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Abstract: The artificial neural network (ANN) and hybrid of artificial neural network and genetic algorithm (GANN) were applied
to predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data. The leaching
experiments were performed in three columns with the heights of 2, 4 and 6 m and in particle size of <25.4 and <50.8 mm. The
effects of different operating parameters such as column height, particle size, acid flow rate and leaching time were studied to
optimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale. It was found that the
recovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height. The
efficiency of GANN and ANN algorithms was compared with each other. The results showed that GANN is more efficient than ANN
in predicting copper recovery. The proposed model can be used to predict the Cu recovery with a reasonable error.
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1 Introduction

Heap leaching is a hydrometallurgical method that
is used to leach low grade minerals such as copper, gold,
nickel and zinc. In this method, piles of crushed ore are
irrigated with various chemical solutions to leach and
extract valuable minerals [1]. The effects of metallurgical
parameters (such as particle size, porosity and
permeability of ore, temperature, column height, solvent
concentration, leaching time, solution flow rate, and
mineralogy and chemistry of ore) on the process are
usually studied using column leaching test. The results of
column leaching are used in the optimization, planning,
control and design of heap leaching [1—8].

Many experimental and modeling studies such as
analytical and mathematical modeling have been carried
out to gain a better understanding of the heap leaching
process and its operation [9,10]. However, little research
has been conducted with the aim of optimizing the
process. Recently, analytical models have been used for
planning, optimization, design and control of the heap
leaching process and a mathematical model for heap

leaching has been presented that was useful for designing
and scaling up the processes [11]. MELLADO et al [7,12]
also used an analytical model to optimize the flow rates
on copper heap leaching. In this regard, they carried out
an analytical-numerical method to solve a heap leaching
problem of one or more solid reactants from porous
pellets. VEGLIO et al [13] evaluated the effect of some
main parameters on the column leaching of a manganese
dioxide ore using fractional factorial design.
CHELGANI and JORJANI [14] used the artificial neural
network for the prediction of Al,O5 leaching recovery in
the Bayer process. They studied the relationship between
the recoveries of leaching and the chemical modules of
bauxite fed to the process using methods of ANN and
regression. They noted that the proposed ANN could be
used for the prediction of Al,O; leaching recovery.

The objective of this study is to obtain optimum
conditions for column leaching by testing main
parameters involved in the leaching process. Artificial
neural network (ANN) model is developed to predict the
recovery of column leaching, by taking into account four
leaching parameters as inputs to the model, such as
column height, particle size, acid flow rate and leaching
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time. In order to improve prediction accuracy, the genetic
algorithm (GA) is incorporated in the training phase of a
network, involving two objectives: the mean squared
error (MSE) and determination coefficient (R). The
process data are used for the recovery prediction of Cu
column leaching using ANN and hybrid of ANN and
GA.

2 Materials and methods

2.1 Data sets

Tests were performed on copper oxide ore obtained
from Tarom deposit, Zanjan, Iran. Sulfuric acid with
concentration of 20 g/L was used for ore leaching, and
LIX98N solvent was used for extraction of copper from
leach liquor.

The initial sample ore was split into two samples.
One was crushed to less than 50.8 mm by a jaw crusher
and the other to less than 25.4 mm. After blending,
representative samples were collected for particle size
distribution  analysis,  chemical
mineralogical characterization.

analysis, and
Screen analysis was
performed by mechanically shaken Tyler sieves.

Chemical analysis of elements was carried out by
ICP-emission spectrophotometry. The X-ray diffraction
(XRD) analysis of ore was used in order to determine the
The crushed samples were
agglomerated with 30% of their maximum sulfuric acid
consumption (30 kg/t) and then charged within the
columns.

Sulfuric acid solutions were freshly prepared as
needed, every three or four days. Leaching solutions
were fed by peristaltic pumps. Every other day of
leaching, a given amount of pregnant leach solution
(PLS) sample was taken and quantitatively analyzed for
copper and free sulfuric acid. Copper was extracted from
PLS by the solvent extraction method using LIX984N
and the raffinate solutions were circulated after adjusting
its acid concentration. The leaching experiments were
stopped when the copper concentration of PLS reached
0.1%. The experiments with 2, 4 and 6 m columns
were completed within 78 d.

mineralogical species.

2.2 Effect of parameters

The results showed that the copper recovery has an
inverse relation with the column height and particle size,
and a direct relation with the leaching time and the acid
flow rate. The obtained copper recoveries in the columns
with the heights of 2, 4 and 6 m and particle size of 25.4
and 50.8 mm during column leaching over 78 d are
shown in Table 1. One of the important factors in the
leaching of copper from ore is time. Copper in the ore
undergoes physical and chemical reactions. Figure 1
shows that the copper recovery increases with increasing

Table 1 Effect of column height and particle size on copper

recovery
Column height/m  Particle size/mm Recovery/%
2 25.4 78.63
2 50.8 44.21
4 25.4 46.10
4 50.8 18.39
6 25.4 34.09
6 50.8 12.66
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Fig. 1 Effect of time and particle size on recovery of copper
during column leading: (a) Column height=2 m; (b) Column
height=4 m; (c) Column height=6 m
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the leaching time (has a polynomial relation) and
decreasing the particle size. Figure 2 shows that the
copper recovery increases with increasing the time and
acid flow rate. More fresh solution is irrigated over the
column with increasing the leaching time, which causes
the dissolution of more minerals and increasing the
copper recovery. Figure 3 shows that the copper recovery
decreases with increasing the column height and particle
size. Finer particles provide more available mineral
surface to contact with acid solution so that more copper
can be leached. The recovery increases with decreasing
the height of column. Therefore, in order to maintain the
same acid flow rate and the same recovery, it is
necessary to increase the surface area of column, and a
larger volume of acid is required.

Recovery/%
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Fig. 2 Effect of time and acid flow rate on recovery of copper
(ore crushed to less than 25.4 mm with heap height of 2 m)
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Fig. 3 Comparison between copper recovery in 25.4 mm and
50.8 mm crushed ores

2.3 GANN model

Artificial neural networks (ANN) have been used in
the mineral processing. They are used successfully in
some research and industrial work. They are capable of
modeling and controlling complicated systems and
identifying very difficult relations between input and
output data [15]. Neural networks are utilized to establish
a relationship between a set of inputs and outputs. ANN

uses a set of nonlinear basis functions between input and
output data to be communicated, which acts as a black
box [16]. In general, a neural network consists of one
input layer, one or more hidden layers and one output
layer. Each layer consists of one or more neurons [14].
The neurons are inter-related by using a weight
parameter. Each neuron in a layer receives information
from all neurons of the previous layer. According to the
characteristics of the data input/output, the amount of
bias and their inner connections are added with other
neurons and transferred to the next layer [17,18].

One of the most useful types of neural networks is
the back-propagation algorithm (BP). BP is used to
converge the minimum error [16]. In this network, the
error is calculated and then, according to the error rate,
the weights communication and bias are updated [19].
The background of data processing details is described
by SINGH et al as follows.

In an ANN, the jth neuron in the hidden layer is
connected to a number of inputs:

xi:(xb X2, X3, "7, xn) (1)
The net input values in the hidden layer will be

Net;= " x,w; +6; )
i=1

where x; is the input units, ¢;is the bias neuron (optional),
w; is the weights on the connection of the ith input and
Jjth neuron, and » is the number of input units. The net
output of hidden layer in this study is calculated using a
logarithmic sigmoid function.

~(Net; +0;)

O, =f(Net;)=1/[1+e ] 3)
The total input to the kth unit is
O=A(Nety) “

The network is presented with input and output
patterns in the learning process. The network output is
computed by the network. Now, the actual output and the
desired output are compared with each other. Therefore,
error at any output in layer k is

e~ti—0Oy (5

where ¢ is the desired output and Oy is the actual output.
The total error function is

E= o.szn:(tk -0, (6)
k=1

Training is done for achieving an optimum weight
space of the network. The steepest descent error surface
is given by the following rule:

VWi =—n(6E /W) (7

where 7 is the learning rate parameter and E is the error
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function. Updated weights for the (n+1)th pattern are
given as

Wi (n+1) =Wy (n) + VIV (n) ®)

The hidden and output layers are connected with the
similar logic [16,17]. Optimization of design and
structure of ANN and weights and bias of network can be
done by the genetic algorithm.

Genetic algorithm (GA) is a stochastic general
search method that can solve a wide variety of
optimization problems by principles of Darwinian
natural selection [20]. Each possible response of issue
can be presented as a chromosomes in the algorithm. A
population is constructed from the collection of
chromosomes [21]. An objective function is defined
according to main aim to evaluate the fitness values of
all the chromosomes. In this method, a random
population was generated that was tested with a given
fitness function. At each iteration, selecting a particular
group of parents to generate offspring using mutation
and crossover from the former ones and then evaluating
the fitness of all the new offsprings are repeated. The
process of GA algorithm is continued to reach the
determined conditions [21]. The response of the best
process simulated evolution can become a good solution
to the problem. GA has been successfully used in mineral
processing in order to circuit design, optimization of
parameters and process control process control [22—24].

GA can be used for the optimization of weights of
a BP neural network, learning parameters and finding
the network structure. This work only used GA for
the optimization of weights of a BP neural
network [21,25-27]. The total number of connection of
the ANN is determined as the length of the
chromosome [25,28]. The flow chart of the algorithm is
shown in Fig. 4.

GA has been used for the optimization of weights
and the threshold of neural network of BP algorithm. We
used the GA population size of 150, and the top scoring
15% of the population was selected as fit to survive in
the next generation of solutions. We used 50% and 35%
of the population for the crossover and mutation,
respectively. The maximum generation selected equaled
200. The arithmetic crossover was used to produce two
new offsprings by a linear combination of two parents.
Two parents X', and X}, were selected that crossed
each other; then the new offsprings ( X’/' and X%7)
are produced:

X =X+ (- X} 9)
X' = X +(1- ) X (10)

where a; and a, are the random numbers in the range of
1 and the number of elements in array of X, .

l Initial population I

]

Design network (weights
and biases in the hidden)

i

Train network and
evaluate fitness (RMS)

i

RMS<convergence
criterion

| Optimum individual |

Display performance by
presenting testing parameters

Fig. 4 Flow chart of using GA to optimize BP algorithm

Mutation point (x;) is in the range of [Ur]fﬁn, Ur]fm] .
The genetic value of mutation point is
X :r(Ur];ax_Ur]:ﬁn)—i_Url:]in (1

where 7 is a random number in the range of the number
of selected parents for mutation and the number of total
parents [27].

The connection weights of the new population
offspring given to neural network and the fitness
function of the new offspring were calculated. The
process of genetic operations continued until it reached
the predetermined value [28].

3 Parameter selection and modeling using
ANN and GANN

In this study, ANN and GANN were used. To train
the networks, 120 sets of data recorded in the column
leaching of Tarom copper ore were used, in which
96 sets were used to train the network and 24 sets to test
its correctness. All input and output data (before feeding
to the networks) were normalized in the range of 1 and
—1. The particle size, column height, leaching time and
acid flow rates are input parameters of the network.
Table 2 presents the statistical parameters for the

Table 2 Statistical parameters of networks

Varable Maximum Minimum
Particle size/mm <50.8 <254
Column height/m 6 2

Acid flow rate/(kg't ") 58.17 0.48

Time/d 3 78

Recovery/% 79 1
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networks. The designed network output is copper
recovery. Figure 5 shows the network back propagation
algorithm.

4 Result and discussion

The back propagation algorithm was used for
training the network, which does not always converge to
the absolute minimum and has a weak rate of
convergence. The connection weights of ANN by BP
algorithm are only adjusted from the local angle and the
whole learning process form the global perspective is not
examined. Therefore, it may be stopped in a local
minimum [28]. The combined BP and GA have been
used for the better training of the neural network works.
GA is also used to optimize the BP algorithm to
overcome BP disadvantage of being easily stopped in a
local minimum. It uses to learn the connection weights
and bias of ANN.

The optimal topology of the networks designed for

Column height
Particle size
Acid flow rate

Leaching time

Adjustment of connection weights <«———

column leaching processes with 3 and 4 hidden layers
and one output layer for ANN and GANN in the form
{4-15-10-1} and ANN in the form {4-22-16-15-1} is
shown in Figs. 6 and 7, respectively. The numbers of
layers and neurons in each layer are limiting elements in
training so that the training time increases with
increasing them. The numbers of hidden layers and
neurons in GANN network are less than those in ANN in
the form {4-22-16-15-1}.

Figure 8 shows the total squared error and
comparison of the response of GANN in the training
process. The figure shows that the sum squared error
reduces with the increase of generation and the measured
Cu recoveries are close to the estimated recoveries by
GANN in the training process.

For the validation of the GANN and ANN models,
the test data were used in the trained model. Figure 9
shows the measured values of Cu recovery in
comparison with the predictions of GANN for each
sample. The assessment of the correlation coefficients

Comparison
with actual data

[

Recovery

O -

Fig. 5 Network back propagation algorithm for prediction of heap leaching recovery
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Fig. 6 GANN and ANN structure for prediction of heap leaching recovery in form {4-15-10-1}
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Fig. 7 ANN structure for prediction of heap leaching recovery in form {4-22-16-15-1}
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(R) oftraining and testing phases using GANN and ANN
algorithm in the form {4-15-10-1} and ANN algorithm in
the form {4-22-16-15-1} are shown in Figs. 10—15,
respectively. As shown in these figures, the recovery
values measured in the laboratory and predicted by the
GANN and ANN algorithm in the form {4-22-16-15-1}
are close to each other in the training and testing of
networks. The gradient of the regression line between the
measured Cu recoveries with the estimated by GANN
and ANN in the form {4-15-10-1} and ANN in the form
{4-22-16-15-1} in the training and testing are equal to
0.97, 1, 0.96 and 0.99, 0.5204, 0.92, respectively, in
which the values of R in the GANN and ANN in the

0.20
(a)

Sum squared error
=
>

0.05 —\—\—w—

50 100 150 200 250 300 350 400
Generation

—&— Measured
—f— Predicted

Recovery

40 60
Sample number

Fig. 8 Sum squared error during generation of GANN (a), and

comparison of measured Cu recovery with that estimated by

GANN in training process (b)
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Fig. 9 Comparison of measured Cu recovery with that
estimated by GANN in testing process
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Fig. 10 Predicted Cu recovery by GANN in training process vs
actual measurement
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Fig. 11 Predicted Cu recovery by GANN in testing process vs
actual measurement
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Fig. 12 Predicted Cu recovery by ANN in training process vs
actual measurement in form {4-15-10-1}

form {4-22-16-15-1} are close to its optimal value (1).
The efficiency of ANN is increased with increasing the
number of hidden layers and neurons. The mean squared
error (MSE) and determination coefficient (R) of these
networks are presented in Table 3. The testing MSE for



692 Fatemeh Sadat HOSEINIAN, et al/Trans. Nonferrous Met. Soc. China 27(2017) 686—693

GANN is less than the ANN ones. Therefore, the
efficiency of GANN is more than that of ANN for the
prediction of the Cu recovery in column leaching.
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Fig. 13 Predicted Cu recovery by ANN in testing process vs
actual measurement in form {4-15-10-1}

1.0
> 0.8} R=0.9940
g 0.6 o Data o
ot — Fit
2 04}
e Y=T

T 02}
8 0
S -02} . s,
2 04} i3
B
g 0.6 o
S 08f g8

L -0.5 0 0.5 1.0

Measured normalized recovery
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Fig. 15 Predicted Cu recovery by ANN in testing process vs
actual measurement in form {4-22-16-15-1}

Table 3 Statistical measures and performance of ANN and
GANN models for training and testing

Type of Best R MSE
network architectre Training Testing

Training Testing

GANN  4-15-10-1 09730 0.9640  0.0114 0.0202

ANN  4-15-10-1 1 0.5204 0 783.4043

ANN  4-22-16-15-1 0.9940 0.9157 1.95x10° 66.67

5 Conclusions

In this study, parameters such as column height,
particle size, acid flow rate and leaching time in pilot
scale were optimized. GANN as a novel procedure was
used for recovery prediction in the column leaching.
ANN and GANN were trained for the recovery of
column leaching with the input parameters such as:
particle size, column height, acid flow rate and leaching
time. Three columns with the heights of 2, 4 and 6 m and
in particle size of <25.4 and <50.8 mm were used to
evaluate the effect of column height and particle size.
The result showed that the recovery increased with
increasing the acid flow rate and leaching time and
decreasing particle size and column height. In these
networks, multi-layer ANN back propagation and GANN
algorithm with  {4-22-16-15-1} and {4-15-10-1}
arrangement were used to the predict the Cu recovery,
respectively. The correlation coefficient and mean
squared error values for the testing sets for Cu recovery
using GANN and ANN were 0.96, 0.02 and 0.92, 66.67,
respectively. The correlation coefficient and mean
squared error values of the testing sets in GANN were
less than those in ANN that show the more efficiency of
GANN for this study. The results showed that the
proposed model, according to parameters affecting the
recovery of copper during column leaching, can be used
to predict the Cu recovery with a reasonable error.
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