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Abstract: Pattern recognition methods were used to treat the experimentally measured data of Pitzer s coefficients of 107

electrolytes, to find the relationships between the ionic structural parameters of these electrolytes and Pitzer s coefficients.

It is found that these relationships can be approximately expressed as linear equations of four dimensionless numbers,
(R+y/R_), (Ry+R_)/Z, Z_, (Z,/Z_) and (R/ R1), where R, and R_ are the cationic and anionic radii re-

spectively; Z, and Z_ are the cationic and anionic charge numbers respectively, and ( R,/ R)) denotes the nonsphericity

of some norr spherical ions. Besides, it is found that the difference of the nuclear magnetic resonance measured rotational

relaxation time of water molecules around cations and anions, | ATl , has good correlation with Pitzer s coefficients. The

relationships can be interpreted by the theory of corresponding states of ionic solutions. Based on the relationships, an ex-

ample of application to some hydrometallurgical process was discussed.

Key words: concentrated electrolyte solutions; Pitzer s coefficients; ionic parameters; corresponding state theory

CLC number: TF 8

Document code: A

1 INTRODUCTION

Concentrated electrolyte solutions are common
intermediate materials in hydrometallurgical and
chemical industrial processes''’. And the activity co-
efficient is one of the basic properties of electrolyte so-
lutions, which is useful for the estimation of the solu-
bility of inorganic salts, the distribution and separa-
tion coefficients in liquid-liquid extraction processes,
and the phase diagram of watersalt systems. A semr
empirical iomrion interaction model, also the most
popular method so far, proposed by Pitzer'? | can be
used to calculate the activity coefficients of concen-
trated electrolyte solutions. However, when this
model is used to calculate the activity coefficients of
electrolyte solutions, three coefficients, go g
and C, have to be determined experimentally for each
electrolyte. So it is desirable to find some mathemati
cal model to correlate the values of these coefficients
with some welkFknown ionic parameters such as ionic
radius and ionic charges by the data processing of
known data of some electrolyte solutions, in order to
predict the unknown values of Pitzer s coefficients and
activity coefficients of other electrolyte solutions. For
this purpose, LI and CHEN"’! have investigated the
relationships between Pitzer s coefficients and the ion-
ic radii of 1-1 type electrolytes. In this work, the re-

lationships of the values of B, BV € and their
temperature coefficients of the electrolytes of different
valence types with the ionic parameters of the cations
and anions of electrolytes have been investigated,
with their physical meaning discussed.

2 MODEL, DATA AND METHOD OF COMPU-
TATION

' proposed the theory of corresponding

Reiss'
state of ionic systems. In this theory the configura-
tional integral and thermodynamic properties of ionic
systems were considered as some functions of a series
of dimensionless numbers consisting of ionic parame-
ters:

I=f{{(R++ R)T/Z.Z_],[R+/R_1],

[Z:./Z-], -}

where R,, R_ are cationic and anionic radii re
spectively, Z., Z_ are cationic and anionic charge
numbers respectively, T is absolute temperature,
(R++ R_)T/Z, Z_ represents the ratio of electro-
static potential energy to kinetic energy of ionic sys
tems. Friedman!®' proposed that the theory of corre-
sponding state can be used to investigate the thermo-
dynamic properties of aqueous electrolyte solutions.

On the other hand, in early fifty years of 20th

|

century, Gurney'® proposed that the ions in elec
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trolyte solutions could be classified into two classes:
the structure-forming ion with small ionic radius and
large charge numbers and the structure breaking ion
with large ionic radius and small charge numbers.
The former has strong electric field to make the water
molecules orientated into some local order, while the
latter destroys the local order of water molecules in its
hydration sphere. Gurney proposed that if the anion
and cation belong to different classes, they will repel
each other in concentrated electrolyte solutions since
their hydrated spheres are incompatible with each
other, and this incompatibility will make the activity
the nuclear

coefficients increase. In recent years,

magnetic resonance ( NMR) measurement indeed
proved that the rotational correlation time( T) of the
water molecules in the hydrated sphere of ions with
large radius and small charge number is shorter and
that of ions with small radius and large charge num-
ber is longer. This is a direct evidence of the
Gurney s concept. We have noted that the difference
of Tof cation and anion, | AT, exhibits obvious cor
relation with (R./R_) and (Z+/Z_-). So these
two dimensionless numbers should be relevant to the
“structure forming” and “structure breaking” phe
nomena. At the same time, the electrostatic potential
between cation and anion and the kinetic energy of
the ionic system should also be the important factors
influencing the thermodynamic properties of elec
trolyte solutions. So that the dimensionless number
(Ry+ R_)T/Z, Z_ should also be an important
factor in the corresponding state calculation. If there
exists some nonspherical ions, it is reasonable to
think that some dimensionless number denoting non-
sphericity should be also considered. A ccording to the
concept of thermochemical radius of nonspherical

ions, the ratio of thermochemical radius to the longest
denoted by ( R/ R1) (the value

for spherical ions is 1. 0 calculated by Yashimirs-

geometrical radius,

kil , should be an appropriate dimensionless num-
ber in corresponding state calculation.

Based on the above-mentioned argument, we try
to choose a series of dimensionless numbers, including
(R./R_), [(R++ R_)T/Z, Z_] (since the
temperature data in this work are always constants,
(Ry+ R_)/Z, Z_ can be used instead of ( R
(Z+/Z-) and

( R/ Ry) as the independent variables to correlate

R_)T/Z, Z_ in our computation),

with Pitzer s coefficients. Partial least squares( PLS)
method'®® and the method for feature selection by
pattern recognition techniques have been used to re-
veal these relationships by data processing of known
data of electrolyte solutions of following salts: LiCl,
LiBr, Lil, NaF, NaCl, NaBr, Nal, KF, KCI,
KBr, KI, RbF, RbCl, RbBr, Rbl, CsF, CsCl, Cs
Br, Csl, MgCl,, MgBr,, Mgl,, CaCl,, CaBry,
Cal,, SrCl,, SrBr,, Srl,, BaCl,, BaBr,, Bal,, Mn-

Cly, FeCl,, CoCly, NiCly, CoBr;, Col,, AlICl;, La-
Cls, CeCl;, PrCls, NdCls, SmCl;, EuCls, HoCls,
GdC13, EI‘C13, TbC13, ch13, LuCl3, YC13, Lr
ClOo4, LiClO3;, LiBrOs, LiNO3, NaClO4, NaClOs,
NaBrOsz, NaNOs3;, KClO3, KBrO3, RbNO3, CsNO3s,
Mg(ClO4)2, Mg(NO3)2, Ca(ClOy)2, Ca(NOs)s3, Sr

(ClOy) 5, Sr(NO3)3, Ba( ClO4)3;, Ba(NOs)s, Y
(NO3)3;, La(NOs3)s, Pr(NOs);, Nd(NO;)3;, Sm
(NO3)3, Ew(NOs3)s;, Gd(NO3)s, Th(NOs);, Dy
(NO3) 3, 0'(NO3)3, Er(NO3);, Tm(NO3)s, Yb
(NO3)3, Lir(NO;), La(ClO4)3, Pr(ClOs)s Nd
(Cl04)3, Smr(ClO4)3, Gd(ClO4)3, Th(ClO4)3, Dy
(C104)3, Ho(ClO4)3, Er(ClOs)s, Tm(Cl04)s, Yb

(Cl04)3, Lu(ClO4)3, NiSO4, CoSO4, CuSOy4, Zn-
S04, MnSO4, BeSOs4, NaS0O4, NapxCOsz, K,COs3,
NaBF4.

The values of B'”, BV and € are quoted from
Refs.[2] and [ 10].

feature selection methods by pattern recognition tech-

PLS regression method and the

niques are used in data processing work. The soft-
Details of
the computation methods and the used software are

described in Refs. [ 11] and [ 12].

ware used is “materials research advisor”.

3 RESULTS AND COMPUTATION

3.1 Pitzer s coefficients expressed as approximate
equations of dimensionless numbers

Based on the results of PLS regression, it has

been found that there are good correlations between

the Pitzer s coefficients of electrolytes of 1-1, 2-1, 3-

1, 1-2, 2-2 valence types and four dimensionless

numbers, (R, /R_), (Ry+ R_)/Z, Z_, (Z,/
Z_) and ( R/ R)), as shown in Figs. 1 =~ 3. These
relationships can be also approximately expressed as
the follow ing linear equations:
B%=0.056 1(R,/R_)—- 0.042 2[( R, +
R_)/
Z,Z_1+0.2180(Z./7Z-)+
0.177 1( R/ R1)— 0.284 3
( Correlation coefficient between calculated and
experimental values is 0. 968. The averaged PRESS
is 0.031).
BY= 1.151 3(R,/R_)- 0.978 6[ (R, +
R_)/
Z,Z_ |+ 1.3623(Z,17Z_-)+
0.332 8( R/ R1)+ 0.563 1
( Correlation coefficient between calculated and
experimental values is 0. 902. The averaged PRESS
is 0. 196) .
10°C’= 1.887 4(R,/R_)- 10.825 O[ (R, +
R/ Z,Z_1-27.4160(Z,/Z_)+
22.198 O( R/ Ry)+ 35.457 7
( Correlation calculated

coefficient between

and experimental values is 0.927. The averaged
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Fig. 3 Comparison of experimental values and
calculated values of C

PRESS is 0. 163) .

3.2 Temperature coefficients of B'”, B'Y and C
expressed as approximate equations of dimen-
sionless numbers

For 1-1, 2-1, 31 and 1-2 type electrolytes, it
has been found by computation that the temperature

coefficients of B'” ( denoted by ao) B'Y (denoted by
ai) and C(denoted by @) can be approximately ex-
pressed by the following linear equations of dimen-
sionless numbers:
10ap= 11.05(R++ R-)/Z, Z_ - 2.47(R./
R_)+ 11.18(Z,/1Z_)- 23.301 7( R/
Ry)- 14.29
( Correlation coefficient between calculated and
experimental values is 0. 902. The averaged PRESS

is 0.267).
10a;= 14.24(R++ R_)/ Z. Z_+ 1. 17(R./
R_)+ 43.22(Z,/1Z_)- 5.02( R/ R))
- 69.55
( Correlation coefficient between calculated and
experimental values is 0. 953. The averaged PRESS
is 0. 142) .
10= 4. 10(R,/R_)- 3.80(R.+ R_)/
Z,7Z_—-6.80(Z,17Z_)+
27.19( R/ Ry) - 14.82
( Correlation coefficient between calculated and
experimental values is 0. 907. The averaged PRESS
is 0.268) .

3.3 Relationships between B”, BV and | ATl of
cation and anion measured by NMR
Fig. 4 and Fig. 5 illustrate the quantitative rela-
tionships of | ATI'" (measured by NMR) with B'”
and BV respectively. It can be seen that large | AT
corresponds to larger B'” and B'Y | and the solution
with larger activity coefficients.
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Fig. 4 Relationship between | ATl and B'”

4 DISCUSSION

The electrolyte solutions used in hydrometallurgy
are usually mixed electrolyte solutions, while in this
work the relationships between Pitzer s coefficients
and ionic structural parameters are obtained from the
data of solutions of single electrolytes. But in Pitzer s
work it has been concluded that the error is usually
very small if the activity coefficients of mixed elec
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7 coefficients of electrolytes and the values of | ATI.
This empirical relationship can be explained by
—_ Gurney s model about the structure-forming and
E| > structure-breaking effect in electrolyte solutions.
E
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S CONCLUSIONS

It has been found that the coefficients B'?, BV
and C of Pitzer s model of electrolyte solutions can be
expressed as some linear functions of four dimension-
less numbers: (R./R_), (R+ + R_)/Z, Z_,
(Z+/1Z-) and ( R/ R1). This empirical relationship
can be explained by the theory of corresponding states
There is some

of ionic systems.
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