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Abstract: Expert systems have been used widely in the predictions and design of alloy systems. But the expert systems
are based on the macroscopic models that have no physical meanings. Microscopic molecular dynamics is also a standard

computational technique used in materials science. An approach is presented to the design system of nonferrous alloy that

integrates the molecular dynamical simulation together with an expert system. The knowledge base in the expert system is

able to predict nonferrous alloy properties by using machine learning technology. T he architecture of the system is present-

ed.
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1 INTRODUCTION

Computational Materials Science uses computers
to model, understand and predict material proper

131 This approach often yields unique insights

ties
into experimental data, and is used to guide experi-
menters tow ard new materials with unique and impor-
tant properties. Expert systems have been used wide-
ly in the predictions and design of alloy systems. But
the expert systems are based on the macroscopic mod-
els that have less physical meanings. On the other
hand, microscopic simulations such as quantum ab r
nitio methods and molecular dynamics are also very
useful for the design of the material “® . Microscopic
models also have some shortcomings. These kinds of
models need a lot of computer CPU times and not
valid for some cases. How to integrate the macroscop-
ic models with the microscopic models is a very inter-
esting problem. In the molecular dynamical simula
tions, there are a lot of interatomic potentials to
choose! . In the development of the nonferrous alloy
design, how to select a proper interatomic potential is
a key problem. Different potentials are suitable for
the interactions of different kinds of atoms'®*!. Usu-
ally, we decide the proper inter atomic potential by
our experiences and the comparison with the experr
ments. There are no rigorous ways to decide which
potential is the best. With the development of ma-
chine learning, the artificial intelligence provides a
route to solve these problems. In this paper, an ex-
pert system that integrates the macroscopic models
and microscopic models is discussed. In the expert
system, neural network models are used for the ma
chine learning.

2 MICROSCOPIC MODELS

Dynamical simulations using particles represent
an indispensable tool for many areas of modern scien-

tific research and engineering' '

In materials sci-
ence, the method of molecular dynamics and related
simulation techniques provide unique microscopic in-
formation that is not accessible by experimental meth-
ods. Molecular dynamics is a standard computational
technique used in condensed matter physics, materials
science, chemistry and other fields, consisting of fol-
lowing the temporal evolution of a system of N parti
cles, interacting with each other by means of a certain
law! """ In classical molecular dynamics, the evolu-
tion is based on the Newton's law, F= ma, and the
forces are obtained as gradients of a certain potential
which is a function of all the particle coordinates. The
several interatomic potentials used in the molecular
dynamical simulations include classical bond-order po-
tentials, the force matching potentials, Lennard

Jones potentials, and EAM ( Embedded atom method)

potentials[ 10,14, 151

In this system, we construct an interatomic po-
tential library. Fig. 1 depicts the structure of the in-
teratomic potential library. The interatomic potential
library includes different kinds of potential. T here are
several parameters for each kind of potential. The key
problem in the expert system is to decide which kind
of interatomic potential will be used to do molecular
dynamical simulations and the exact value of the pa-
rameters in the selected interatomic potential. In this
paper, we take the potential energy within the TB-
SMA mode' ' as an example.
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. s ence . Fig. 2 shows the main architecture of the
mteratomlc potential llbraryd . e i
/ machine learning mechanism of the nonferrous alloy
. design system.
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Fig.1 Structure of interatomic potential library

In the interatomic potential library, there is a
class of many-body potentials which is based on local
density approximation ( LDA) calculations and the
second moment approximation( SMA). The total po-

tential energy within the TB-SMA mode!'> ' "]
could be written as

Ucoh = LZEO _;CXP[_ p(rLI:)L_ 1)] -
2 Dexpl- 2q(;5- V1) (1)

R
where the first sum corresponds to the pair-potential
repulsive term of Born-Mayer type and the second
sum to the band structure term, which has a many-
body character due to its square root form. In expres-
sion (1), r; is the interatomic distance, and ry is
usually fixed to the value of the first-neighbor dis-
tance. In the case, rois an additional free parameter,
as suggested in Ref. [ 12]. Sums were taken over
neighbors within 12 coordination shells in a crystal
and over all atoms in clusters. Thus the above poten-
tial has five parameters. The parameters of the above
potential were fitted to a LDA database that consists
of the total energy as a function of the lattice con-
stant. Therefore, these potentials are based on rigor
ous first-principles LDA results. The five parameters
&, &, ¢, p and ro, which have been determined
from expression ( 1) by fitting to the APW totakener

gy results as a function of lattice constant for different

]

nonferrous element' ' . For example, for single Au

crystal of FCC structures, the fitting parameters are
& 10.925eV, &= 13.595 9 eV, ¢= 2.738 1,
p=6.3469, ro= 0.175 17 nm.

In this potential model, there are five parameters
for the neural network to identify. There are also
other kinds of interatomic potential with different
numbers of parameters.

3 MACHINE LEARNING USING NEURAL NET-
WORK

M achine learning investigates the mechanisms by

which knowledge is acquired through expert

Known
ingredients
and properties

Fig. 2 Architecture of machine learning
mechanism of nonferrous alloy design system

The field of neural networks has arisen from dr

verse sources, ranging from the fascination of
mankind with understanding and emulating the hu-
man brain, to broader issues of copying human abili-
ties such as speech and the use of language, to the
practical commercial, scientific, and engineering dis-
ciplines of pattern recognition, modeling, and predic
tion. Neural networks consist of layers of intercon-
nected nodes, each node producing a non-linear func
tion of its input. The input to a node may come from
other nodes or directly from the input data. Also,
some nodes are identified with the output of the net-

k[ 21 The complete network therefore repre-

wor
sents a very complex set of interdependencies which
may incorporate any degree of nonlinearity, allowing
very general functions to be modelled. In the simplest
networks, the output from one node is fed into anoth-
er node in such a way as to propagate “ messages”
through layers of interconnecting nodes. More com-
plex behaviour may be modelled by netw orks in which
the final output nodes are connected with earlier
nodes, and then the system has the characteristic of a
highly nonlinear system with feedback!*'".

Fig. 3 shows the neural network models for the
expert system for the design of two-components alloy
design. The inputs of the neural network model is the
name of each element, proportion of each element,
each kind of property (such as the lattice constant,
melting temperature, the vibration mode and the bulk
modulus ) including the results from the molecular
dynamical simulations and the experiments. The out-
puts of the neural network is the serial number of the
best fitted interatomic potential and the best parame-
ters that fit in with the experimental results. We set
a serial number for each kind of interatomic potential.
We use some experimental properties of the nonfer-
rous alloy to be the training samples of the neural net-
work. For the known experimental properties, we
calculate the results of the molecular dynamical simu-
lation by each kind of interatomic potential. The ini-
tial parameters of the interatomic potentials are cho-
sen by the experiences. Then we let the neural net-
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work learn by itself. More training the neural net-

2
works have, the results are more accurate'**!.

| . Serial number of
Name of element 1— interatomic potential
Proportion of element l—ﬂ

Name of element 2 PParameter 1

Y]
Proportion of element 2— ‘g
o
Property 1 by MD— T;" —Parameter 2
Property 1 by experiment—| 2) L
Property 2 by MD—
Property 2 by experiment—- L—-Parameter n

Fig.3 Neural network models for expert
system for design of two-components alloy

A B-P model is used in our network. It has mul
trlayered sensory structure. Besides an input and an
output layer, it also contains one inter- mediate hidden
layer. There are N inputs and L outputs ™', Tts
nonlinear activation function f (‘u) is:

-1

flu)= 1+ exp(- u) (2)

And the output of each layer unit can be calculat-

ed by

V= f(2WiXi= §). j= 0« M-1

(3)

Zi= f( 2WpYi— &), k=0, - L-1

(4)

where X, represents the output of the ith unit in

the input layer; Y, represents the output of the jth
unit in the hidden layer; Zj represents the output of
the £th unit in the output layer; W; represents the
connection mass of the ith unit in the input layer to
the j th unit in the hidden layer; Wj; represents the
connection weight of the jth unit in the hidden layer
to the kth unit in the output layer; § represents the
threshold of the j th unit in the hidden layer; &, rep-
resents the threshold of the kth unit in the output
layer.

The self-learning algorithm of B-P neural net-
work model is an iterative procedure**!. At first, a
set of initial weights of the network is given, then a
sample is input to the network and its output is calcu-
lated. The error between the calculated output and
the expected output are used to update its weights so
that the error can be reduced. This updating process
will be repeated until the error is smaller than a speci-
fied error value. After the neural network is trained
in the self-learning way by sufficient samples, the fi-

. ; ; . . [25
nal weights are its correct interior representatlon[ I,

4 CONCLUSIONS

In this paper, an intelligent design system is de-
signed based on the microscopic models and macro-
scopic models. Microscopic models and macroscopic
models both have some advantages and shortcomings.
In this system, we combine these two kinds of models
organically. The shortcomings of both kinds of mod-
els are overcomed. The results of the microscopic
molecular dynamical simulation are used for the input
for the training of macroscopic models. The neural
network model is used for the machine learning of the
macroscopic models. If the trainings are done using a
lot of sample data and simulation results, the machine
can get more intelligence to reflect the true nature of
the nonferrous alloy. The expert system can aid met-
allurgists in the design of new nonferrous alloys. The
system can be operated in several modes which in-
cludes a decision support system and a design assis-
tant.
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