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Abstract: The wear behavior of multi-walled carbon nano-tubes (MWCNTs) reinforced copper metal matrix composites (MMCs) 

processed through powder metallurgy (PM) route was focused on and further investigated for varying MWCNT quantity via 

experimental, statistical and artificial neural network (ANN) techniques. Microhardness increases with increment in MWCNT 

quantity. Wear loss against varying load and sliding distance was analyzed as per L16 orthogonal array using a pin-on-disc  

tribometer. Process parameter optimization by Taguchi’s method revealed that wear loss was affected to a greater extent by the 

introduction of MWCNT; this wear resistant property of newer composite was further analyzed and confirmed through analysis of 

variance (ANOVA). MWCNT content (76.48%) is the most influencing factor on wear loss followed by applied load (12.18%) and 

sliding distance (9.91%). ANN model simulations for varying hidden nodes were tried out and the model yielding lower MAE value 

with 3-7-1 network topology is identified to be reliable. ANN model predictions with R value of 99.5% which highly correlated with 

the outcomes of ANOVA were successfully employed to investigate individual parameter’s effect on wear loss of Cu−MWCNT 

MMCs. 

Key words: copper; multi-walled carbon nano-tube (MWCNT); powder metallurgy; wear; Taguchi method; analysis of variance 

(ANOVA); artificial neural network 

                                                                                                             

 

 

1 Introduction 
 

Metal matrix composites (MMCs), well known for 

higher values of hardness, strength, specific modulus and 

thermal stability when compared with their monolithic 

metals or alloys, have defined a new era in the field of 

transportation, electronics, aerospace, nuclear and 

defense industries [1]. In the recent past, wear resistance 

of these newly developed MMCs has been a major focus 

of study owing to the fact that wear loss decreases with 

considerable increase in particle size and volume fraction 

of the hard ceramic particle reinforcements [2]. 

Copper (Cu), well known for its thermal, electric 

and certain mechanical and corrosion resistant properties, 

has embarked a wide range of application in the field of 

automotives, marine and electronics packaging. 

Cu-based alloys known for their thermal conductivity 

have also positioned themselves in heat sinks as 

structural material; even then strength being a main 

concern at elevated temperatures, researchers has been 

under forced voluntarily to opt for dispersion 

strengthening thereby achieving high strength under 

normal conditions [3]. Cu matrix along with dispersions 

such as silicon carbide and diamond has undergone a 

wide range of research for thermal and tribological 

management. Cu-based composites reinforced with SiC 

showed a poor thermal conductivity while diamond 

reinforced MMC excited only low machinability [4]. 

Powder metallurgy (a commonly used process to 

produce MMCs) processed materials have enough 

potential for usage in many applications in lieu of 

attaining certain admirable properties over any other 

competing methods [5]. Reinforcing nano- and micro- 

particles on the matrix material such as Al, Mg and Cu 

improves wear resistance, damping property and 

mechanical strength. Cu-based bulk metallic glass 

composites reinforced by titanium carbide exposed an 

improvement in yield and fracture strength besides 

delivering 25% improvement in ductility and    

hardness [6]. Ti-reinforced Cu-based composite material 

developed by powder metallurgy process has 

experienced appropriate thermal conductivity and 

coefficient of thermal expansion of 5.4 W/(m·K) [7]. The 

homogenous distribution of reinforcements into the 

metal matrix was supposed to be an important problem 
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faced while processing was easily carried out by 

mechanical alloying. Mechanical alloying of matrix and 

reinforcement particles has to be carried out for a longer 

time in order to achieve a uniform, dense mixture of 

these materials [8]. Mechanical alloying of particles 

defines that the powders undergo cold welding, 

fracturing and re-welding continuously within the high 

energy ball mill so as to attain an alloy or composite of 

particles with less particle spacing in lieu of the prevailed 

temperature [9]. Cu-based composite materials produced 

through powder metallurgy have proved to offer 

excellent heat conductivity, anti-wear properties and 

hence broadly used in aircraft, trains, and ship braking 

systems. Particulate reinforced copper metal matrix 

composite (Cu-MMC) has established application in 

electronics field, as a wear and heat resistant material, 

and for brush, torch nozzle material too [10−14]. 

In general, carbon nano-tubes (CNTs) have been 

considered by worldwide researchers as an ideal 

reinforcement material to improve the performance of 

many base materials. Because of its exceptional smaller 

diameter as well as high elastic modulus, tensile strength, 

and high chemical stability, CNT is exposed as an 

attractive reinforcement material for lightweight and 

high-strength metallic matrix composite development. In 

spite of its applicability in the field of nano science, its 

superior stiffness and strength at low density had made it 

to evolve as an ultimate fiber in the development of 

advanced composite materials [15]. Even though, CNT 

tends to agglomerate because of van der Waals force 

which is considered to be the main hitch in employing 

CNT as reinforcements, it has been used with many 

metals and ceramics for diverse applications [16]. The 

researchers carried out many studies regarding thermal, 

electrical and strengthening mechanisms of CNT in 

Cu-MMCs; however, the tribological properties of 

CNT-dispersed Cu-MMCs were scarcely explored. 

Taguchi’s method, a powerful technique in design 

of experiments helps to optimize at ease the control 

factors efficiently by means of systematic approach and 

likewise for analyzing the effect of various control 

factors over performance characteristics. Spear headed 

for the said technocrats, many studies have been carried 

out in optimizing the wear rate of composites employing 

Taguchi method. No matter what signifies, analysis of 

variance (ANOVA), a statistical method working on least 

square approach was carried out on experimental values 

and end results soon after Taguchi technique so as to 

investigate the significance of each parameter upon its 

performance characteristics [17,18]. Artificial neural 

network (ANN) evolved from the human brain is now at 

major focus for wear property modeling. In this 

technique, both control factors and performance 

parameters were provided to ANN model comprising of 

input, hidden and output layers with various nodes. 

Based on the inputs and outputs, ANN develops a 

relationship creating a model possessing ability to predict 

the performance parameter for the given inputs [19,20]. 

This model can again be used for finding the exact 

control factors that confers better performance. Studies 

have stated that these models can even be developed 

from small data sets to solve problems at a faster pace 

equal to any other approaches of similitude [21]. 

The main aim of this study is to prepare and 

characterize the Cu-based MMCs reinforced with various 

volume traces of multi-walled carbon nano-tubes 

(MWCNTs) through powder metallurgy technique. 

Besides evaluating density, SEM microstructure and 

hardness, wear performance of the developed composite 

specimens were statistically studied in detail using 

Taguchi and ANOVA techniques. The attained results 

were then trained using neural network tool box in order 

to develop a potential ANN model to predict the wear 

loss of Cu-MWCNT MMCs. 

 

2 Experimental 
 

2.1 Materials 

Copper, the primary material with 99% purity 

commonly known as electrolytic copper, was purchased 

as such. The copper matrix material with powder mean 

size of 35−40 μm was considered for this study. 

MWCNTs with mean size of 20−40 nm were employed 

as reinforcement in this research for the want of 

dispersion strengthening. Details of the powders utilized 

in this study for powder compaction process are provided 

in Table 1. 

 

Table 1 Properties of powders 

Powder Mean size/µm Purity/% Density/(g·cm−3) 

Cu 35−40 99 8.96 

MWCNTs 20−40 99.5 0.37 

 

2.2 Composite preparation and testing 

Powder metallurgy process was considered for 

developing Cu-MMCs reinforced with multi-walled 

CNTs synthesized through chemical vapour deposition 

technique. Primarily, the powders (as-received conditions) 

were weighed in agreement to different compositions as 

pure copper, copper with 1%, 2% and 3% MWCNTs 

(volume fraction). The weighed proportion was then 

blended utilizing a planetary ball mill for total 6 h with 

an intermission of 30 min for every 1 h to improve the 

dispersion of MWCNT into the matrix. SEM images of  

0, 1%, and 3% MWCNT (volume fraction) were taken 

after blending of powders and are shown in Fig. 1. These 

images bring in a clear view for the dispersion of 



K. SOORYA PRAKASH, et al/Trans. Nonferrous Met. Soc. China 27(2017) 627−637 

 

629 

MWCNT in copper matrix. The composite mixture was 

then compacted at 700 MPa using hydraulic press to 

achieve cylindrical specimens with 30 mm in height and 

10 mm in diameter respectively. After compacting, green 

composite pieces as per said dimensions were sintered in 

the presence of Ar at 900 °C for 1 h. 

 

 

Fig. 1 SEM images of pure copper (a), Cu+1% MWCNT (b) 

and Cu+3% MWCNT (c) 

 

Microhardness of the composite was determined by 

Vickers hardness method at a load of 3 N and dwell time 

of 5 s. Measurements were taken at five different 

locations of the composite sample and average of the 

attained values was calculated for further utilization. 

Density being one of the major parameters in material 

design was investigated theoretically and by Archimedes 

principle too. Theoretical density of the developed 

composite was evaluated using the mixture rule while 

experimental density was determined by measuring the 

difference between mass of the sample in air and in  

water. Wear test for the composite was performed using 

pin-on-disc method under dry sliding condition. 

Taguchi’s method was used to identify the influence of 

MWCNT content, applied load and sliding distance on 

wear performance of the composite. ANOVA was 

performed to identify the percentage of contribution and 

significance of testing parameters. The worn out surface 

of tested piece was examined by scanning electron 

microscopy. 

 

2.3 Experimental design for wear analysis 

Taguchi’s method, one of the conventional and 

efficient optimization techniques used nowadays, designs 

a high quality system based on orthogonal array (OA) 

experiments that provide many reduced experiments with 

an optimum setting for process control parameters. The 

experimental results are transformed into a signal-to- 

noise (S/N) ratio. In general, three types of S/N ratios 

used are the smaller-the better, the higher-the better and 

the nominal-the best. S/N ratio for current study falls 

under the smaller-the better characteristic for the reason 

that the ultimate aim is to reduce the wear loss. S/N ratio 

can be calculated as algorithmic transformation of the 

loss function, as shown below 
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                        (1) 

 

where n is the number of observations, and y is the 

observed data. Three process parameters were considered 

at four levels and the same is shown with their codes in 

Table 2. Based on these parametric conditions, L16 OA 

was selected for this study and the experiments     

were performed considering the OA combinations. 

Mean-response graphs were plotted using Minitab-16 

software to identify the optimum parameter values and 

the percentage of contribution of testing parameters was 

determined by ANOVA. 

 

Table 2 Control factors 

Control factor Code Level 1 Level 2 Level 3 Level 4 

Volume 

fraction of 

MWCNT/% 

A 0 1 2 3 

Load/N B 5 10 15 20 

Sliding 

distance/m 
C 500 1000 1500 2000 

 

3 Result and discussion 
 

3.1 Microstructural characterization 

Microstructural characterization of the material is 
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an essential assessment for confirming the identity of 

material formation and also the dispersion of 

reinforcements into metal matrix. In order to achieve 

better SEM images of the developed Cu−MMCs, the 

specimens were cleaned and etched with etchant 

synthesized from ferric chloride, hydrogen peroxide and 

distilled water at a defined content. 

It is visible from SEM images replicated here as  

Fig. 2 that increment in quantity of MWCNT dispersions 

into Cu matrix has happened along the grain boundaries. 

Porosity developed in the specimens during 

manufacturing through powder metallurgical process is 

also detectable from micrographs. The reason for 

porosity might be due to the adherence of improper 

compacting pressure which has to be optimized 

furthermore. 

 

 

Fig. 2 SEM images of Cu+1% MWCNT (a) and Cu + 3% 

MWCNT (b) 

 

3.2 Density 

Density of the composite was identified by both 

theoretical and Archimedes methods. Figure 3 shows that 

sintered density of the tested composite specimen 

decreases gradually for 1%, 2% and 3% MWCNT 

reinforcement when compared with 8.84 g/cm3 of  

copper. This is mainly due to the ultra-low density of 

reinforced MWCNTs; review over available literatures 

clarifies that increase in MWCNT increases the pores in 

matrix material, thereby reducing density level [22]. 

 

3.3 Microhardness 

Microhardness of the composite material is plotted 

in Fig. 4. Results show that microhardness of the 

prepared specimens increases with increase in volume 

fraction of MWCNT as the hardness value improves 

from HV 338 (pure Cu) to HV 446.2 for 3% MWCNT 

addition. 

 

 

Fig. 3 Density of specimen vs MWCNT content 

 

 
Fig. 4 Hardness of specimen vs MWCNT content 

 

MWCNT reinforcement improves hardness up to 

32% in comparison to pure Cu. Cu is a soft material and 

so the distribution of MWCNT into the matrix material 

makes it harder. From previous researches, it could be 

observed that uniform distribution of applied load in 

material is a reason for increased hardness whenever 

MWCNT-based nanocomposite development was carried 

over. It can also be stated that dislocations created due to 

the difference in coefficient of thermal expansion 

between Cu matrix and reinforcements are restricted to a 

good level because of MWCNT introductions, thereby 

increasing the hardness [23]. 

 

3.4 Wear test 

Wear test was carried out in a DUCOM 

TR−20M−106 pin-on-disc tribometer for varying 

composition load and sliding distance as per L16 OA and 

wear loss was tabulated. Examining Table 3 endowed 

with process parameters and wear loss values along with 

their corresponding S/N ratios expels that pure Cu 

exhibits more wear loss when compared to Cu−MWCNT 
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MMCs. This statement makes clear that dispersion of 

MWCNTs has made a foremost influence on the 

tribological properties of Cu matrix. 

 

Table 3 Process parameters and wear loss values along with 

their S/N ratios 

Trial 

No. 

Volume fraction 

of MWCNT/% 

Load/ 

N 

Sliding 

distance/m 

Wear 

loss/g 

S/N 

ratio 

1 0 5 500 0.1750 15.139 

2 0 10 1000 0.2021 13.888 

3 0 15 1500 0.2143 13.379 

4 0 20 2000 0.2456 12.195 

5 1 5 1000 0.1520 16.363 

6 1 10 500 0.1431 16.887 

7 1 15 2000 0.1823 14.784 

8 1 20 1500 0.1753 15.124 

9 2 5 1500 0.1354 17.367 

10 2 10 2000 0.1467 16.671 

11 2 15 500 0.1372 8.626 

12 2 20 1000 0.1569 16.087 

13 2 5 2000 0.1342 17.444 

14 3 10 1500 0.1378 8.607 

15 3 15 1000 0.1347 17.412 

16 3 20 500 0.1398 17.089 

 

3.4.1 Influence of testing parameters on wear loss 

Figure 5 portrays the influence of various testing 

parameters on the wear loss of composites. Appraisal 

over the main effect plot states that the line for a 

particular parameter which is near to the horizontal axis 

has no significant effect. In contrast, a parameter for 

which the line has the highest inclination experiences 

most significant effect. Under this strategic view, it is 

viable from the main effect plot that parameter A 

(MWCNT content) is the most significant factor. 

Parameters B (load) and C (sliding distance) have less 

influence on the wear loss of composite while 

considering the influence due to MWCNT content. 

However, the parameter holding higher delta value has 

the highest influence over resultant variable among 

considered parameters. From Table 4, it is evident that 

MWCNT content ranked as 1 has higher delta value and 

hence exposes the highest influence on the wear loss of 

Cu−MWCNT composite. 

Any increase in applied load significantly increases 

wear loss of the composites. At higher loads, contact 

between sliding and counter surfaces is definitely more 

and thus in turn increases the friction between the bodies. 

This increased friction leads to increase in temperature 

which would soften the composite pin and further result 

in higher wear loss. Thus, it can be stated that with 

increase in applied load, plastic deformation of the 

material exposed also increases to a larger extent, 

thereby increasing wear loss of the material [24]. 

 

 

Fig. 5 Main effect plots for S/N ratio: (a) Volume fraction of 

MWCNT; (b) Load; (c) Sliding distance 

 

Table 4 Response table for S/N ratios (Smaller is better) 

Level 
S/N ratio 

MWCNT Load Sliding distance 

1 13.65 16.58 16.59 

2 15.79 16.17 15.94 

3 16.84 15.71 15.77 

4 17.29 15.12 15.27 

Delta 3.64 1.45 1.32 

Rank 1 2 3 

 

Wear loss decreases when volume fraction of 

MWCNT increases up to the level of 3%. This is mainly 

because of the presence of MWCNT content in copper 
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metal matrix which has the tendency to increase hardness 

of the composite and thereby reduce wear loss. Also, this 

property realization is possible because of the self- 

lubricating nature of MWCNTs used as reinforcement. 

Higher hardness of developed Cu−MMCs reduces the 

chance for occurrence of plastic deformation to a greater 

extent during the process, thus reducing the wear loss to 

a considerable level [24]. 

It is an expected fact that with increase in sliding 

distance, wear loss prompts to increase even though the 

sliding distance plays as the least affected factor while 

considering the quantity addition of MWCNT and 

applied load as demonstrated in Fig. 5. This could 

possibly be the effect of increased temperature at the 

sliding interface due to the action of continuous sliding 

over harder surface. It can be noted from Fig. 5 that the 

wear loss demonstrates a trend of rapid increase initially 

followed by a gradual decrease and again an increase 

with respect to sliding distance. This happening is 

attributed to the formation of certain oxide layers which 

are possibly due to the increase in temperature. Presence 

of these oxide layers prevents the material from further 

wear. Moreover, increase in sliding distance increases the 

temperature, thereby softening the material and in turn 

weakening the formed layer. 

From the main effect plots, it can be clearly stated 

that minimum wear loss can be obtained at MWCNT 

content of 3%, load of 5 N and sliding distance of 500 m. 

3.4.2 ANOVA and effects of factors 

ANOVA method was employed in order to identify 

the significance and contribution percentage of different 

factors. Results reveal that MWCNT content (A) is a 

major factor for wear performance of the newer 

composite. Its percentage of contribution is 76.48%, 

which means almost three fourth, followed by the 

applied load (B) having an influence of 12.18% on wear 

loss of the composites. Sliding distance which has least 

influence on wear loss contributes 9.91% of total wear 

loss. Table 5 denotes ANOVA results detailing the 

contribution of each factor on wear loss and their 

significance. The parameter having P ratio less than 0.05 

is a significant factor; so it can be stated from Table 5 

that parameters A, B and C are significant variables. 

3.4.3 Regression analysis 

Correlation between the control factors (volume 

fraction of reinforcement (A), applied load (B) and 

sliding distance (C)) and the wear loss (W) was acquired 

by multiple linear regression technique and is 

represented as follows: 
 

W=0.151325−0.0237A+0.002009B+1.791×10−5C    (2) 
 

Correlation coefficient R=88.95% 

3.4.4 Confirmation experiment 

Confirmation experiment is highly essential to 

verify the theoretical conclusions and hence two sets of 

parameter combinations were chosen to perform the 

confirmation test. In Table 6, predicted and experimented 

values are tabulated along with their deviation besides 

demonstrating comparisons between experimental wear 

losses to the estimated results. As deviation between 

predicted and actual readings is well below 4% it can 

readily be augmented that this developed equation can 

further be used for predicting wear loss of Cu−MWCNT 

composite. 

 

3.5 Microstructure analysis of worn out surface 

SEM micrograph study, an unavoidable chronicle 

for analyzing the wear performance of any subjected 

material was captured and made to mull over; also worn 

surface morphologies present the additional information 

on wear mechanism of the newer composites. Generally, 

abrasive wear and adhesive wear are the major wear 

mechanisms inducing wear loss to about 80%. 

Figure 6 illustrating the worn out surfaces of copper 

and other composite specimens at higher loads clarifies 

that copper has severe wear loss and gets reduced for any 

increase in MWCNT content. A clear cut observation 

over the SEM images notifies that the materials removed 

from the surface are mainly through delamination. 

Plastic deformation on the material surface could clearly 

be distinguished and it is the cause for delamination. 

Figure 6(d) shows worn surface of the copper composite 

with 3% MWCNT wherein the wear loss is less, and 

again it is notable from the surface that there is only mild 

plastic flow over the surface, which is an evidence for 

indication of higher wear resistance of the developed 

composite. 

 

Table 5 ANOVA table 

Source Degree of freedom Sum of squares Mean square F ratio P ratio Contribution/% Affecting degree 

A 3 0.0127741 0.0042580 107.13 0 76.48 Significant 

B 3 0.0020343 0.0006781 17.06 0.002 12.18 Significant 

C 3 0.0016538 0.0005513 13.87 0.004 9.91 Significant 

Error 6 0.0002385 0.0000397   1.43  

Total 15 0.0167008      
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Table 6 Confirmation test parameters and results 

Experiment 

No. 

Volume fraction of 

MWCNT/% 
Load/N 

Sliding 

distance/m 

Experimental 

wear loss/g 

Predicted 

wear loss/g 
Error/% 

1 2 15 1500 0.167 0.161 3.59 

2 3 5 500 0.103 0.099 3.83 

 

 
Fig. 6 Worn surface morphologies of pure copper (Trial No. 4) (a), Cu+1%MWCNT (Trial No. 8) (b), Cu+2%MWCNT (Trial No. 12) 

(c) and Cu+3%MWCNT(Trial No. 16) (d) 

 

 

4 Artificial neural network based modeling 
 

In the last few years, the application for artificial 

neural network has increased tremendously in various 

engineering fields for its capability to learn linear and 

non-linear problems. Neural network from its age of 

development has been a major field of focus due to its 

ability to learn from the statistical and/or experimental 

data and then predicting results similar to the work 

fashion of human brain. Neural network was developed 

mimicking the working of human nervous system with 

millions of neurons jointly working together to provide 

results or simulate the human body. Artificial neural 

networks can be defined as a cluster of parallel 

architecture interconnecting each other to solve difficult 

problems at ease. 

Neural network mainly consists of input, hidden and 

outer layers which are composed of independent 

processing elements called nodes. The input layer 

consists of input nodes which receive the input values 

from the user and send them to the hidden layer. Based 

on the complexity of available data, the number of 

hidden layers also increases. The hidden layer consists of 

nodes which are responsible for data conversion to be fed 

as input to the output layer. Nodes of the hidden layer 

accept input data from input layer along with the weights 

and then products of all these inputs along with their 

weights are summed together with non-zero value called 

as bias. The transfer function converts weighted sum into 

an output value based on a function. The nodes from 

each layer are connected to another node of next layer. 

In this current research, a single hidden layer based 

model was considered to predict the wear loss of 

Cu−MWCNT-based MMCs depending on inputs viz. 

volume fraction of MWCNT, load and sliding distance. A 

feed forward back propagation algorithm was used to 

train the ANN model; inputs were provided to the input 

nodes and wear loss target values were fed to the output 

node. Training of the network model was carried out by 

utilizing a feed forward network with back propagation 

learning algorithm recognized as one of the best methods 

in forecasting and pattern recognitions [25]. Considering 

reliability and processing speed, Levenberg−Marquardt 

(trainlm) training function [26] was employed to 

optimize the weights and bias in this research. HORNIK 

et al [27] proved that a multilayer perception model with 

sigmoid transfer function has the capability to solve any 

complex problems. Based on the experiential survey over 

the available literatures, again in this research sigmoid 
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transfer function was employed for hidden nodes and 

purelin for output nodes. Out of the 16 readings as 

provided in Table 5, 13 readings were used for training 

the model and the rest three for model validation. The 

training was carried out for 10000 iterations and 1000 

epochs. Now, the best model amongst the iterations was 

taken based on the least value of mean square error 

(MSE). 

Models with varying hidden nodes were developed 

and the mean absolute errors (MAEs) of these models 

were evaluated to find the best model that correlates 

given inputs and outputs. MAE value for models with 

varying hidden nodes provided in Fig. 7 explains that 

model with the 7th hidden layer shows the best 

predictability with minimal MAE value. Schematic 

diagram of the developed feed forward back propagation 

algorithm with topology 3-7-1 is shown in Fig. 8. 

 

 

Fig. 7 MAE value for developed models 

 

 

Fig. 8 Schematic diagram of ANN model with topology 3-7-1 

 

In order to validate the predictability and efficiency 

of developed model, it was tested with values which 

have not been employed for training the model. Three 

values that have been selected from Table 5 for 

validation are the readings of trail numbers 8, 12 and 16, 

which lie in the probabilistic distribution of the utilized 

readings. Figure 9 explains the results of validating 

inputs defining the predictability of the model; herein a 

low error difference could be distinguished between the 

experimental and predicted values. Model validation 

makes it clear that a feed forward ANN model trained 

with a back propagation algorithm of network topology 

3-7-1 can be effectively used to predict the wear loss of 

Cu-MWCNT MMC-based on the said parameters. 

 

 

Fig. 9 Validated outcomes for composite samples 

 

R-value, supposed to play a major role in the 

acceptance of a developed model as depicted in Fig. 10, 

approximates 1 for overall training and testing set of 

readings. It can be stated from the above that the 

developed model has a better correlation between the 

inputs and outputs and at the same time, 3-7-1 topology 

ANN model facilitates prediction of Cu−MWCNT MMC 

specimen’s wear loss as it lies well within the 

probabilistic distribution of the trained data. The 

regression R2 value shows a derived value of 88.95% 

from Eq. (2), while that of model created by ANN has a 

value of 99.56%. Thus, it can be stated from the results 

that ANN has once again evolved as a better tool in 

predicting the wear loss of such newer composites. The 

same artificial neural network model was employed to 

test the whole of L16 array values in order to predict 

wear loss more accurately. Nevertheless, as given in 

Table 7, the experimental and ANN predicted values 

have more or less equal conformity to each other. 

 

4.1 Effect of MWCNT addition on wear loss 

Efficiency of the developed model was proved to be 

superior by the way of validation using untrained values 

and also from R-value. Developed ANN model was then 

used to study the effect of individual factors affecting the 

wear loss of Cu−MWCNT MMCs. To study the effect of 

reinforcement (MWCNT) on wear loss of the developed 

composite materials, load and sliding distance values 

were kept constant as 15 N and 1500 m, respectively, 

while volume fraction of MWCNT reinforcement varies 

from 0 to 3%. 
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Fig. 10 Comparison chart between ANN and experimental wear 
loss 
 

Table 7 Experimental and ANN predicted wear loss values 

Trial 

No. 

Volume 

fraction of 

MWCNT/% 

Load/ 

N 

Sliding 

distance/ 

m 

Wear loss/g 

Experimental 
ANN 

predicted 

1 0 5 500 0.175 0.1776 

2 0 10 1000 0.2021 0.1973 

3 0 15 1500 0.2143 0.2117 

4 0 20 2000 0.2456 0.2437 

5 1 5 1000 0.152 0.1520 

6 1 10 500 0.1431 0.1453 

7 1 15 2000 0.1823 0.1784 

8 1 20 1500 0.1753 0.1784 

9 2 5 1500 0.1354 0.1403 

10 2 10 2000 0.1467 0.1522 

11 2 15 500 0.1372 0.1355 

12 2 20 1000 0.1569 0.1530 

13 3 5 2000 0.1342 0.1379 

14 3 10 1500 0.1378 0.1348 

15 3 15 1000 0.1347 0.1344 

16 3 20 500 0.1398 0.1390 

 

It has already been accomplished from this study 

that with considerable increase in volume fraction of 

MWCNTs in copper matrix, the wear loss of developed 

MMC reduces drastically. Developed model also 

confirms that wear loss reduces accordingly to the 

increase in MWCNT content as illustrated in Fig. 11 

through which it can also be noticed that with an 

introduction of 1% MWCNT into copper matrix, the 

wear loss decreases to a larger extent and then with 

further addition of MWCNT, the wear loss decreases 

with slight variation. This evidently shows the presence 

of MWCNT, a so-called self-lubricating material in 

copper metal matrix entailing for possible reduction of 

losses due to wear. 

 

 

Fig. 11 Wear loss vs MWCNT content 

 

4.2 Effect of applied load on wear loss 

ANOVA results affirm that the applied load also 

influences wear loss of the developed MMC  

significantly. In order to study the effect of load upon 

wear loss of material, the developed ANN model was 

tested for varying load assessments, i.e., 5, 10, 15 and  

20 N besides pertaining a constant volume fraction of 3% 

MWCNT and sliding distance of 1500 m, respectively. 

Figure 12 exhibiting the outcomes of ANN model 

shows a trend of increasing wear loss with increase in 

applied load. Increments in load value lead to probability 

of increasing friction between sliding counter disc and 

pin surface thereby increasing wear loss of Cu−MWCNT 

specimens. 

 

 

Fig. 12 Effect of applied load on wear loss 

 

4.3 Effect of sliding distance on wear loss 

Analysis over the outcomes of ANOVA shows that 

sliding distance has least influence on the wear loss of 

developed composite. Even though, the effect of sliding 

distance on wear loss was studied using the developed 

ANN model and further tested using constant volume 

fraction of MWCNT and load value of 3% and 10 N, 

respectively. 
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As shown in Fig. 13, the ANN model prediction 

satisfies with the yielded results of ANOVA in high 

correlation. It could be clearly visualized that wear loss 

increases with increase in sliding distance and after a 

point of time it starts decreasing and then again increases 

for further increase in sliding distance. As discussed 

above, wear loss of the material occurs with an increase 

in sliding distance and beyond a limit wear loss 

decreases. This may be due to the formation of certain 

oxide layers owing to an increase in temperature and at 

the same time exposure of hard MWCNTs to sliding 

wheel. Such exposure of MWCNT reduces wear loss by 

carrying the load exerted on the material and hence by 

these happenings wear loss of copper matrix reduces 

eventually [28]. Once material exceeds the transition 

sliding distance, wear loss increases again due to high 

temperature thus making the reinforced MWCNT to pull 

out and get on a prominent increase in wear loss. 

 

 

Fig. 13 Effect of sliding distance on wear loss 

 

5 Conclusions 
 

1) Uniform dispersion of MWCNT into the matrix 

material yielded a better hardness value of HV 446.2 for 

3% MWCNT addition when compared to HV 338 of 

pure copper. 

2) Ultra-low density of MWCNT influences a 

reduction in density for the composite material from  

8.84 g/cm3 for pure copper to 7.51 g/cm3 for 3% 

Cu−MWCNT composite. 

3) Self-lubricating and hard carbon nano-tubes used 

as reinforcement reduces the wear loss of newer 

composite developed. 

4) Based on Taguchi’s method of DOE for 

analyzing wear properties, volume fraction of MWCNT 

constitutes as the major factor for wear loss followed by 

applied load and sliding distance, respectively. 

5) Better predictability was demonstrated from the 

feed forward back propagation ANN model with 

topology 3-7-1 developed to predict the wear loss of 

Cu−MWCNT composite based on the inputs viz. content 

of MWCNT as reinforcement, applied load and sliding 

distance. 

6) Hierarchy of individual factors that majorly 

control the wear loss of Cu−MWCNT MMC was 

identified by employing the developed artificial neural 

network model. 
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多壁碳纳米管增强铜基金属 

复合材料干滑动磨损行为的参数优化 
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摘  要：利用实验、统计学及人工神经网络方法研究粉末冶金法制备的多壁碳纳米管增强铜基金属复合材料的磨

损行为，并探讨多壁碳纳米管含量的影响。测定和分析复合材料样品的显微硬度，设计 L16 正交实验，采用销盘

式摩擦计测定样品的磨损量随载荷和滑动距离的变化。结果表明：铜基金属复合材料的硬度随多壁碳纳米管含量

的增加而增加。Taguchi 法工艺参数优化结果表明多壁碳纳米管的引入对复合材料磨损量产生较大影响。利用

ANOV 统计学方法分析和验证了复合材料的抗磨损性能。多壁碳纳米管含量对复合材料磨损量的影响最大(贡献

率为 76.48%)，其次为所加载荷(贡献率为 12.18%)，最后为滑动距离(贡献率为 9.91%)。采用具有可变隐含节点的

人工神经网络模型对复合材料的磨损过程进行模拟，所得结果的平均误差(MAE)值较低，3-7-1 网络拓扑结构的适

应性强，所得数据可靠。人工神经网络预测值(相关系数 R 值为 99.5%)与 ANOVA 统计结果吻合良好，且能用于

研究各参数对多壁碳纳米管增强的铜基金属复合材料磨损行为的影响。 

关键词：铜；多壁碳纳米管(MWCNT)；粉末冶金；磨损；Taguchi 法；方差分析(ANOVA)；人工神经网络 
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