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Abstract: The artificial neural network (ANN) and hybrid of artificial neural network and genetic algorithm (GANN) were applied 

to predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data. The leaching 

experiments were performed in three columns with the heights of 2, 4 and 6 m and in particle size of <25.4 and <50.8 mm. The 

effects of different operating parameters such as column height, particle size, acid flow rate and leaching time were studied to 

optimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale. It was found that the 

recovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height. The 

efficiency of GANN and ANN algorithms was compared with each other. The results showed that GANN is more efficient than ANN 

in predicting copper recovery. The proposed model can be used to predict the Cu recovery with a reasonable error. 
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1 Introduction 
 

Heap leaching is a hydrometallurgical method that 

is used to leach low grade minerals such as copper, gold, 

nickel and zinc. In this method, piles of crushed ore are 

irrigated with various chemical solutions to leach and 

extract valuable minerals [1]. The effects of metallurgical 

parameters (such as particle size, porosity and 

permeability of ore, temperature, column height, solvent 

concentration, leaching time, solution flow rate, and 

mineralogy and chemistry of ore) on the process are 

usually studied using column leaching test. The results of 

column leaching are used in the optimization, planning, 

control and design of heap leaching [1−8]. 

Many experimental and modeling studies such as 

analytical and mathematical modeling have been carried 

out to gain a better understanding of the heap leaching 

process and its operation [9,10]. However, little research 

has been conducted with the aim of optimizing the 

process. Recently, analytical models have been used for 

planning, optimization, design and control of the heap 

leaching process and a mathematical model for heap 

leaching has been presented that was useful for designing 

and scaling up the processes [11]. MELLADO et al [7,12] 

also used an analytical model to optimize the flow rates 

on copper heap leaching. In this regard, they carried out 

an analytical–numerical method to solve a heap leaching 

problem of one or more solid reactants from porous 

pellets. VEGLIO et al [13] evaluated the effect of some 

main parameters on the column leaching of a manganese 

dioxide ore using fractional factorial design. 

CHELGANI and JORJANI [14] used the artificial neural 

network for the prediction of Al2O3 leaching recovery in 

the Bayer process. They studied the relationship between 

the recoveries of leaching and the chemical modules of 

bauxite fed to the process using methods of ANN and 

regression. They noted that the proposed ANN could be 

used for the prediction of Al2O3 leaching recovery. 

The objective of this study is to obtain optimum 

conditions for column leaching by testing main 

parameters involved in the leaching process. Artificial 

neural network (ANN) model is developed to predict the 

recovery of column leaching, by taking into account four 

leaching parameters as inputs to the model, such as 

column height, particle size, acid flow rate and leaching 
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time. In order to improve prediction accuracy, the genetic 

algorithm (GA) is incorporated in the training phase of a 

network, involving two objectives: the mean squared 

error (MSE) and determination coefficient (R). The 

process data are used for the recovery prediction of Cu 

column leaching using ANN and hybrid of ANN and 

GA. 

 

2 Materials and methods 
 

2.1 Data sets 

Tests were performed on copper oxide ore obtained 

from Tarom deposit, Zanjan, Iran. Sulfuric acid with 

concentration of 20 g/L was used for ore leaching, and 

LIX98N solvent was used for extraction of copper from 

leach liquor. 

The initial sample ore was split into two samples. 

One was crushed to less than 50.8 mm by a jaw crusher 

and the other to less than 25.4 mm. After blending, 

representative samples were collected for particle size 

distribution analysis, chemical analysis, and 

mineralogical characterization. Screen analysis was 

performed by mechanically shaken Tyler sieves. 

Chemical analysis of elements was carried out by 

ICP-emission spectrophotometry. The X-ray diffraction 

(XRD) analysis of ore was used in order to determine the 

mineralogical species. The crushed samples were 

agglomerated with 30% of their maximum sulfuric acid 

consumption (30 kg/t) and then charged within the 

columns. 

Sulfuric acid solutions were freshly prepared as 

needed, every three or four days. Leaching solutions 

were fed by peristaltic pumps. Every other day of 

leaching, a given amount of pregnant leach solution  

(PLS) sample was taken and quantitatively analyzed for 

copper and free sulfuric acid. Copper was extracted from 

PLS by the solvent extraction method using LIX984N 

and the raffinate solutions were circulated after adjusting 

its acid concentration. The leaching experiments were 

stopped when the copper concentration of PLS reached 

0.1%.  The experiments with 2, 4 and 6 m columns 

were completed within 78 d. 

 

2.2 Effect of parameters 

The results showed that the copper recovery has an 

inverse relation with the column height and particle size, 

and a direct relation with the leaching time and the acid 

flow rate. The obtained copper recoveries in the columns 

with the heights of 2, 4 and 6 m and particle size of 25.4 

and 50.8 mm during column leaching over 78 d are 

shown in Table 1. One of the important factors in the 

leaching of copper from ore is time. Copper in the ore 

undergoes physical and chemical reactions. Figure 1 

shows that the copper recovery increases with increasing 

Table 1 Effect of column height and particle size on copper 

recovery 

Column height/m Particle size/mm Recovery/% 

2 25.4 78.63 

2 50.8 44.21 

4 25.4 46.10 

4 50.8 18.39 

6 25.4 34.09 

6 50.8 12.66 

 

 

Fig. 1 Effect of time and particle size on recovery of copper 

during column leading: (a) Column height=2 m; (b) Column 

height=4 m; (c) Column height=6 m 
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the leaching time (has a polynomial relation) and 

decreasing the particle size. Figure 2 shows that the 

copper recovery increases with increasing the time and 

acid flow rate. More fresh solution is irrigated over the 

column with increasing the leaching time, which causes 

the dissolution of more minerals and increasing the 

copper recovery. Figure 3 shows that the copper recovery 

decreases with increasing the column height and particle 

size. Finer particles provide more available mineral 

surface to contact with acid solution so that more copper 

can be leached. The recovery increases with decreasing 

the height of column. Therefore, in order to maintain the 

same acid flow rate and the same recovery, it is 

necessary to increase the surface area of column, and a 

larger volume of acid is required. 

 

 

Fig. 2 Effect of time and acid flow rate on recovery of copper 

(ore crushed to less than 25.4 mm with heap height of 2 m) 

 

 

Fig. 3 Comparison between copper recovery in 25.4 mm and 

50.8 mm crushed ores 

 

2.3 GANN model 

Artificial neural networks (ANN) have been used in 

the mineral processing. They are used successfully in 

some research and industrial work. They are capable of 

modeling and controlling complicated systems and 

identifying very difficult relations between input and 

output data [15]. Neural networks are utilized to establish 

a relationship between a set of inputs and outputs. ANN 

uses a set of nonlinear basis functions between input and 

output data to be communicated, which acts as a black 

box [16]. In general, a neural network consists of one 

input layer, one or more hidden layers and one output 

layer. Each layer consists of one or more neurons [14]. 

The neurons are inter-related by using a weight 

parameter. Each neuron in a layer receives information 

from all neurons of the previous layer. According to the 

characteristics of the data input/output, the amount of 

bias and their inner connections are added with other 

neurons and transferred to the next layer [17,18]. 

One of the most useful types of neural networks is 

the back-propagation algorithm (BP). BP is used to 

converge the minimum error [16]. In this network, the 

error is calculated and then, according to the error rate, 

the weights communication and bias are updated [19]. 

The background of data processing details is described 

by SINGH et al as follows. 

In an ANN, the jth neuron in the hidden layer is 

connected to a number of inputs: 
 
xi=(x1, x2, x3, …, xn)                           (1) 
 

The net input values in the hidden layer will be 
 

Netj

1

n

i ij j

i

x w


                               (2) 

 
where xi is the input units, θj is the bias neuron (optional), 

wij is the weights on the connection of the ith input and 

jth neuron, and n is the number of input units. The net 

output of hidden layer in this study is calculated using a 

logarithmic sigmoid function. 
 

( )
( ) 1/ [1 e ]j jNet

j jQ f Net
 

  


                (3) 
 

The total input to the kth unit is 
 

Ok=f(Netk)                                   (4) 
 

The network is presented with input and output 

patterns in the learning process. The network output is 

computed by the network. Now, the actual output and the 

desired output are compared with each other. Therefore, 

error at any output in layer k is 
 
el=tk−Ok                                                        (5) 
 
where tk is the desired output and Ok is the actual output.  

The total error function is 
 

2

1

0.5 ( )
n

k k

k

E t O


                            (6) 

 

Training is done for achieving an optimum weight 

space of the network. The steepest descent error surface 

is given by the following rule: 
 

( / )jk jkW E W                             (7) 
 

where η is the learning rate parameter and E is the error 
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function. Updated weights for the (n+1)th pattern are 

given as 
 

( 1) ( ) ( )jk jk jkW n W n W n                     (8) 
 

The hidden and output layers are connected with the 

similar logic [16,17]. Optimization of design and 

structure of ANN and weights and bias of network can be 

done by the genetic algorithm. 

Genetic algorithm (GA) is a stochastic general 

search method that can solve a wide variety of 

optimization problems by principles of Darwinian 

natural selection [20]. Each possible response of issue 

can be presented as a chromosomes in the algorithm. A 

population is constructed from the collection of 

chromosomes [21]. An objective function is defined 

according to main aim to evaluate the fitness values of 

all the chromosomes. In this method, a random 

population was generated that was tested with a given 

fitness function. At each iteration, selecting a particular 

group of parents to generate offspring using mutation 

and crossover from the former ones and then evaluating 

the fitness of all the new offsprings are repeated. The 

process of GA algorithm is continued to reach the 

determined conditions [21]. The response of the best 

process simulated evolution can become a good solution 

to the problem. GA has been successfully used in mineral 

processing in order to circuit design, optimization of 

parameters and process control process control [22−24]. 

GA can be used for the optimization of weights of  

a BP neural network, learning parameters and finding   

the network structure. This work only used GA for     

the optimization of weights of a BP neural      

network [21,25−27]. The total number of connection of 

the ANN is determined as the length of the  

chromosome [25,28]. The flow chart of the algorithm is 

shown in Fig. 4. 

GA has been used for the optimization of weights 

and the threshold of neural network of BP algorithm. We 

used the GA population size of 150, and the top scoring 

15% of the population was selected as fit to survive in 

the next generation of solutions. We used 50% and 35% 

of the population for the crossover and mutation, 

respectively. The maximum generation selected equaled 

200. The arithmetic crossover was used to produce two 

new offsprings by a linear combination of two parents. 

Two parents i
AX  and i

BX  were selected that crossed 

each other; then the new offsprings ( 1i
AX   and 1i

BX  ) 

are produced: 
 

1
1 1(1 )i i i

A A BX X X                           (9) 
 

1
2 2(1 )i i i

B A BX X X                         (10) 
 

where α1 and α2 are the random numbers in the range of 

1 and the number of elements in array of i
AX . 

 

 

Fig. 4 Flow chart of using GA to optimize BP algorithm 

 

Mutation point (xk) is in the range of min max[ , ] 
k kU U . 

The genetic value of mutation point is 
 

max min min( )k k k
kx r U U U                       (11) 

 
where r is a random number in the range of the number 

of selected parents for mutation and the number of total 

parents [27]. 

The connection weights of the new population 

offspring given to neural network and the fitness 

function of the new offspring were calculated. The 

process of genetic operations continued until it reached 

the predetermined value [28]. 
 

3 Parameter selection and modeling using 
ANN and GANN 

 

In this study, ANN and GANN were used. To train 

the networks, 120 sets of data recorded in the column 

leaching of Tarom copper ore were used, in which     

96 sets were used to train the network and 24 sets to test 

its correctness. All input and output data (before feeding 

to the networks) were normalized in the range of 1 and 

−1. The particle size, column height, leaching time and 

acid flow rates are input parameters of the network. 

Table  2  presents  the  statistical  parameters  for  the 
 

Table 2 Statistical parameters of networks 

Varable Maximum Minimum 

Particle size/mm ≤50.8 ≤25.4 

Column height/m 6 2 

Acid flow rate/(kg·t−1) 58.17 0.48 

Time/d 3 78 

Recovery/% 79 1 
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networks. The designed network output is copper 

recovery. Figure 5 shows the network back propagation 

algorithm. 

 

4 Result and discussion 
 

The back propagation algorithm was used for 

training the network, which does not always converge to 

the absolute minimum and has a weak rate of 

convergence. The connection weights of ANN by BP 

algorithm are only adjusted from the local angle and the 

whole learning process form the global perspective is not 

examined. Therefore, it may be stopped in a local 

minimum [28]. The combined BP and GA have been 

used for the better training of the neural network works. 

GA is also used to optimize the BP algorithm to 

overcome BP disadvantage of being easily stopped in a 

local minimum. It uses to learn the connection weights 

and bias of ANN. 

The optimal topology of the networks designed for 

column leaching processes with 3 and 4 hidden layers 

and one output layer for ANN and GANN in the form 

{4-15-10-1} and ANN in the form {4-22-16-15-1} is 

shown in Figs. 6 and 7, respectively. The numbers of 

layers and neurons in each layer are limiting elements in 

training so that the training time increases with 

increasing them. The numbers of hidden layers and 

neurons in GANN network are less than those in ANN in 

the form {4-22-16-15-1}. 

Figure 8 shows the total squared error and 

comparison of the response of GANN in the training 

process. The figure shows that the sum squared error 

reduces with the increase of generation and the measured 

Cu recoveries are close to the estimated recoveries by 

GANN in the training process. 

For the validation of the GANN and ANN models, 

the test data were used in the trained model. Figure 9 

shows the measured values of Cu recovery in 

comparison with the predictions of GANN for each 

sample. The assessment of the correlation coefficients  

 

 

Fig. 5 Network back propagation algorithm for prediction of heap leaching recovery 

 

 

Fig. 6 GANN and ANN structure for prediction of heap leaching recovery in form {4-15-10-1} 

 

 

Fig. 7 ANN structure for prediction of heap leaching recovery in form {4-22-16-15-1} 
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(R) of training and testing phases using GANN and ANN 

algorithm in the form {4-15-10-1} and ANN algorithm in 

the form {4-22-16-15-1} are shown in Figs. 10−15, 

respectively. As shown in these figures, the recovery 

values measured in the laboratory and predicted by the 

GANN and ANN algorithm in the form {4-22-16-15-1} 

are close to each other in the training and testing of 

networks. The gradient of the regression line between the 

measured Cu recoveries with the estimated by GANN 

and ANN in the form {4-15-10-1} and ANN in the form 

{4-22-16-15-1} in the training and testing are equal to 

0.97, 1, 0.96 and 0.99, 0.5204, 0.92, respectively, in 

which the values of R in the GANN and ANN in the 

 

 

Fig. 8 Sum squared error during generation of GANN (a), and 

comparison of measured Cu recovery with that estimated by 

GANN in training process (b) 

 

 

Fig. 9 Comparison of measured Cu recovery with that 

estimated by GANN in testing process 

 

 

Fig. 10 Predicted Cu recovery by GANN in training process vs 

actual measurement 

 

 

Fig. 11 Predicted Cu recovery by GANN in testing process vs 

actual measurement 

 

 

Fig. 12 Predicted Cu recovery by ANN in training process vs 

actual measurement in form {4-15-10-1} 

 

form {4-22-16-15-1} are close to its optimal value (1). 

The efficiency of ANN is increased with increasing the 

number of hidden layers and neurons. The mean squared 

error (MSE) and determination coefficient (R) of these 

networks are presented in Table 3. The testing MSE for 
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GANN is less than the ANN ones. Therefore, the 

efficiency of GANN is more than that of ANN for the 

prediction of the Cu recovery in column leaching. 

 

 

Fig. 13 Predicted Cu recovery by ANN in testing process vs 

actual measurement in form {4-15-10-1} 

 

 

Fig. 14 Predicted Cu recovery by ANN in training process vs 

actual measurement in form {4-22-16-15-1} 

 

 

Fig. 15 Predicted Cu recovery by ANN in testing process vs 

actual measurement in form {4-22-16-15-1} 

Table 3 Statistical measures and performance of ANN and 

GANN models for training and testing 

Type of 

network 

Best 

architectre 

R  MSE 

Training Testing  Training Testing 

GANN 4-15-10-1 0.9730 0.9640  0.0114 0.0202 

ANN 4-15-10-1 1 0.5204  0 783.4043 

ANN 4-22-16-15-1 0.9940 0.9157  1.95×10−3 66.67 

 

5 Conclusions 
 

In this study, parameters such as column height, 

particle size, acid flow rate and leaching time in pilot 

scale were optimized. GANN as a novel procedure was 

used for recovery prediction in the column leaching. 

ANN and GANN were trained for the recovery of 

column leaching with the input parameters such as: 

particle size, column height, acid flow rate and leaching 

time. Three columns with the heights of 2, 4 and 6 m and 

in particle size of <25.4 and <50.8 mm were used to 

evaluate the effect of column height and particle size. 

The result showed that the recovery increased with 

increasing the acid flow rate and leaching time and 

decreasing particle size and column height. In these 

networks, multi-layer ANN back propagation and GANN 

algorithm with {4-22-16-15-1} and {4-15-10-1} 

arrangement were used to the predict the Cu recovery, 

respectively. The correlation coefficient and mean 

squared error values for the testing sets for Cu recovery 

using GANN and ANN were 0.96, 0.02 and 0.92, 66.67, 

respectively. The correlation coefficient and mean 

squared error values of the testing sets in GANN were 

less than those in ANN that show the more efficiency of 

GANN for this study. The results showed that the 

proposed model, according to parameters affecting the 

recovery of copper during column leaching, can be used 

to predict the Cu recovery with a reasonable error. 
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采用人工神经网络基因复合算法预测 

氧化铜矿柱浸工艺铜浸出率 
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摘  要：采用人工神经网络(ANN)以及人工神经网络和基因复合(GANN)算法来优化氧化铜矿柱浸工艺参数。采

用三种高度的浸矿柱(2，4，6 m)和尺寸为<25.4 mm 和<50.8 mm 的两种矿物来进行浸出实验。在台架实验规模下，

对浸矿柱高度、矿粒尺寸、硫酸流速、浸出时间等工艺参数对铜浸出率的影响进行研究，对浸出条件进行优化以

得到最大的浸出率。研究结果表明，铜的浸出率随硫酸流速和浸出时间的增加而增加，随矿粒尺寸和浸矿柱高度

的减小而增加。对人工神经网络(ANN)、人工神经网络和基因复合(GANN)算法的效率进行了比较，结果表明，

人工神经网络和基因复合(GANN)算法比人工神经网络(ANN)算法更有效。采用新提出的算法模型来预测铜的浸

出率误差更低。 
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