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Abstract: Dominant phase during hot deformation in the two-phase region of Zr−2.5Nb−0.5Cu (ZNC) alloy was studied using 
activation energy calculation of individual phases. Thermo-mechanical compression tests were performed on a two-phase ZNC alloy 
in the temperature range of 700−925 °C and strain rate range of 10−2−10 s−1. Flow stress data of the single phase were extrapolated in 
the two-phase range to calculate flow stress data of individual phases. Activation energies of individual phases were then calculated 
using calculated flow stress data in the two-phase range. Comparison of activation energies revealed that α phase is the dominant 
phase (deformation controlling phase) in the two-phase range. Constitutive equations were also developed on the basis of the 
deformation temperature range (or according to phases present) using a sine-hyperbolic type constitutive equation. The statistical 
analysis revealed that the constitutive equation developed for a particular phase showed good agreement with the experimental 
results in terms of correlation coefficient (R) and average absolute relative error (AARE). 
Key words: Zr−2.5Nb−0.5Cu alloy; hot deformation; activation energy; constitutive equation; two-phase material 
                                                                                                             

 
 
1 Introduction 
 

Constitutive equation describes the relationship 
between stress, strain rate and deformation temperature. 
It helps to calculate expected load and power required for 
forming processes and also suggest material flow 
behavior [1]. Thus, it is necessary to develop an  
accurate constitutive equation for a given material.   
The constitutive equations are classified into three 
different categories: physical-based constitutive model, 
phenomenological constitutive model and artificial 
neural network (ANN). Physical-based models are based 
on physical aspects of material behaviors, i.e., theory of 
thermodynamics, kinetics of slip and thermally activated 
dislocation movement. These models are applicable over 
a wide range of loading conditions. Few physical-based 
models are Bodner−Partom (BP) model [2], Rusinek− 
Klepaczko (RK) model [3], Zerilli and Armstrong (ZA) 
model [4,5] and its modification (m-ZA) [6], Preston− 

Tonks−Wallace (PTW) model [7], Voyiadjis−Almasri 
(VA) model [8] and cellular automaton (CA) model [9,10]. 
In phenomenological models, a description of flow stress 
is based on empirical observations using some 
mathematical functions. These models are suitable where 
an exact physical mechanism is not clear. However, these 
are applicable over a limited range of strain rate and 
temperature. Few phenomenological models are: Voce− 
Kocks (VK) model [11], Johnson−Cook (JC) model [12], 
and its modification (m-JC) [6], Khan−Zhang−Takacs 
(KZT) model [13], Farrokh−Khan (FK) model [14], 
Molinari−Ravichandran (MR) model [15], Arrhenius 
type model with or without strain compensation [16−18], 
and its modified model [19]. Lastly, ANN provides an 
alternative approach to predict flow behavior during hot 
deformation, and it is best suitable to those problems for 
which material behavior is not clear at all. But, the 
successful application of ANN model is strongly based 
on error free data and characteristic variables. Out of all 
the approaches, phenomenological models are widely 
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used models because they offer a trade-off between 
knowing exact material behavior and “black box” 
approach of ANN. SELLARS and TEGART [20] and 
JONAS et al [21] have proposed a phenomenological 
approach, in which flow stress is related to the strain rate 
by sine-hyperbolic law in Arrhenius type equation. 
Extensive work on constitutive analysis of hot 
deformation for different metals and alloys was reported 
by LIN and CHEN [22], CINGARA and McQUEEN 
[23], PHANIRAJ et al [24,25], KASSAM et al [26], 
MIRZADEH et al [18,27,28], and SAMANTARAY    
et al [29]. The flow stress of a material depends upon 
both strain rate and temperature which can be combined 
in a single parameter known as Zener−Hollomon 
parameter (Z) [30]. However, the influence of 
temperature and strain rate on the flow behavior of 
two-phase (HCP/BCC) alloys such as Zr−2.5Nb−0.5Cu 
(ZNC) is not well understood. 

Irrespective of the model used, the development of a 
constitutive equation for a two-phase material becomes 
even more complicated due to uncertainty in determining 
the dominant phase in the two-phase range. Accurate 
determination of activation energy, stress exponent and 
pre-exponential factor is important to develop an 
accurate constitutive equation. Thus, it is essential to 
understand activation energies of individual phases in the 
two-phase range. In literature, different approaches were 
used to calculate the activation energy for deformation of 
two-phase materials. KIM et al [31] considered 
activation energy on the basis of the strain rate range for 
deformation of the two-phase Ti−6Al−4V alloy. 
KOTKUNDE et al [19,32], YUAN et al [33] and 
ZHANG et al [34] compared constitutive models for 
various Ti alloys irrespective of the phases present. 
CHEN et al [35] developed constitutive models of 
Ti−6Al−4V alloy in the temperature range 20−900 °C 
(below β transus temperature), without considering the 
effect of phases present. WEI et al [36] reported a single 
activation energy of a dual-phase Mg−Li alloy for the 
entire range of deformation temperatures. QIN et al [37] 
calculated common activation energy for TC11/Ti− 
22Al−25Nb dual-phase alloy, without considering the 
effect of alloy as well as the phases present in the alloy. 
BALASUNDAR et al [38] calculated single activation 
energy of near-α titanium alloy IMI834 having duplex 
microstructure, whereas WANJARA et al [39] calculated 
two activation energies of the same alloy; one for the 
two-phase (i.e., (α+β) phase) and the other for  the 
single phase β. SESHACHARYULU et al [40], 
PORNTADAWIT et al [41] for Ti−6Al−4V alloy, and 
SARKAR and CHAKRAVARTTY [42] for Zr−1Nb alloy 
considered the activation energies of two-phase and 
single phase separately and found that the activation 

energy of the two-phase (α+β) is higher than that of the 
single phase β. In summation, we can say that there are 
two approaches used by researchers: 1) a single 
activation energy for the entire range of deformation 
temperature covering both single and the two-phase 
region or; 2) two activation energies according to the 
phases present, i.e., one for two-phase (α+β) and the 
other for single phase α or β. From the above   
literature review, it is clear that the calculation of 
activation energy and other parameters of a constitutive 
equation for two-phase materials requires systematic 
approach. 

In the present work, different sets of flow stress data 
were considered to develop constitutive equations: one 
set belongs to experimental data, and the other set of 
flow stress was calculated from the experimental values 
in a two-phase range. Using each set of flow stress data, 
independent constitutive equations were developed for:  
1) in deformation temperature range from 700 to 815 °C, 
related to (α+β) phase, 2) in deformation temperature 
from 815 to 925 °C related to β phase, 3) entire range of 
deformation temperature, i.e., from 700 to 925 °C related 
to (α+β) and β phase (or complete data set irrespective of 
phases present) and, 4) from the calculated flow stress 
values of individual phases (i.e., individual α or β phase) 
in (α+β) phase range. To evaluate developed constitutive 
equations, statistical analysis was applied to 
experimental and predicted peak flow stress values. 
 
2 Experimental 
 

The material used for this study is Zr−2.5Nb−0.5Cu 
(ZNC) alloy. It was initially in the form of extruded billet 
that was β-quenched. From billet, cylindrical specimens 
of 15 mm in height and 10 mm in diameter were 
machined in such a manner that the compression axis of 
the specimens was along the extrusion direction. For the 
compression test specimen, concentric grooves of about 
0.5 mm in depth were provided on the end surfaces and a 
nickel-based lubricant along with a graphite sheet was 
used between the specimen and the crosshead of anvil to 
reduce friction during compression. A thermocouple was 
attached at the center of the specimen to measure the 
specimen temperature as well as adiabatic temperature 
rise during compression at high strain rates (i.e., 1 s−1 and 
above). The isothermal compression tests were carried 
out on a Gleeble−3800® (Thermo-mechanical simulator) 
in a temperature range of 700−925 °C and strain rate of 
10−2−10 s−1, to investigate the hot deformation behavior 
of the material. The samples were initially heated to 
desired temperatures at a rate of 5 °C/s, and then soaked 
for 300 s. All specimens were deformed up to a true 
strain of 0.69 and then quenched. During a hot 
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compression test, the flow stress data were recorded 
automatically as a function of strain for each deformation 
temperature and strain rate from the computer interface 
of Gleeble−3800®. 
 
3 Results 
 
3.1 Stress−strain relationship 

Figure 1 shows the true stress−true strain curves of 
ZNC alloys obtained after correction for an adiabatic 

temperature rise at high strain rates (i.e., 1 s−1 and above), 
deformation temperatures of 700−925 °C and strain rates 
of 10−2−10 s−1. According to lever rule, the proportion of 
α/β phase should vary with the deformation temperature. 
Hence, flow behavior should reveal the dominance of a 
particular phase on the deformation mechanism at 
different temperatures. Figures 1(a) and (b) show that  
the degree of flow softening decreases with an   
increase in deformation temperature (decrease in α-phase 
proportion) for all strain rates used. It appears that flow 

 

 

Fig. 1 True stress−true strain curves of ZNC alloys at different deformation temperatures: (a) 700 °C ((α+β) phase); (b) 750 °C ((α+β) 

phase); (c) 815 °C ((α+β)/β phase); (d) 850 °C (β phase); (e) 925 °C (β phase) 
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softening is due to DRX in α phase [43] and its effect on 
flow behavior decreases with an increase in the 
temperature (or increase in proportion of β phase), more 
or less similar to Zr−2.5Nb alloy [44]. In the temperature 
range of 850−925 °C (β-phase), the flow stress curves 
show a steady state behavior for all strain rates used 
except under conditions of 850 °C (5 and 10 s−1) and 
925 °C (10 s−1). 
 
3.2 Establishment of constitutive equations 

The development of the constitutive equation allows 
extrapolation of flow stress data beyond the test window. 
An Arrhenius type equation was proposed to relate flow 
stress with strain rate and temperature. 

Usually, all materials exhibit an increase in flow 
stress with an increase in strain rate and decrease in 
temperature. The flow stress behavior depends on the 
generation rate of defects and their removal by thermally 
activated processes. ZENER and HOLLOMON [30] 
proposed a single parameter (Z) to express flow stress as 
a function of strain rate and temperature. Zener− 
Hollomon parameter (Z) can be defined in terms of 
temperature (T) and strain rate ( ) , as shown in     
Eq. (1) [29]. 
 

exp[ /( )]Z Q RT                             (1) 
 

In Arrhenius equation, the strain rate is a common 
parameter related to the deformation temperature and 
activation energy. Thus, the strain rate is generally 
expressed by one of the three different types of  
equations: the power law (Eq. (2)), the exponential law 
(Eq. (3)) and sine-hyperbolic law (Eq. (4)). The 
applicability of each equation depends upon the stress 
value. It is reported that the power law equation “breaks 
down” at high stress values, therefore, it is valid for low 
stress values, i.e., ασ<0.8 (Eq. (2)). On the other hand, 
the exponential law equation is valid at high stress  
values, i.e., ασ>1.2 (Eq. (3)) [45]. However, a 
sine-hyperbolic law equation (Eq. (4)) is valid for a 
wider range of flow stress and more commonly in use 
[20,46]. 
 

1 p expn Q
A

RT
    

 
                           (2) 

 

2 pexp ( ) exp
Q

A
RT

   
 

                     (3) 

 

pexp [sinh( )]nQ
Z A

RT
   
 

                  (4) 

 
where A, A1, A2, n and n′ are material constants, Q is the 
activation energy for hot deformation (kJ/mol), R is the 
universal gas constant (8.314 J/(mol·K) and T is the 
thermodynamic temperature (K). One additional 

adjustable constant is α, known as stress multiplier. It 
brings ασ into the correct range to make ln   versus  
ln[sinh(ασp)] curves linear and parallel. 

Under a particular deformation condition of strain 
rate and temperature, flow stress is a function of strain. 
Therefore, for the development of a constitutive equation, 
either peak stress (strain can vary) or stress value at a 
constant strain is considered. Stress values other than 
peak stress may vary due to softening or hardening 
mechanisms and may not be obtained accurately [47]. 
Thus, it is better to use peak stress values to determine a 
constitutive equation [23,48]. Also, peak stress is 
uniquely related to Zener−Hollomon parameter (Z), in 
the entire range of deformation conditions [49]. 
Additionally, peak stress is more important for industrial 
processes [50]. In this study, peak flow stress was 
considered to develop sine-hyperbolic law equation. 
 
3.3 Identification of material parameters 

The sine-hyperbolic law constitutive equation 
requires the determination of few material constants, i.e., 
A, n, α and Q. These material constants can be obtained 
as follows. 
3.3.1 Determination of α value 

The value of α can be calculated by α(≈β/n′) [45], 
where n′ and β can be calculated from Eqs. (2) and (3). 
Taking natural logarithm on both sides of Eqs. (2) and  
(3) yields Eqs. (5) and (6), respectively. 
 

1 pln ln ln
Q

A n
RT

                        (5) 

 

2 pln ln
Q

A
RT

                          (6) 

 
The partial differentiations of Eqs. (5) and (6) with 

respect to peak flow stress (σp) at constant temperature 
yield 
 

p

ln

ln
T

n
    
  




                               (7) 

 

p

ln

T

 
  

  




                                (8) 

 
where constants β and n′ can be calculated using linear 
regression of the ln  vs σp plot and the plot of ln  vs  
ln σp, respectively, at each temperature as shown in  
Figs. 2(a) and (b). The final values of parameters n′ and β 
are their average values calculated from the slopes 
obtained at each temperature. For present ZNC alloy, the 
values of parameters n′, β and α are summarized in  
Table 1. 
3.3.2 Determination of n 

The value of n can be calculated using Eq. (4). 
Simplification of Eq. (4) using natural logarithm on both 
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sides yields Eq. (9). Partial differentiation of Eq. (9) with 
respect to peak flow stress at constant temperature results 
in Eq. (10): 

pln ln ln[sinh( )]
Q

A n
RT

                    (9) 

 

p

ln

ln[sinh( )]
T

n
 

  
  




                       (10) 

 
The relationship between ln   and ln[sinh(ασp)] is 

plotted in Fig. 3(a) at constant temperature. Thereafter, 
the final n value is an average slope value of all 
temperatures and summarized in Table 1. 

3.3.3 Determination of activation energy (Q) 
For high temperature deformation, activation energy 

(Q) can be obtained by rearranging Eq. (9) as follows: 
 

p
1 1

ln[sinh( )] ln ln
Q

A
nRT n n

               (11) 

 
The partial differentiation of Eq. (11) at constant 

strain rate with respect to the reciprocal of deformation 
temperature (1/T) yields Eq. (12): 
 

pln[sinh ( )]

(1/ )

Q

T nR

 
   


                     (12) 

 

Table 1 Calculated material constants of ZNC alloy for various phases 

Deformation temperature/°C Relevant phase α/MPa−1 n Q/(kJ·mol−1) A/s−1 

700−815 ((α+β) phase) AE1 0.0082 4.45 524 4.58×1025

815−925 (β phase) AE2 0.01698 4.0 300.17 1.23×1013

700−925 ((α+β) and β phase) AE3 0.01204 3.99 471.67 1.19×1022

700−815 (two-phase 

range for individual 

phase calculation) 

AE4 0.01015 4.54 

477.24 ( c
two-phaserangeQ ) 

cQ =532.38 
cQ =372.52 

2.01×1022

 

 
Fig. 2 Plots to obtain values of β (a) and n′ (b) 
 

 
Fig. 3 Plots to calculate values of n (a) and S (b) 
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Therefore, the activation energy can be defined as 
follows: 
 
Q=RnS                                    (13) 
 

where pln[sinh ( )]

(1/ )
S

T

 
    


. 

 
S is determined by linear regression of ln[sinh(ασp)] 

vs (1000/T) plots at constant strain rates, as shown in  
Fig. 3(b). Afterwards, the final value of S is an average 
of slope values obtained at different strain rates. By 
using the average values of n and S in Eq. (13), final 
activation energy can be calculated. 
3.3.3.1 Activation energies in different temperature 

domains 
The phase diagram of the studied ZNC alloy is more 

or less similar to that of Zr−2.5Nb alloy. Due to the 
addition of Cu into Zr−2.5Nb, its hexagonal closed 
packed (HCP) α-Zr phase is stable up to 630 °C (±10 °C) 
and body centered cubic (BCC) phase β-Zr is stable at 
high temperatures above 825 °C (±10 °C). In the 
intermediate temperature range it has a two-phase range, 
i.e., (α+β) phase [51]. It is expected that the activation 
energy of hot deformation may show two entirely 
different values, depending upon the dominant phase in 
the two-phase region. Therefore, in the present work, 
activation energy calculations were done according to the 
deformation temperature range (or domain). Thus, three 
different activation energies were calculated: AE1 for a 
deformation temperature from 700 to 815 °C related to 
(α+β) phase, AE2 for deformation temperature from 815 
to 925 °C related to β phase, and AE3 is in the entire 
range of deformation temperature, i.e., from 700 to 
925 °C related to (α+β) and β phases. Thus, the 
calculated activation energies using peak flow stress for 
different temperature ranges are as follows: AE1 is   
524 kJ/mol, AE2 is 300.17 kJ/mol, and AE3 is    
471.67 kJ/mol. 
3.3.3.2 Activation energy of individual phases in two- 

phase range 
Unlike single phase material, activation energy of a 

two-phase material cannot be related directly to the 
operating deformation mechanism [52]. However, if the 
contribution of individual phases can be separated, one 
can estimate deformation parameters of the phases 
present. To determine the contribution of individual 
phases during hot deformation in the two-phase range, it 
is necessary to calculate activation energies of individual 
phases. To obtain the flow stress of individual α phase 
( c

 ) and β phase ( c
 ), flow stress values from single 

phase β ( E
 ) were extrapolated in the two-phase range. 

Assuming equi-strain rate condition, i.e., stress is 
distributed among their constituent phases according to 

their phase fraction, as expressed in Eq. (14), flow stress 
values of α phase were calculated: 
 

c E c
( )f f                                 (14) 

 
where E

( )   is an experimental flow stress in the 
two-phase range; fα, fβ and c c,    are fractions and 
calculated flow stresses of individual α and β phases in 
the two-phase range, respectively. After getting the stress 
values of individual α and β phases, cQ  and cQ  were 
calculated using the same procedure as described in 
earlier sections. After calculating activation energies of 
individual phases, the activation energy of the composite 
microstructure containing both the phases was calculated 
using analysis proposed by BRIOTTET et al [52] as 
described in Eq. (15)  

c c c c
c
two-phaserange c c

f m Q f m Q
Q

f m f m


 


       

     

 

 
 

c c
2 ( ) d

d

f
RT

m T

  


                     (15) 

 
where m and σ are the average values of strain rate 
sensitivity and flow stress of individual phases, 
respectively. The first term on the right hand side of   
Eq. (15) represents the weighted average of cQ  and cQ , 
which is normalized by factor fσm of each phase. The 
second term on the right hand side is a product of two 
terms: one includes the difference between the flow 
stresses of individual phases at a particular temperature, 
and the other is the first derivative of the fraction of any 
individual phase with respect to temperature. The 
calculated activation energies of cQ  and cQ  are 
532.38 and 372.52 kJ/mol, respectively, whereas 
activation energy c

two-phaserangeQ  for a two-phase range is 
477.24 kJ/mol. 
3.3.4 Determination of constant A 

The linear regression of the ln  vs ln[sinh(ασp)] 
plots from Eq. (10) at each temperature can provide the 
intercept value to calculate constant A, as shown in   
Fig. 3(a). Furthermore, A can be calculated by following 
equations: 
 

ln ln
Q

B A
RT

                             (16) 

 
where B is the interception of Eq. (10). 

Simplifying Eq. (16) yields Eq. (17)  

exp (ln )
Q

A B
RT

     
                      (17) 

 
Since the value of Q is already obtained. ln A was 

determined using the intercept of the linear regression of 
the ln  vs ln[sinh(ασp)] plot at each temperature. 
Afterwards, the average value of ln A for all ranges of 
deformation temperature was obtained. 
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3.4 Microstructural observation 
Figure 4 shows the microstructure of as-received 

material. The microstructure reveals equiaxed grains 
having an average grain size of 200 μm. Since the 
material is β-quenched, microstructure shows fine plates 
of α-surrounded by prior β grain boundaries. Figure 5 
shows the microstructure of a sample deformed at 
temperature of 750 °C and strain rate of 1×10−2 s−1, 
whereas Fig. 6 shows the microstructure of a sample 
deformed at temperature of 815 °C and strain rate of 
1×10−1 s−1. These two deformation temperatures fall in 
 

 
Fig. 4 Microstructure of as-received (β-quenched) Zr−2.5Nb− 

0.5Cu alloy 

 

 
Fig. 5 Microstructure of sample deformed at temperature of 

750 °C and strain rate of 1×10−2 s−1 (Compression direction is 

vertical) 

 

 

Fig. 6 Microstructure of sample deformed at temperature of 

815 °C and strain rate of 1×10−1 s−1  (Compression direction is 

vertical) 

the two-phase region. However, the temperature of 
815 °C is very close to β transus temperature. Both the 
microstructures show recrystallized, globular α phase 
and transformed β phase (indicated by arrows). 
 
4 Discussion 
 
4.1 Apparent activation energy and deformed 

microstructure 
The apparent activation energy of hot deformation 

depends upon the rate controlling process, i.e., the 
slowest process. It is determined using peak stress as a 
function of temperature at a constant strain rate with the 
assumption that the microstructure remains unchanged. 
By comparing the apparent activation energy values with 
the true activation energy values of different diffusion 
processes, the dominant deformation mechanism can be 
predicted. Usually, the two activation energies are quite 
different since apparent activation energy depends upon 
alloying element, ease of dislocation glide or climb and 
grain size. The apparent activation energy calculated 
from hot deformation data is usually much higher than 
the true activation energy calculated from atomic 
diffusion mechanisms [45]. DYMENT and LIBANATI 
[53] reported that the true activation energies are 
approximately half of that predicted by semi-empirical 
relations based on physical properties. For example, the 
apparent activation energy value calculated in this work 
is in the range of 300−524 kJ/mol, whereas true 
activation energy values are 112.97 kJ/mol for 
self-diffusion of pure Zr, 92.89 kJ/mol for the diffusion 
of Zr in Zr−Nb alloys, while the activation energy for 
diffusion of Nb in Zr is 131.80 kJ/mol. Activation energy 
(AE4) calculated for individual phase in the two-phase 
range suggests that the diffusion in α phase is slower 
than that in β phase. Therefore, α phase should dominate 
hot deformation in the two-phase range. Additionally, the 
activation energy ( cQ ) of individual α phase, i.e.,  
532.38 kJ/mol is also very close to the activation energy 
(AE1) of the two-phase range, i.e., 524 kJ/mol 
determined from experimental data. 

The values of stress exponent calculated in Section 
3.3.2 and shown in Table 1 for different modes of 
calculation, indicate that the values of stress exponents 
lie in the range from 3.99 to 4.5. The value of the stress 
exponent below or equal to 5 suggests that the 
deformation mechanism during the hot deformation of 
ZNC alloy is controlled by glide and climb of dislocation 
(climb controlled) [42,54]. For climb-controlled 
deformation mechanism, the activation energy should be 
close to the activation energy of lattice diffusion [55−61]. 
However, the values of activation energy determined 
from experimental data in the present work are much 
higher than that of lattice diffusion. Therefore, we used 
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experimentally determined activation energy values to 
develop constitutive equations instead of the activation 
energy value of lattice diffusion. 

According to BRIOTTET et al [52], an alloy can be 
categorized as T-type (titanium) if it shows greater flow 
stresses for a lower temperature phase than higher 
temperature phase over the entire two-phase range and 
the calculated activation energy  Q(two-phase range) should 
be greater than the weighted averages of cQ  and cQ . 
For the present alloy, cQ  and cQ  were obtained as 
532.38 and 372.518 kJ/mol, respectively and the 
weighted average of c

two-phaserangeQ  is 398.95 kJ/mol, 
which is less than the calculated c

two-phaserangeQ   
(477.239 kJ/mol) in the two-phase range. This confirms 
that the hot deformation behavior of Zr−Nb alloy is 
similar to that of Ti alloys. 
 
4.2 Verification of predicted peak stress 

In order to validate the calculated material 
parameters, calculated peak flow stresses were compared 
with the experimental peak flow stresses. Applying a 
sine-hyperbolic law equation (Eq. (4)), a general 
expression to predict peak flow stress of a material can 
be obtained by using Eq. (18): 
 

1/
1

p
1 exp[ /( )]

sinh
n

Q RT

A
     




              (18) 

 
As described earlier, constitutive analysis of hot 

deformation of Zr−2.5Nb−0.5Cu alloy was performed in 
four modes: AE1, AE2, AE3 and AE4. Thus, four 
different constitutive equations were developed to predict 
peak flow stress as follows: 
 

1
4.45

E 1
p( + )phase 25
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c
p(two phaserange)   

 
1
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1

22

1 exp[477.239/( )]
sinh

0.01015 2.01 10
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The predictability of a constitutive equation was 

also assessed employing standard statistical parameter 

such as correlation coefficient (R) and average absolute 
relative error (AARE). 
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where P is the predicted value obtained using the 
constitutive equation and E is experimental value 
obtained from compression test, whereas P and E  are 
the mean values of P and E, respectively. The total 
number of data employed during the investigation is 
represented by n. 

The correlation coefficient (R) is a commonly used 
statistical tool and provides information about the 
goodness of fit of a model with experimental values. The 
value of R lies in the range of 0 to 1. R near 1 represents 
that the regression line fits well with experimental values. 
However, this is not always true because of the bias in 
the data [33,62]. On the other hand, AARE provides a 
measure of term by term relative error and therefore is 
considered an unbiased statistical tool [33,63−65]. Thus, 
in this work, the verification of a constitutive equation 
was performed using AARE. Thus, the minimum value 
of AARE will indicate that a particular constitutive 
equation is able to capture the operating metallurgical 
processes. The values of R and AARE obtained for 
different constitutive equations are listed in Table 2 and 
shown in Fig. 7. AARE values are found to be very high 
for AE3 and comparable values for AE1, AE2 and AE4. 
Interestingly, R values for all equations are very close to 
each other. 
 
Table 2 Values of R and AARE obtained for different 

constitutive equations 

Constitutive equation R AARE/% 

AE1 0.9799 5.7 

AE2 0.9869 4.3 

AE3 0.9682 13.98 

AE4 0.9698 5.7 

 

Constitutive equations developed for a (α+β) phase 
(AE1) and for a single β phase (AE2) show good 
agreement with experimental values. On the other hand, 
a constitutive equation developed for the entire range of 
deformation temperature 700−925 °C (AE3) predicts 
significant variation in peak flow stress values at higher 
strain rates and temperatures. This is due to clubbing of 
hot deformation data obtained from different phases.  
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Fig. 7 Plots showing regression coefficient and AARE for AE1 (a), AE2 (b), AE3 (c) and AE4 (d) 

 

Therefore, it is interesting to note that the constitutive 
equation for (α+β) phase (AE1) is able to predict peak 
stress though, the proportions of α and β phases must be 
significantly different at different deformation 
temperatures. A constitutive equation developed using 
calculated stress values for α and β phases by applying 
the rule of mixture (AE4) clarifies that the variation in 
proportion of the two-phase does not affect predictability 
of the equation developed. This brings out the fact that in 
a two-phase range deformation is dominated by only one 
of the phases. 
 
5 Conclusions 
 

1) Flow stress−strain curve revealed softening in the 
two-phase range, i.e., (α+β), whereas in the single β 
phase, it remains almost constant. Moreover, it is 
sensitive to deformation conditions (i.e., deformation 
temperatures and strain rates). 

2) The activation energy of the two-phase range was 
found to be close to activation energy of the individual α 
phase, which clarifies that the dominant phase in the 
two-phase range of ZNC alloy is α phase. The 
microstructural observation also reveals that the 

dominated phase during hot deformation in the two 
phase range is α phase. 

3) The constitutive equation (AE4) developed using 
calculated flow stress values for α c( ) and β phases 

c( )  in two-phase range (α+β) phase, clarifies that the 
variation in the proportion of the two-phase does not 
affect the predictability of the developed equation. It also 
brings out that in two-phase range, deformation is 
dominated by only one of the phases, i.e., α phase for 
ZNC alloy. 

4) Constitutive equations developed for two-phase 
(α+β) range (AE1) and for a single phase β (AE2) show 
good agreement with experimental values, whereas the 
constitutive equation developed for the entire range of 
deformation temperature 700−925 °C (AE3) predicts 
significant variation in the values of peak flow stress at 
higher strain rates and higher temperatures. This is due to 
clubbing of hot deformation data obtained from different 
phases. 
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两相区各相激活能对 
Zr−2.5Nb−0.5Cu 合金本构方程的影响 
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摘  要：通过计算 Zr−2.5Nb−0.5Cu 合金两相区各相激活能，研究该合金在热变形过程中的主要存在相。在温度

为 700~925 °C、应变速率为 10−2~10−3 s−1的条件下对 Zr−2.5Nb−0.5Cu 合金进行热机械压缩实验。单相流动应力推

广用于两相区各相流动应力的计算，然后利用所得两相区流动应力数据来计算各相的激活能。对计算所得激活能

数据进行比较可知，α 相为两相区的主要相(形变控制相)。根据形变温度范围或各相存在形式，采用正弦双曲线

型本构方程建立了合金的本构方程。统计学分析结果表明，从相关系数(R)和平均相对误差(AARE)考虑，采用为

某特定相建立的本构方程所得计算结果与实验结果相符。 

关键词：Zr−2.5Nb−0.5Cu 合金；热变形；激活能；本构方程；两相材料 
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