

Photocatalytic activity of ANbO_3 ($\text{A} = \text{Li, Na, K}$)^①

CHEN Qiyuan(陈启元), YANG Yuhui(杨亚辉), YIN Zhoulan(尹周澜),
LI Jie(李洁), LIANG Shen(梁胜)

(School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China)

Abstract: The perovskite photocatalysts ANbO_3 ($\text{A} = \text{Li, Na, K}$) were prepared by solid-state reaction and characterized by power X-ray diffraction and UV-vis diffuse reflectance. The photocatalytic activity of ANbO_3 ($\text{A} = \text{Li, Na, K}$) were investigated with methanol as electron donor and Pt as promoter catalyst under 400 nm UV irradiation. The difference of photocatalytic activity among the three ANbO_3 ($\text{A} = \text{Li, Na, K}$) was also discussed, the individual rate of hydrogen evolution for the ANbO_3 ($\text{A} = \text{Li, Na, K}$) photocatalysts are $1.37, 1.9, 5.49 \text{ mmol} \cdot \text{L}^{-1} \cdot \text{h}^{-1}$, respectively.

Key words: perovskite photocatalysts; photocatalytic; hydrogen

CLC number: O 643.32

Document code: A

1 INTRODUCTION

Because the amount of coal, petroleum and other fossil fuel used now days increases, their storage decreases and depletion is inevitable. It is urgent to find out renewal energy which is independent on petroleum, coal and other fossil fuel. Hydrogen is a secondary energy to overcome energy crisis. The photocatalytic splitting of water using oxide semiconductor materials under solar energy is an ideal route to generate hydrogen. In the past several decades, much progress^[1-10] has been made in the water photocatalytic cleavage using TiO_2 ^[11] and other oxide semiconductor materials to produce hydrogen. However, the number of photocatalyst materials known up to now is yet limited, and their activity is still low. Therefore, developing new types of photocatalysts with higher activity and making them respond to visible light attracts an increasing interest. Owing to their variations in the structure and compositions, more and more attention is focused on the perovskite photocatalysts such as $\text{K}_2\text{La}_2\text{Ti}_3\text{O}_{10}$ ^[12], $\text{Sr}_2\text{M}_2\text{O}_7$ ($\text{M} = \text{Nb, Ta}$)^[13], ATaO_3 ($\text{A} = \text{Li, Ta, K}$)^[14]. The perovskite photocatalysts ANbO_3 ($\text{A} = \text{Li, Na, K}$) were prepared by solid-state reaction and characterized by power X-ray diffraction and UV-vis diffuse reflectance in this paper. The photocatalytic activity of ANbO_3 ($\text{A} = \text{Li, Na, K}$) was investigated from methanol aqueous solution.

2 EXPERIMENTAL

2.1 Main apparatus and reagents

Japanese D/max2250 power X-ray diffraction analyzer was employed to measure the crystal struc-

ture of ANbO_3 ($\text{A} = \text{Li, Na, K}$); America Lambda900 UV-vis spectrometer (Labsphere integrating sphere) was used to measure the UV-vis diffuse reflectance spectrum of ANbO_3 ($\text{A} = \text{Li, Na, K}$); SP-2305 gas phase chromatography instrument (thermal conductivity detector, Ar carrier, molecular sieve 5A column) was adopted to determine the evolved hydrogen.

Analytic reagents of A_2CO_3 ($\text{A} = \text{Li, Na, K}$), Nb_2O_5 , $\text{H}_2\text{PtCl}_6 \cdot 6\text{H}_2\text{O}$, CH_3OH , H_2SO_4 were used in the experiments.

2.2 Preparation of photocatalysts

Alkali niobates, ANbO_3 ($\text{A} = \text{Li, Na, K}$) powders were prepared by conventional solid-state reactions. The starting materials of alkali carbonates A_2CO_3 ($\text{A} = \text{Li, Na, K}$) and Nb_2O_5 were mixed by mechanical grinding in a motor in the presence of excess amounts (5%–10%) of alkali to compensate for the volatilization. The mixtures were calcined at 100 °C for 8 h in air. The excess alkali was washed out with water after the calcination. The washed powders were then calcined at 100 °C for 8 h in air again. In order to get high photocatalytic activity, the photocatalyst powders were dispersed in aqueous $\text{H}_2\text{PtCl}_6 \cdot 6\text{H}_2\text{O}$ solution by a magnetic stirrer and irradiated under 250 W high-pressure Hg Lamp for 10 h so that Pt was deposited homogeneously onto the surface of the photocatalyst powders. The suspensions were centrifugally filtrated, then the powders were dried in vacuum at 120 °C for 5 h to get the photocatalyst powders of Pt- ANbO_3 ($\text{A} = \text{Li, Na, K}$).

① Foundation item: Project(2002AA327140) supported by the Hi-tech Research and Development Program of China

Received date: 2003-11-01; Accepted date: 2004-01-06

Correspondence: CHEN Qiyuan, Professor, PhD; Tel: +86-731-8877364-220; E-mail: cqy@mail.csu.edu.cn

2.3 Photocatalytic reactions

Photocatalytic reactions were carried out in a home-made gas-closed inner irradiation cell made of quartz. The photocatalysts powder was dispersed in 650 mL methanol aqueous solution (a given amount of methanol was added to pure water). In some cases, H₂SO₄ was added to control the pH of solution. The light source was a 250 W high-pressure Hg lamp whose radiative wavelength was about 300–400 nm. In the course of photocatalytic reaction, the infrared wave was removed by cooling water in the jacket of inner irradiation quartz cell. The evolved gases were determined with TCD gas chromatograph. After photocatalytic reactions, the suspensions were centrifugally filtrated, then the powders were dried out to confirm their structure using power X-ray diffraction analyzer.

3 RESULTS AND DISCUSSIONS

3.1 XRD and DRS patterns of photocatalyst powders

Fig. 1 illustrates the XRD patterns of ANbO₃ before and after photocatalytic reactions. It shows that all the powders have perfect crystal wherein LiNbO₃ crystallized in hexagonal and NaNbO₃, KNbO₃ in orthorhombic. There are no obvious structural changes between the catalysts before and after photocatalytic reactions. Therefore, there is not photooxidation or photodegradation for the photocatalysts^[15, 16]. Fig. 2 illustrates the diffuse reflectance spectrums of ANbO₃ photocatalysts with the main absorption at 300 nm. The absorption edges of catalysts were in UV region up to 400 nm. The band gap was estimated from the absorption edge^[14] of the catalysts to be 2.95 eV in LiNbO₃, 2.90 eV in NaNbO₃ and 3.10 eV in KNbO₃, respectively.

3.2 Effect of CH₃OH on photocatalytic activity of ANbO₃ for H₂ evolution

Table 1 shows the effects of CH₃OH and Pt on

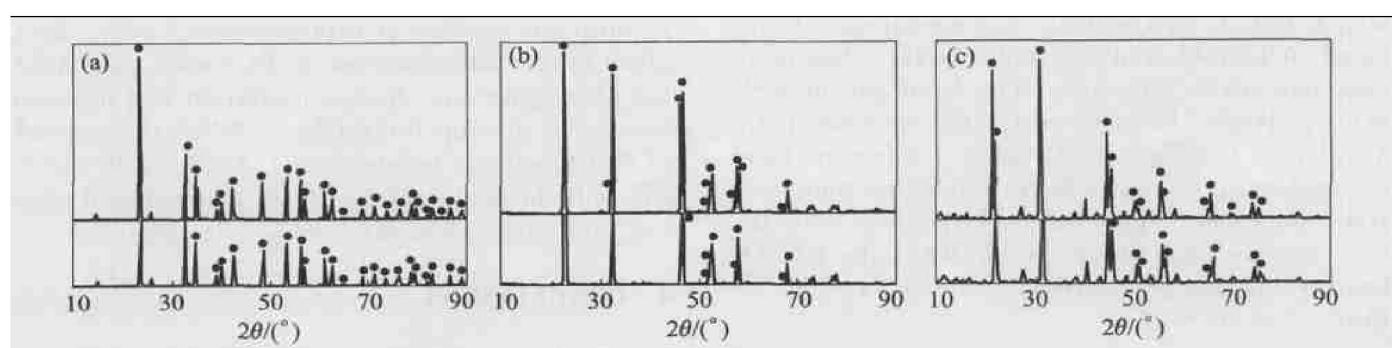

the photocatalytic activity of ANbO₃ for H₂ evolution. During the photocatalytic reactions, the addition of CH₃OH to the solutions and the loading of Pt onto the photocatalyst powders were indispensable in order to obtain high photocatalytic activity for H₂ evolution. The fermi energy level of Pt was above that of ANbO₃ (A= Li, Na, K)^[17]. When Pt was loaded onto the surface of the catalyst powders, the fermi energy level will remain at the same level so that the photo-generated electrons in the conduction band of photocatalysts transfer spontaneously to Pt. Thus Pt was an active site for hydrogen evolution to enhance the photogenerated charges separation. At the same time, Pt can reduce the overpotential of hydrogen to favor the hydrogen evolution. The presence of CH₃OH as electron donor can consume the photogenerated hole and favor the photogenerated charges separation. Therefore Pt and CH₃OH can accelerate the hydrogen evolution.

Table 1 Effects of CH₃OH and Pt on photocatalytic activity of ANbO₃ for H₂ evolution

Photocatalytic reactions system	Rate of H ₂ evolution/(mmol·L ⁻¹ ·h ⁻¹)
Pt-KNbO ₃ (1.0 g)	0
KNbO ₃ (1.0 g) + CH ₃ OH (30 mL)	0.91
Pt-KNbO ₃ (1.0 g) + CH ₃ OH (30 mL)	5.49

3.3 Effect of counterions on photocatalytic activity of ANbO₃ for H₂ evolution

Fig. 3 illustrates the effect of counterions on the photocatalytic activity of ANbO₃ for H₂ evolution. The counterions of photocatalysts have a marked influence on photocatalytic hydrogen evolution. The rate of hydrogen evolution with LiNbO₃, NaNbO₃ and KNbO₃ as photocatalysts was 1.37, 1.90 and 5.49 mmol·L⁻¹·h⁻¹, respectively. The band structure of perovskite photocatalysts such as ANbO₃ (A= Li, Na, K) is generally defined by d-level and O 2p level^[15]. When the

Fig. 1 XRD patterns of catalysts before and after photocatalytic reactions
(a) —LiNbO₃; (b) —NaNbO₃; (c) —KNbO₃

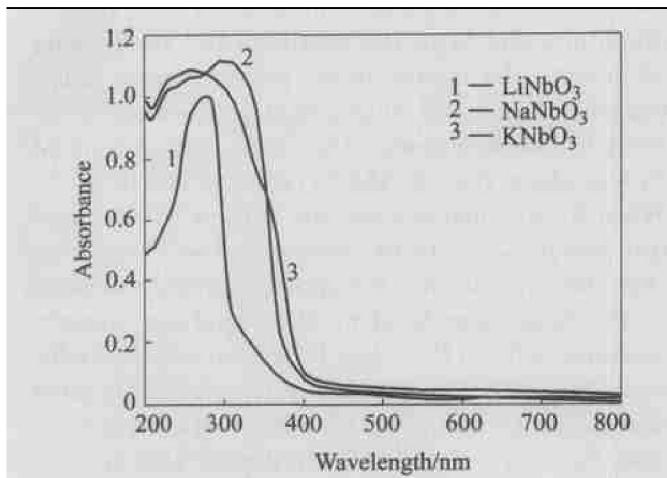


Fig. 2 Diffuse reflectance spectra of ANbO_3

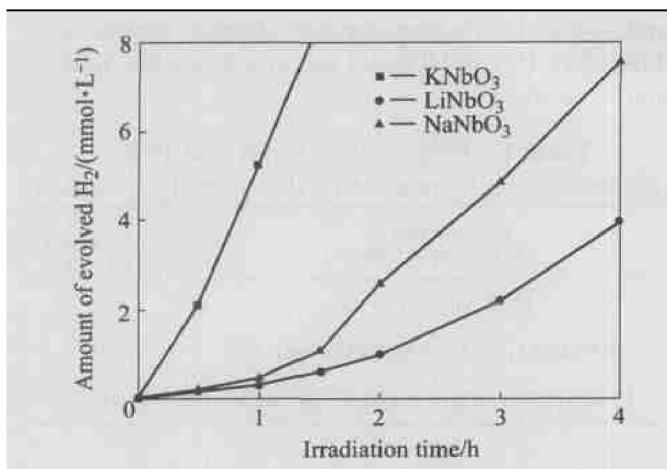


Fig. 3 Dependence of photocatalytic H_2 evolution on irradiation time

compound contains octahedral NbO_6 , the valence band energy should be assumed by the O 2p levels of oxygen in NbO_6 and the conduction band assumed by 4d levels of Nb in NbO_6 . The crystals of catalysts contain the same octahedral NbO_6 , but they have different band gap and different photocatalytic activity with different counterions. The ionic radius of Li^+ , Na^+ , K^+ was 0.068, 0.095 and 0.133 nm respectively. The corresponding tolerance factor^[3] of LiNbO_3 , NaNbO_3 and KNbO_3 was 0.469, 0.496 and 0.525 respectively. Compared to LiNbO_3 and NaNbO_3 , KNbO_3 has more ideal perovskite structure. The band gap of KNbO_3 was larger than that of LiNbO_3 and NaNbO_3 . The larger band gap and higher conduction band energy level the catalyst have, the higher photocatalytic activities of photocatalysts possess with the same valence band energy level. Thus the KNbO_3 has the highest photocatalytic activity among the three catalysts.

3.4 Effect of acidity on photocatalytic activity of ANbO_3 for H_2 evolution

Fig. 4 illustrates the effect of acidity on the ph-

tocatalytic activity of ANbO_3 for H_2 evolution. It shows that photocatalytic hydrogen evolution of LiNbO_3 , NaNbO_3 and KNbO_3 increased from 1.37, 1.06, 3.12 $\text{mmol} \cdot \text{L}^{-1} \cdot \text{h}^{-1}$ ($\text{pH} = 7$) to 1.75, 1.41, 9.15 $\text{mmol} \cdot \text{L}^{-1} \cdot \text{h}^{-1}$ ($\text{pH} = 1.5$), respectively. Acidity increase lead to photocatalytic activity enhancement, which may result from two reasons. One is that the increase of H^+ concentration changes the energy level of catalysts^[18] to the enhancement of the photocatalytic activity. The other is the increase of absolute number of H^+ involving in photocatalytic reactions to the enhancement of the photocatalytic activity.

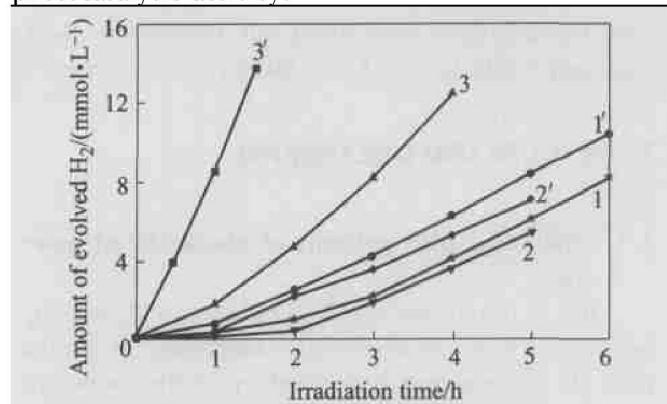


Fig. 4 Dependence of acidity on photocatalytic reactivity of LiNbO_3 , NaNbO_3 , KNbO_3
 1 — LiNbO_3 ($\text{pH} = 7.0$); 1' — LiNbO_3 ($\text{pH} = 1.5$);
 2 — NaNbO_3 ($\text{pH} = 7.0$); 2' — NaNbO_3 ($\text{pH} = 1.5$);
 3 — KNbO_3 ($\text{pH} = 7.0$); 3' — KNbO_3 ($\text{pH} = 1.5$)

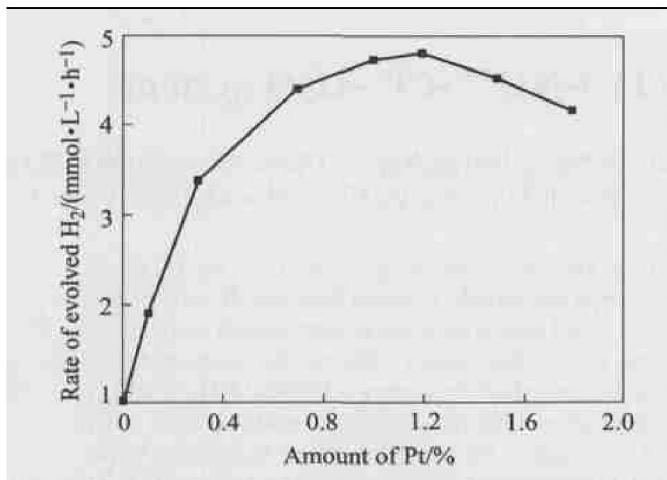

3.5 Effect of Pt loaded on photocatalytic activity of KNbO_3 for H_2 evolution

Table 1 illustrates that the addition of CH_3OH to the solutions and the loading of Pt onto the photocatalyst powders were indispensable in order to get high photocatalytic activity for H_2 evolution. With the view point of application, it is necessary to determine the optimal amount of Pt onto the surface of catalysts. Fig. 5 shows the effect of Pt loaded on the photocatalytic activity of KNbO_3 for H_2 evolution. The optimal loading of Pt onto the surface of catalysts was 1.2%. In a given range, increase of Pt loaded will favor the photogenerated charge separation and increase the active sites on the catalyst. When the amount of Pt loaded was higher than 1.2%, the Pt particles will shield the catalyst from absorption of photon, and make photocatalytic activity decrease.

4 CONCLUSIONS

1) As a promoter catalyst, Pt can accelerate hydrogen evolution, the optimal amount of Pt loaded on KNbO_3 is 1.2%.

2) In CH_3OH aqueous solution, ANbO_3 ($\text{A} = \text{Li}$,

Fig. 5 Dependence of Pt loaded on photocatalytic activity of KNbO₃ for H₂ evolution

Na, K) possesses high photocatalytic hydrogen evolution. KNbO₃ has the best photocatalytic activity and its photocatalytic hydrogen evolution rate is 5. 49 mmol·L⁻¹·h⁻¹ with Pt as promoter catalyst.

3) Acidity increasement leads to a high photocatalytic activity .

REFERENCES

- [1] Inoue Y, Kubokawa T, Sato K. Photocatalytic activity of alkali matal titanates combined with Ru in the decomposition of water [J]. *Journal of Physical Chemistry*, 1991, 95: 4059 - 4063.
- [2] ZOU Zhigang, YE Jirhua, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. *Nature*, 2001, 414: 625 - 627.
- [3] Moon S C, Mametsuka H, Tabata S, et al. Photocatalytic production of hydrogen from water using TiO₂ and B/TiO₂ [J]. *Catalysis Today*, 2000, 58: 125 - 132.
- [4] Lee S G, Lee S, Lee H I. Photocatalytic production of hydrogen from aqueous solution containing CN⁻ as a hole scavenger [J]. *Applied Catalysis A: General*, 2001, 207: 173 - 181.
- [5] Ogura S, Kohno M, Sato K, et al. Photocatalytic activity for water decomposition of RuO₂⁻ combined M₂Ti₆O₁₃ (M = Na, K, Rb, Cs) [J]. *Applied Surface Science*, 1997, 121/122: 521 - 524.
- [6] Shangguan W, Yoshida A. Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxides [J]. *Ir*
- [7] Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H₂ and O₂ [J]. *Chemical Physics Letters*, 1998, 295: 487 - 492.
- [8] Sayama K, Yase K, Arakawa H, et al. Photocatalytic activity and reaction mechanism of Pt intercalated K₄NbO₁₇ catalyst on the water splitting in carbonate salt aqueous solution [J]. *Journal of Photochemistry and Photobiology A: Chemistry*, 1998, 114: 125 - 135.
- [9] Baker R H, Mitsopoulos C A, Katakis D, et al. Photophysical study of the decomposition of water using visible light and tungsten tris (dithiolenes) as photosensitizers catalysts [J]. *Journal of Photochemistry and Photobiology A: Chemistry*, 1998, 114: 137 - 144.
- [10] Bamwenda G R, Sayama K, Arakawa H. The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO₃Fe²⁺-Fe³⁺ aqueous suspension [J]. *Journal of Photochemistry and Photobiology A: Chemistry*, 1999, 122: 175 - 183.
- [11] Honda K, Fujishima A. Electrochemical photolysis of water at a semiconductor electrode [J]. *Nature*, 1972, 238: 37 - 38.
- [12] Thaminimulla C T K, Takata T, Hara M, et al. Effect of chromium addition for photocatalytic overall water splitting on Ni_xK₂La₂Ti₃O₁₀ [J]. *Journal Of Catalysis*, 2000, 196: 362 - 365.
- [13] Kato H, Kudo A. Energy structure and photocatalytic activity for water splitting of Sr₂(Ta_{1-x}Nb_x)₂O₇ solid solution [J]. *Journal of Photochemistry and Photobiology A: Chemistry*, 2001, 145: 129 - 133.
- [14] Kato H, Kudo A. Water splitting into H₂ and O₂ on alkali tantalate photocatalysts ATaO₃ (A= Li, Na and K) [J]. *Journal of Physical Chemistry B*, 2001, 105: 4285 - 4292.
- [15] ZOU Zhigang, YE Jirhua, Arakawa H. Substitution effects of In³⁺ by Al³⁺ and Ga³⁺ on the photocatalytic and structural properties of the Bi₂InNbO₇ photocatalyst [J]. *Chemistry of Material*, 2001, 13: 1765 - 1769.
- [16] Machida M, XU Weima, Taniguchi H, et al. Pillaring and photocatalytic property of partially substituted layered titanates, Na₂Ti_{3-x}M_xO₇ and K₂Ti_{4-x}M_xO₉ (M = Mn, Fe, Co, Ni, Cu) [J]. *Journal of Molecular Catalysis A: Chemical*, 2000, 155: 131 - 142.
- [17] Karankitson K E, Verykios X E. Effects of alervalent cation doping of TiO₂ on its performance as a photocatalyst for water cleavage [J]. *Journal of Physical Chemistry*, 1993, 97: 1184 - 1189.
- [18] Kida T, GUAN Guoqing, Yoshida A. LaMnO₃/CdS nanocomposite: a new photocatalyst for hydrogen production from water under visible light irradiation [J]. *Chemical Physics Letters*, 2003, 371: 563 - 567.

(Edited by LONG Huai-zhong)

ternational Journal of Hydrogen Energy, 1999, 24: 425 - 431.