 1 (e)+ sin’@ Y (0] =0 (11)
PO+ (S P+ (G 1)

(L= 1fa(0) - 26[“”5—“sin9%2(6)+

2
('g'— 2)sin€f 5(0) + %cos@ﬂmz(e) +

costf 12(0)] + BZ{[(lzL— 1)(12L— 2)sin’0) +
(lzh— 1)cos’0f wa(0) + (n— 4)sinOcos0 e

Srwa(0)+ cos’ @ 2(0) = B[ (5~ 1) -

(-g-_ 2)cos’ O+ (-%_ ) sin®0/f wa(0) -

(n— 4)sinfeost . 4(0) + sin®@f 24(0)} = 0
(12)

In general, crack faces are supposed to be

traction free, which corresponds to the following

boundary conditions:

®(r, i:l'[) - %‘E|l}:in: 0,
_ _]_M _LaE
To(r, i]’[) B r arae 2 0000 4 .
(13)

Substituting Eqn. (5) into Eqn. ( 13), Eqgn.
(13) reduces to

So(EW =0 fu( £ =0 (14)

From Eqns. (7)7(11) and (14), the functions
F.forn=1, 2, 3, 4, 5 are obtained as

F1 = r%[Ancos ';“6+ A 12sin 'L9+

2
Algcos%eJr A14sin'§'6] (15)
Fa= r2(A21+ A23COS26) (16)
F3 = r-;(AchS ‘2L9+ A nsin ‘2L6+
A 33 cos '%6+ A34sin'%9+
Cs1cos '%9+ C3zsin'§'9) (17)

Fi = r'(AsacosO + Awnsin® + Ascos30 +

A sssin30) (18)
Fs = r%(Asmos ";L@+ A s2sin '%6+

%9+ A sisin %9+

'2L6+ Cs2sin -2L6+

Gimans %6+ Gspsin *2—6)] (19)

where A= Au/3, Au= An, An=—- Axn, Ax
= (- Asi+ 3Cn)/5, A =—- An+ Cxn, Cu =-
U1/, Co= M1/4, Ais=- Au, Au=—- An/3,

A s3cos

Csicos
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Ass= (= 3As1+ Csi+ 5Cs3)/7, Asa =- A2+ Cs

+ Cs4, Cs1 = 5]2[65432+ '%Bz(l+ VAu], C =
5&[65431 " -}BZ(l + VAun], Csn = 5L632(v—

3)Au/], Csu = 616[32(\/— 3)A1, and A, A, A,

Az, An, Asi, Axn, Asi and As: are undetermined
coefficients. From Eqn. (12), F. can be obtained
recursively.

4 HIGHER ORDER STRESS FIEDS

By substituting Eqns. (15) 7(19) into Eqn.
(20),

_ LOE, 12F
YT a7 o
Q°F
b= 2, (20)
L. L2F LOF
r arae r2 ae

A five-term expansion for crack-tip stresses is
obtained as follows:

. o= r:;('4iA11cos ';“9+ '%A 12sin 'LO—

2
'41/1 13005%6— —}A 14sin'§'e)+ (242 -

24 200520} + r?(%A — J2—6+ %A 325in-;—6—
145A — *;—e— lfA i *;—e+ j—cglcos %e+
_4L.C3zsin'§'e) £ r{2Aav0s0% 24 sssind-

64 4300530~ 64 1sin30) + r?(j}ASICOS %e+

%Aszsin %e— %fAsmos"zle— %Amsin Lo+
Beicos Tos LBeosin To- Llewcos 20-
chmin -;—e) (21)
O = r:;(‘}AnCOS '%6+ ‘}Alzsin é‘@+

'41A Bcos%eJr 'i‘A 14sin—°2le)+ (24 +

2A 23¢0s520) + r%('as/l 31C08 '2L9+ l45A 328in ‘2L@+

15/1 33C08 '%9+ 15/1 348in '%@+ J‘5C31COS i@+

4 4 4 2
Jansin %e+ o 6hancoshl: Glasinls

64 4300530+ 6A 4s5in30) + r%(%f/lsmos —;Le+
%LsA s2sin ':216+ %LSA 53C0S %6+ ‘OZSA sasin ‘%6+
2 Cacos T0+ VCosin T0+ DCucos 04+
345054sin '%6) (22)

Apr. 2005
Ty = r*?(-kAnsin -2Le— ‘kA 12005'2L6+
4A13sin'§'e— 'Z‘A 14005%6) + 2425520+
’: (‘}A arsin Jz—e— ‘}A 12c0s -;—e+
l45A . *;—e— l45A 44603 *;—e+ 'Z‘Cgsin —;Le—
%cgzcos %6) + r(24usinf= 24 cosO+
64 .435in30— 64 41 cos30) + r%(lfA il %6—
4Aszcos%6+ %Agsin%@— 345A54ms-%6+
> Csisin Jz—e— jj—cszcos J2—6+ 2fC535in *;—e—
2fcs4cos —;-e) (23)

5 SUMMARY

Higher order stress fields for a mode [ crack
perpendicular to the direction of property variation
in a FGM which has an exponential variation of e
lastic modulus under constant Poisson s radio are
derived through an asymptotic analysis. The accu-
rate solutions of the problem are presented in the
series form. Obviously, the solutions are of impor-
tant or universal value because they have nothing
to do with the specimen geometry and loading con-
ditions. They can be the base of other numeric
methods for fracture analysis for FGM s such as the
boundary collocation method and the higher order
approximate method. At the same time, the ex-
plicit form of nonhomogeneity specific higher order
terms is developed for FGMs based on which the
characteristics of the stress fields and the effect of
nonhomogeneity on their structure are brought
out. These stress fields are useful in extracting
fracture parameters by analyzing full fields around
the crack tip obtained through experimental tech-
niques such as photoelasticity and CGS. Through
investigating the coefficients, it is shown that the
"2 +% in the asymptotic expansion
of crack tip stress fields in FGMs are the same as

coefficients of r~

those in homogeneous materials. The result is con-

U417 Furthermore, it

sistent with those available
can be seen from that only the terms beyond the
order r’ and the order r' are influenced by the ma-
terial nonhomogeneity. Therefore, the higher or-
der terms differ considerably from their counter
parts for homogeneous materials and alter the na-
ture of stress fields near the crack tip. The analy-
sis presented indicates that at least three terms
must be considered in the case of FGMs in order to
explicitly account for nonhomogeneity effect on the
structure of crack tip stress fields. The effects are
dominant in the region around the crack tip from
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where experimental data is usually sampled, and

hence, nonhomogeneity specific higher order terms

presented here must be included to obtain meaning-

ful estimate of fracture parameters from experi-

mental data.
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