第 27 卷第 3 期 Volume 27 Number 3 2017年3月 March 2017

DOI: 10.19476/j.ysxb.1004.0609.2017.03.019

Cu、Ni 掺杂 FeS₂ 电子结构与 光学性质的第一性原理计算

武佳佳,马万坤,焦 芬,覃文庆

(中南大学 资源加工与生物工程学院,长沙 410083)

摘 要:采用基于密度泛函理论框架下的第一性原理平面波超软赝势法,研究 Cu、Ni 单掺杂与共掺杂体系中 FeS₂的晶体结构、电子结构和光学性质。结果表明:掺杂后黄铁矿发生晶格畸变,晶格常数变大,掺杂在 FeS₂ 禁带中引入杂质能级,使禁带变窄,费米能级上移进入导带,掺杂黄铁矿的态密度穿过费米能级,形成简并半导体,体系的导电率增强。光学性质计算表明:掺杂后介电函数虚部主峰、吸收系数和光电导率均出现红移、峰值减小。 共掺杂后的光跃迁强度明显增强,可见光区范围内的光吸收系数和光电导率均增大,说明 Cu-Ni 共掺杂显著增强 FeS₂ 对光的吸收以及光电转换效率。

关键词: Cu-Ni 掺杂; FeS₂; 光学性质; 第一性原理计算 文章编号: 1004-0609(2017)-03-0605-08 中图分类号: O474 文献标志码: A

随着能源需求的激增和环境污染的加剧,长期以 来,太阳能电池备受关注并发展迅速。但是发展至今, 其年产量与世界能源需求量相比还相差甚远,制约其 发展的关键问题是高昂的制造成本^[1-3]。金属硫化物因 其半导体属性在太阳能电池、热电材料以及存储装置 等领域显示出了广阔的应用前景,因而得到了广泛 关注。

黄铁矿(FeS₂)是地壳中最常见的硫化矿,组成元 素无毒且地球储量丰富。立方晶系黄铁矿具有优异的 半导体特性^[4-5],并且其环境相容性好,制备成本低廉, 是一种较有研究价值的新型太阳能电池材料^[6-10]。已 有研究^[11]表明:采用人工合成方法制备出 FeS₂薄膜, 尽管其易于氧化降解,但仍表现出良好的光电性能。

掺杂是调制材料的电子结构并改变其光电性能的 常用手段,对光电材料掺杂改性的理论研究具有重大 意义^[12]。对于黄铁矿来说,天然黄铁矿物中存在不同 类型的杂质和含量,李玉琼等^[13-16]的研究结果表明, 钴、镍、砷的掺杂均使得黄铁矿的吸收带边发生明显 的红移。FERRER 等^[17]制备了掺 Cu 黄铁矿薄膜,发 现掺杂后电阻率和掺杂体系的光吸收边均显著增大。 LEHNER 等^[18]使用化学气相沉积制备了 Ni 掺杂的黄 铁矿薄膜,证明 Ni 的掺入在光电导性测量中会显著影 响其光电导的敏感性。龙飞等^[19]研究 Ni 掺杂 FeS₂的可见光催化活性,发现 Ni 掺杂有利于提高 Fe_{1-y}Ni_yS₂的可见光催化活性,当 Ni 的掺入量 y 为 0.125 时,其 光催化活性最好。尽管对黄铁矿光电性能、Ni 掺杂^[20]的研究已有报道,但用第一性原理研究 Cu、Ni 共掺 杂对黄铁矿电子结构及光学性质的影响尚未见报道。

本文作者以 FeS₂超晶胞作为基体,以 Cu、Ni 为 掺杂原子,采用基于密度泛函理论的第一性原理平面 波超软赝势法,对不同浓度 Cu、Ni 掺杂 FeS₂前后的 能带、电子态密度和光学性质进行了对比和研究,初 步揭示了通过 Cu、Ni 单掺杂及共掺杂改变 FeS₂光电 性质的内在原因,为开发 FeS₂基光伏材料的实验工作 提供了理论参考。

1 理论模型和计算方法

半导体化合物 FeS₂属于等轴晶系,其空间群为 $Pa\overline{3}(T_h^6)$,每个晶胞含有4个FeS₂分子单元,Fe原子 分布在晶胞的6个面心和8个顶角上,每个Fe原子与 6个相邻的硫原子配位,形成空间八面体构造,而每 个S原子与3个Fe原子和1个S原子配位,形成四

通信作者: 焦 芬, 副教授, 博士; 电话: 0731-88830884; E-mail: jfen0601@126.com

基金项目:国家自然科学基金资助项目(51274255);湖南省科技领军人才(复杂矿产资源高效清洁利用的界面化学创新团队)(2016RS2016);中南大学"创新驱动计划"资助项目(2015CX005);中南大学战略金属矿产资源清洁高效利用协同创新中心资助项目 收稿日期:2016-04-06;修订日期:2016-08-29

面体构造,实验测得其晶格常数为a=b=c=0.5379nm, $a=\beta=\gamma=90^\circ$ 。计算采用(2×2×2)的 FeS₂超晶胞,晶胞 中包含 32 个 FeS₂分子单元共 96 个原子。掺杂时分别 用 Cu 和 Ni 原子取代 Fe 原子建立 Fe₂₉Cu₃S₆₄和 Fe₂₉Ni₃S₆₄超晶胞,用 Cu 和 Ni 同时取代 Fe 建立 Fe₂₆Cu₃Ni₃S₆₄超晶胞。掺杂后形成 Fe_{1-x}Cu_xS₂、 Fe_{1-y}Ni_yS₂和 Fe_{1-x-y}Cu_xNi_yS₂(x、 y 分别代表 Cu 和 Ni 在 FeS₂超晶胞中的原子含量),其中 x=y=0.094。图 1 所示为 FeS₂单胞及 Cu、Ni 取代 Fe 原子的(2×2×2) FeS₂超晶胞模型。

本计算中采用基于密度泛函理论(DFT)框架下的 第一性原理赝势平面波法,主要的计算工作由 CASTEP 软件包^[21]完成。计算中采用超软赝势 (USPP)^[22]来处理离子实与电子之间的相互作用,交换 关联泛函采用广义梯度近似 GGA 下的 PW91 梯度修 正近似。平面波截断能测试表明,截断能取 350 eV 较 为合理。采用 BFGS 算法对体系进行几何优化,得到 稳定的结构,优化的收敛标准为:原子位移的收敛阈 值为 0.02 pm,原子间作用力的收敛阈值为 0.8 eV/nm, 原子间的内应力收敛标准为 0.1 GPa,最大能量改变的 收敛标准为 2.0×10⁻⁵ eV/atom,自洽计算收敛精度设 置为每个原子 1×10⁻³ eV。为保证晶胞体系能量和构 型在准完备平面波基水平上的收敛,布里渊区的积分 计算采用 4×4×2 的 Monkhorst Pack^[23]特殊 k 点。参 与计算的价态电子为 Fe 3d⁶4s²、S 3s²3p⁴、Cu 3d¹⁰4s² 和 Ni 3d⁸4s²。

2 结果与讨论

2.1 几何结构优化结果

Cu、Ni 掺杂 FeS₂ 前后的超晶胞模型经几何优化 后,所得晶格常数及总能量见表 1。从表 1 可以看出, 计算结果与实验和其他计算结果符合得很好,平衡晶 格常数比实验值小 0.68%。实验误差在 1%左右,说明 计算方法是非常可靠的,可以进行其他性质的计算。 另外,掺杂后的晶胞体积相比原 FeS₂晶体稍有增大, 原因是掺杂原子半径大于 Fe 原子半径一定程度上破

图1 FeS2单胞及Cu、Ni取代Fe原子的(2×2×2)FeS2超晶胞结构

Fig. 1 Unit-cell of FeS₂ and super cell structure of FeS₂ ($2 \times 2 \times 2$) doped with Cu and Ni and unit-cell of FeS₂: (a) Unit-cell of FeS₂; (b) Cu doped FeS₂; (c) Ni doped FeS₂; (d) Cu-Ni doped FeS₂

表1 几何优化后 FeS_2 和 Cu、Ni 掺杂后 FeS_2 的晶胞参数和总能

Table 1 Equivalent lattice constants and energy of FeS₂ and FeS₂ doped with Cu and Ni after optimization

Sample	Value	<i>a</i> /nm	<i>b</i> /nm	<i>c</i> /nm	V/nm ³	Energy/eV
FeS ₂	Calculated	1.076	1.076	1.076	1.245	-45620.47
	Experimental	1.083	1.083	1.083	1.271	-
$Fe_{0.906}Cu_{0.094}S_2$	Calculated	1.084	1.084	1.084	1.271	-47446.09
$Fe_{0.906}Ni_{0.094}S_2$	Calculated	1.080	1.080	1.080	1.258	-47084.45
$Fe_{0.812}Ni_{0.094}Cu_{0.094}S_2$	Calculated	1.088	1.087	1.088	1.287	-48911.19

坏了晶格周期性,造成晶格畸变,导致键长变长。晶 胞优化的结果与文献[24]的结果一致。

2.2 电子结构

2.2.1 电子态密度

为了分析掺杂对 FeS2 电子结构的影响,先对 FeS2 的几何结构进行了优化并在此基础上计算了掺杂 Ni、 Cu后 FeS2的态密度图和能带结构。图 2 所示为掺杂 前后 FeS2 的总态密度以及分态密度。从图 2(a)可以看 出,本征态 FeS2 的价带由 3 部分组成:-8.19~0 eV 的 上价带主要由非成键 Fe 3d 态和少量 S 的 3p 态耦合而 成; 其次, -13.3~-10.1 eV 和-17.5~-13.5 eV 范围内 的能带几乎全部由 S 3s 态贡献, 仅有少量的 Fe 4s 和 S 3p 态贡献;费米能级附近价带区的态密度,主要由 S的3p态和非成键Fe3d态组成,且大部分由Fe3d 态贡献。而对于导带部分,其主要由S 3p 和 Fe 的反 键 3d e_{g}^{*} 态贡献, S 3s 态贡献很小。从 Fe 和 S 的分态 密度可以看出, S 3s 态对深部价带的贡献较大, S 3p 态则主要对浅部价带产生贡献。Fe 4s 态对整个能带范 围态密度的贡献相对较少,而费米能级附近的态密度 主要来自Fe3d的贡献,这和FeS2的总态密度相符合。 当 Cu 取代 Fe 原子后(见图 2(b)),费米能级附近出现 了杂质能级,这些杂质能级是由 Cu 的 3d 态所形成。 掺杂后导带整体向左移动,导带宽度由 4.15 eV 减小 到 3.16 eV, 其局域性增强;费米能级与总态密度的截 距明显减小,费米能级的这种对导带的相对运动增强 了 FeS2 的金属性质。当 Ni 掺杂后(见图 2(c)),由于 Ni 和 Cu 原子核外电子排布的相似性, 两者单独掺杂 对 FeS2 的电子态密度影响基本相同,但是 Ni 掺杂 Fe 的 3d 轨道态密度较 Cu 掺杂向深部价带有一个较大的 偏移,而价带顶和导带底仍主要由 Fe 3d 态决定。图 2(d)所示为 Cu-Ni 共掺杂时的态密度图,可以看到费 米能级附近依然存在杂质能带而强度有所不同。费米 能级附近的态密度主要还是由 Fe 3d 和 S 3s 贡献, Ni 和 Cu 的 d 轨道电子态密度对 FeS2 晶体的价带与导带 的贡献很小,并且只在-3.18 eV~-1.05 eV 的浅部价带 处有一定作用。Cu-Ni 共掺杂后 FeS2 电子态发生了简 并,费米能级上移进入导带,价带部分离域性增强。 这表明 Cu-Ni 掺杂后 FeS2 体系呈现金属性,Ni 掺杂 比 Cu 掺杂表现出更强的金属性,共掺时金属性最强。 2.2.2 能带结构

图 3 所示为 FeS_2 掺杂前后的能带结构。图 3 中 G、 F、Q、Z、G为 FeS₂晶体第一布里渊区高对称点。为 进行对比,将理想 FeS2 的第一布里渊区沿对称方向的 K 点取样设置为与掺杂后的体系一致。在计算中所考 虑的禁带宽度是从价带最高点到导带最低点之间的距 离,从图 3(a)中本征态 FeS2 的能带图可以看出,价带 顶和导带底都位于 G 点处,说明 FeS2 是直接带隙半导 体,带隙为0.55 eV,小于实验值0.95 eV,这是局域 密度泛函的结果。一般认为与局域密度泛函理论中 Kohn-Sham 方程的本征值不能给出系统的激发态能量 有较大关系, 使位于导带的电子态能量值比实验值偏 小,从而带隙偏小^[25],一般能带值与理论值相差 30%~50%。对于本研究中本征 FeS2 结构而言,由于 Fe 3d 态的能量被过高估计,使得其与 S 3p 态之间的 相互作用增强,价带带宽增大,因此带隙偏低。但理 论计算与实验之间带隙的偏差并不影响对 FeS, 电子 结构及相关性质的理论分析。掺杂后,3种结构的导 带部分图谱比较相似,与未掺杂 FeS2 相比,导带部分 变化较为平缓,掺杂后 FeS_2 的费米能级 E_F 上移进入 导带内,这是由于杂质元素的掺入使得导电载流子数 目增多,导带底附近的量子态已基本被电子所占据, 发生载流子的简并化,形成简并半导体。从图 3(b)~(d) 可以看出, Cu、Ni 单独掺杂和共掺杂后, FeS2的带隙 分别为 0.44、0.61 和 0.35 eV, 这表明 Ni 掺杂后 FeS2 的禁带宽度增大而其他两种掺杂禁带宽度减小。对比 图 4 中各图可以发现, 掺杂后 FeS, 导带带宽均减小而 且均发生了下移,禁带宽度均变小,其中 Cu-Ni 共掺 杂的变化最显著,这也与态密度中分析的能带变化的 结果相一致。

图 2 FeS2和Cu、Ni 掺杂后 FeS2的态密度

Fig. 2 Density of states curves of FeS_2 and FeS_2 doped with Cu and Ni: (a) FeS_2 ; (b) Cu doped FeS_2 ; (c) Ni doped FeS_2 ; (d) Cu-Ni doped FeS_2

图 3 FeS2和 Cu、Ni 掺杂后 FeS2的能带结构图

Fig. 3 Energy-band structures of FeS_2 and FeS_2 doped with Cu and Ni: (a) FeS_2 ; (b) Cu doped FeS_2 ; (c) Ni doped FeS_2 ; (d) Cu-Ni doped FeS_2

2.3 光学性质计算结果与讨论

为了研究 Cu、Ni 掺杂 FeS₂的光学跃迁特性,必须对其光学性质进行研究。本研究中利用第一性原理 对掺杂体系进行了光谱计算和分析。在线性响应范围 内固体宏观光学响应函数通常可以由光的复介电函数 $\varepsilon(\omega)=\varepsilon_1(\omega)+i\varepsilon_2(\omega)$ 或折射率 $N(\omega)=n(\omega)+ik(\omega)$ 来描述, 体系在较小波矢下对光场的线性响应由介电函数的虚 部 $\varepsilon_2(\omega)$ 决定,它可以通过占据态和未占据态的动量跃 迁矩阵元计算得到。根据 Kramers-Kronig 色散关系和 电子跃迁概率的定义可推导出晶体的介电函数、吸收 系数。介电函数实部 $\varepsilon_1(\omega)$ 和虚部 $\varepsilon_2(\omega)$ 的计算公式如 下所示^[26]:

$$\varepsilon_{1}(\omega) = 1 + \frac{8\pi^{2}e^{2}}{m^{2}} \cdot \sum_{V,C} \int_{BZ} d^{3}K \frac{2}{2\pi} \times \frac{|e \cdot M_{V,C}|^{2}}{|E_{C}(K) - E_{V}(K)|} \times \frac{\hbar^{3}}{[|E_{C}(K) - E_{V}(K)|^{3} - \hbar^{2}\omega^{2}]}$$
(1)

$$\varepsilon_{2}(\omega) = \frac{4\pi^{2}}{m^{2}\omega^{2}} \cdot \sum_{\mathrm{V,C}} \{ \int_{\mathrm{BZ}} d^{3}\mathbf{K} \frac{2}{2\pi} | e \cdot M_{\mathrm{CV}}(\mathbf{K})|^{2} \times \delta[E_{\mathrm{C}}(\mathbf{K}) - E_{\mathrm{V}}(\mathbf{K}) - \hbar\omega] \}$$
(2)

式中: C 和 V 分别为导带和价带; BZ 为第一布里渊 区; ħ 为狄拉克常量; **K** 为倒格矢; ω 为角频率; |*e*·*M*_{CV}(*K*)|² 为动量矩阵元; *E*_C(**K**)和 *E*_V(**K**)分别为导 带和价带上的本征能级。

2.3.1 复介电函数

介电常数的虚部 ε₂(ω)对任何材料来说都是非常重要的,它作为沟通带间跃迁微观物理过程与固体电子结构的桥梁,主要反映了电子在能级间的跃迁机理。图4 所示为 FeS₂ 掺杂前后的介电函数虚部与能量的关系。

图 4 Cu、Ni 掺杂 FeS₂ 前后的介电函数虚部与能量的关系 Fig. 4 Relationship between energy and imaginary part of dielectric function of FeS₂ and FeS₂ doped with Cu and Ni

本征态介电函数虚部谱在 E=2.57 eV 附近出现波 峰,其主要是由价带顶的 S 2p 态和导带底的 Fe 3d 态 电子跃迁引起的。与本征态相比,掺杂后峰值强度都 有所降低,共掺的峰值降幅较大,且峰谱向低能方向 发生了明显的红移,在 0.22 eV 附近出现了新的介电 峰,这主要是 Cu、Ni 掺入的杂质能级与相应的价带 顶和导带底之间的电子跃迁引起。Cu-Ni 共掺杂之后, 谱线主峰明显红移,在 E=0.3 eV 处出现了一个明显的 小波峰,这说明相比本征态共掺杂后由于杂质能级的 作用,体系中导带和价带之间的电子跃迁呈现台阶特 性,并促使更多深部价带的电子跃迁到导带。在 E<2 eV 的可见光区, Cu-Ni 共掺杂 FeS2 的光跃迁强度远大 于未掺杂 FeS,的,并且共掺杂的光跃迁强度明显高于 Cu、Ni 单掺杂的光跃迁强度,说明 Cu-Ni 共掺杂能够 很好的改善 FeS2 电子在 E<2eV 的低能量范围的光学 跃迁特性。

2.3.2 吸收系数

根 据 吸 收 系 数 与 介 电 函 数 的 关 系 $\alpha(\omega) = \frac{\omega}{nc} \varepsilon_2(\omega)$ (式中 *n* 为光在介质中的折射率, *c* 为 光在真空中的传播速度)可以得到 FeS₂ 掺杂前后的吸 收系数,计算结果如图 5 所示。相比本征态,掺杂后 FeS₂ 的吸收峰发生了红移、峰值减小,最大峰值在 6.5 eV 附近。吸收峰主要来源于激发态电子在价带顶和导 带底之间的跃迁,吸收峰值的减小表明杂质的掺入减 少了电子的跃迁。掺杂后的 FeS₂在 *E*>2.5 eV 高能区 域的吸收率小于本征态 FeS₂ 的吸收率,这说明 Cu、Ni 原子掺杂后紫外光区的透过率增加。在 *E*<2.5 eV 的能量范围内,掺杂后的吸收系数都大于本征态吸收 系数,其中 Cu、Ni 单掺杂时的吸收系数基本相同,而共掺杂时的吸收系数较两者都大。Cu、Ni 杂质的引

图 5 Cu、Ni 掺杂 FeS₂ 前后的吸收系数与能量的关系 Fig. 5 Relationship between energy and absorption coefficient of FeS₂ and FeS₂ doped with Cu and Ni

入使 FeS₂ 的带隙变窄,促进了价带顶电子的带间跃 迁。这对设计和制备 Cu、Ni 掺杂 FeS₂吸收短波光学 器件有一定的理论参考价值。

2.3.4 光电导率

光电导率是光电子材料的一个重要参数,它描述 的是半导体材料电导率随着光照能量变化的物理参 量。在它与介电函数的关系中其实部 σ_1 和介电函数虚 部 ε_2 互相对应,也能够反应光吸收和能隙的情况。

图 6 所示为 FeS₂掺杂前后光电导率随能量变化的 关系。由图 6 可知, FeS₂的光电导率与介电函数的虚 部是对应的, $\sigma_1(\omega)$ 总体呈先上升后下降的变化趋势。 本征态 FeS₂在 E < 10 eV 的能量范围,光电导率实部 σ_1 有 2 个峰值点,各峰值点对应的能量分别为 2.93 和 5.23 eV。进行 Cu、Ni 掺杂后,这两个峰值位置出现 小幅红移,并且 Cu-Ni 共掺杂体系中出现了位于 0.63 eV 处的峰值。在 E < 2 eV 的可见光区范围内,掺杂体 系的光电导率均大于本征态的光电导率,综合来看, Cu、Ni 共掺杂体系的光电导率明显优于单掺杂体系的 光电导率,掺杂后材料表现出显著的半导体特性,有 利于成为电子或空穴的俘获中心,减少电子和空穴的 复合,提高量子产量,表现出明显的协同效应。

图 6 FeS₂ 掺杂前后的光电导率与能量的关系

Fig. 6 Relationship between energy and photo conductivity of FeS_2 and FeS_2 doped with Cu and Ni

3 结论

 对 Cu、Ni 掺杂 FeS2 的几何结构优化表明,单 掺杂和共掺杂均使 FeS2 的晶格常数增大,掺杂 FeS2 发生晶格畸变,键长变长。

2) 本征态 FeS₂ 的电子结构优化表明,其禁带宽度为 0.55 eV,费米能级附近导带区 0~4 eV 范围内的态密度主要由 S 3p 和 Fe 的反键 3d eg*态贡献,而 S 3s

态贡献很小。Cu、Ni 掺杂使 FeS₂的电子态发生了简 并,费米能级上移进入导带,价带部分离域性增强, 并且在-3.18~-1.05 eV 的浅部价带产生了由 Cu 和 Ni 的 3d 态贡献的杂质能级。

3) 光学性质计算结果表明:单元素掺杂后,FeS₂的介电函数虚部、光学吸收谱以及光电导率各主峰均 出现小幅红移,而共掺后介电函数谱较 Cu、Ni 单掺 杂均出现显著红移,价带顶和导带之间的光跃迁强度 明显增强,可见光区范围内的光吸收系数和光电导率 均增大,共掺杂显著增强 FeS₂对光的吸收以及光电转 换效率。

REFERENCES

- [1] SONG Xiao-hui, WANG Min-qiang, ZHANG Hao, DENG Jian-ping, YANG Zhi, RAN Chen-xin, YAO Xi. Morphologically controlled electrodeposition of CdSe on mesoporous TiO₂ film for quantum dot-sensitized solar cells[J]. Electrochimica Acta, 2013, 108(10): 449–457.
- [2] JAGANNATH PANIGRAHI, VANDANA, RAJBIR SINGH, NEHA BATRA, JHUMA GOPE, MUKUL SHARMA, PATHIB P, SRIVASTAVA S K, RAUTHAN C M S, SINGH P K. Impedance spectroscopy of crystalline silicon solar cell: Observation of negative capacitance[J]. Solar Energy, 2016, 136: 412–420.
- [3] ZHAI Guang-mei, BEZRYADINA A, BREEZE A J, ZHANG Dao-li, ALERS G B, CARTER S A. Air stability of TiO₂/PbS colloidal nanoparticle solar cells and its impact on power efficiency[J]. Applied Physics Letter, 2011, 99: 063512-1-063512-3.
- [4] ALTERMATT P P, KIESEWETTER T, ELLMER K, TRIBUTSCH H. Specifying targets of future research in photovoltaic devices containing pyrite (FeS₂) by numerical modeling[J]. Solar Energy Materials and Solar Cells, 2002, 71(2): 181–195.
- [5] MIGUEL C A, FABER M S, TAN Yi-zheng, HAMERS R J, JIN S. Synthesis and properties of semiconducting iron pyrite (FeS₂) nanowires[J]. Nano Letter, 2012, 12(4): 1977–1982.
- [6] DOUGLAS A, CARTER R, OAKES L, SHARE K, COHN A P, PINT C L. Ultrafine iron pyrite (FeS₂) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries[J]. ACS Nano, 2015, 9(11): 11156–11165.
- [7] LIU S T, WU J, YU P, DING Q H, ZHOU Z H, LI H D, LAI C C, CHUEH Y L, WANG Z M. Phase-pure iron pyrite nanocrystals for low-cost photodetectors[J]. Nanoscale Research Letters, 2014, 9: 549–556.
- [8] CAO F, PAN G X, CHEN J, ZHANG Y J, XIA X H. Synthesis of pyrite/carbon shells on cobalt nanowires forming core/branch arrays as high-performance cathode for lithium ion batteries[J].

第27卷第3期

611

Journal of Power Sources, 2016, 303(30): 35–40.

- [9] QIU Wen-da, XIA Jian, ZHONG Hai-min, HE Shen-xian, LAI Shu-hui, CHEN Liu-ping. L-cysteine-assisted synthesis of cubic pyrite/nitrogen-doped graphene composite as anode material for lithium-ion batteries[J]. Electrochimica Acta, 2014, 137(10): 197–205.
- [10] 王大刚,范力仁,王圣平,范 畴,何明中,栗海峰.黄铁矿 作为锂电池正极材料的电化学性能[J].材料导报,2012,26(9): 93-96.
 WANG Da-gang, FAN Li-ren, WANG Sheng-ping, FAN Chou,

HE Ming-zhong, LI Hai-feng. Electrochemical properties of pyrite as lithium battery cathode materials[J]. Materials Review, 2012, 26(9): 93–96.

- [11] 张 辉,张仁刚,万冬云,王宝义,魏 龙. 掺杂对 FeS₂薄膜 光电性能的影响[J]. 太阳能学报,2006,27(5):423-427.
 ZHANG Hui, ZHANG Ren-gang, WAN Dong-yun, WANG Bao-yi, WEI Long. Effects of doping impurities in pyrite films on the optical and electrical properties[J]. Acta Energiae Solaris Sinica, 2006, 27(5): 423-427.
- [12] 荆 涛,张 苹,阚 伟,田景芝,邓启刚. N-AI 共掺杂 TiO₂ 电子结构及光学性质的理论研究[J].中国有色金属学报, 2015, 25(4): 1018-1024.
 JING Tao, ZHANG Ping, KAN Wei, TIAN Jing-zhi, DENG Qi-gang. Theory studies on electronic structure and optical properties of N-Al co-doped anatase TiO₂[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(4): 1018-1024.
- [13] 李玉琼,陈建华,陈 晔,郭 进. 黄铁矿(100)表面性质的 密度泛函理论计算及其对浮选的影响[J]. 中国有色金属学报, 2011, 21(4): 919-926.

LI Yu-qiong, CHEN Jian-hua, CHEN Ye, GUO Jin. Density functional theory calculation of surface properties of pyrite (100) with implications for flotation[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4): 919–926.

- [14] CHEN Jian-hua, CHEN Ye, LI Yu-qiong. Effect of vacancy defects on electronic properties and activation of sphalerite(110) surface by first-principles[J]. Transactions of Nonferrous Metals Society of China, 2010, 21(3): 502–506.
- [15] 陈建华, 钟建莲, 李玉琼, 陈 晔, 郭 进. 黄铁矿、白铁矿 和磁黄铁矿的电子结构及可浮性[J]. 中国有色金属学报, 2011, 21(7): 1719-1727.

CHEN Jian-hua, ZHONG Jian-lian, LI Yu-qiong, CHEN Ye, GUO Jin. Electronic structures and floatability of pyrite, marcasite and pyrrhotite[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(7): 1719–1727.

[16] 李玉琼,陈建华,郭 进. 天然杂质对黄铁矿的电子结构及 催化活性的影响 [J]. 物理学报, 2011, 60(9): 097801-1-097801-8.

LI Yu-qiong, CHEN Jian-hua, GUO Jin. Influence of natural impurity on electronic structure and catalytic activity of pyrite[J]. Acta Phys Sin, 2011, 60(9): 097801-1–097801-8.

- [17] FERRER I J, De las HERAS C, SANCHEZ C. Physical properties of Cu-doped FeS₂ pyrite thin films[J]. Applied Surface Science, 1993, 70(2): 588–592.
- [18] LEHNER S W, NEWMAN N, van SCHILFGAARDE M, BANDYOPADHYAY S, SAVAGE K, BUSECK P R. Defect energy levels and electronic behavior of Ni-, Co-, and As-doped synthetic pyrite (FeS₂)[J]. Journal of Applied Physics, 2012, 111(8): 083717-1-083717-7.
- [19] 龙 飞,张 劲,张明月,何金云,武晓鹂,邹正光. Ni 掺杂 黄铁矿型 FeS₂的溶剂热合成及其可见光催化活性[J]. 无机化 学学报,2015,31(6):1119-1124.

LONG Fei, ZHANG Jin, ZHANG Ming-yue, HE Jin-yun, WU Xiao-li, ZOU Zheng-guang. Ni-doped FeS₂: Solvothermal synthesis and the visible-light photocatalytic properties[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(6): 1119–1124.

[20] 熊志华,饶建平,江风益.CdS掺Mg和Ni电子结构和光学性质的密度泛函理论研究[J].光学学报,2007,27(12): 2225-2228.

XIONG Zhi-hua, RAO Jian-ping, JIANG Feng-yi. Density functional calculations of electronic structure and optical properties on Mg and Ni-doped CdS[J]. Acta Optical Sinica, 2007, 27(12): 2225–2228.

- [21] CLARK S J, SEGALL M D, PICKARD C J, HASNIP P J, PROBERT M I J, REFSON K, PAYNE M C. First principles methods using CASTEP[J]. Zeitischrift für Kristallographie, 2005, 220(5/6): 567–570.
- [22] VANDERBILT D. Soft self-consistent pseudopotentials in generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892–7895.
- [23] MONKHORST H J, PACK J D. Special points for brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188–5192.
- [24] OERTZEN G U, JONES R T, GERSON A R. Electronic and optical properties of Fe, Zn and Pb sulfides[J]. Physics and Chemistry of Minerals, 2005, 32(4): 255–268.
- [25] 陈建华. 硫化矿物浮选固体物理研究[M]. 长沙: 中南大学出版社, 2015.

CHEN Jian-hua. The solid physics of sulphide minerals flotation[M]. Changsha: Central South University Press, 2015.

[26] 沈学础. 半导体光学性质[M]. 北京: 科学出版社, 1992: 24.
 SHEN Xue-chu. The optical properties of semiconductor[M].
 Beijing: Science Press, 1992: 24.

First principle calculation of electronic structures and optical properties of copper and nickel doped FeS₂

WU Jia-jia, MA Wan-kun, JIAO Fen, QIN Wen-qing

(School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

Abstract: The crystal and electronic structures, optical properties of copper and nickel mono- and co-doped FeS_2 were studied by the first-principles plane-wave ultrasoft pseudopotential method with the generalized gradient approximation. The results show that, the lattice deformation of FeS_2 occurs and the lattice parameters increase after doping. And the impurity energy level is introduced by Cu and Ni doping, which also leads to decrease of the band gap of FeS_2 . Fermi levels moves upward and into conduction band and density of states traverses the Fermi level, indicating that the doped FeS_2 is degenerate semiconductor which shows stronger metallic characteristic and electrical conductivity. In addition, the doping results in peaks redshift and amplitudes decrease of imaginary part of dielectric function, absorption coefficient and conductivity. Optical transition is significantly enhanced and so are absorption coefficient and conductivity within visible region in the co-doping system. The photoabsorption capacity and photoelectrical efficiency of FeS_2 are highly strengthened in Cu-Ni co-doping system.

Key words: Cu-Ni doping; FeS2; optical property; first-principles calculation

Received date: 2016-04-06; Accepted date: 2016-08-29

Corresponding author: JIAO Fen, Tel: +86-731-88830884; E-mail: jfen0601@126.com

(编辑 龙怀中)

Foundation item: Project (51274255) supported by the National Natural Science Foundation of China; Project (2016RS2016) supported by Provincial Science and Technology Leader Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources, Hunan Province, China; Project (2015CX005) supported by Innovation Driven Plan of Central South University, China; Project supported by the Co-Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources, China