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WRSE BUR THE R 1103 K, 205 % B i i\ i
WARRES SR o, SR b e AL d 3~5 mm
A SR MEm e, RS gs P Ak, Ziash Ny [k
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Table 1 Parameters of hot rolling technology

Rolling  Holding Strain Sample .
temperature/  time/  rate/ thickness Deforglatmn/
K min s Hymm H;/mm ’

673 15 5.2 12 7.2 40
673 15 6.1 12 4.8 60
673 15 9.8 12 2.4 80

Hy: Sample thickness before hot rolling; H;: Sample thickness
after hot rolling.

KM Titan G2 60-300 % i Hi &5 (TEM) AR H
Helios Nanolab 600i 4 HiB&(SEM) ) HL 15 HUH 1k
BEAREBSD) A HTAFE O 458, IS IRFER AL
PRTIIRHE 2R 80 um 7o A7 Jo EAT XUT HLfife,  HL Ak i
R+ RE(ARLE Y 1:3), MECT—-25 'C; EBSD ikfF
K H ARG, AR R A 10% i IR +90% 67K
LA ED, PR 20V, HIE 1.0 A, JGE
] 30 s, MHEMET-25 C; EBSD iRAFE LI HHE K H]
TSL OIM # AT /AT AAL 3, i s s 20 kv, i
% 70°, $1##2K 0.2 um. K D/max2500 %! 18 kW
FHE X SPEATHOMARE AT Y)AR 43T, /E Instron
3369 AL AT AL SR B PR R, P s
£ 24 1.0 mm/min.
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Fig. 1 TEM images of dislocation in spray-forming high magnesium aluminum alloy at different deformations: (a) Extrusion state;

(b) 40%: (c) 60%; (d) 80%
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Fig. 2 XRD patterns of spray-forming high magnesium aluminum alloy at different deformations: (a) 40%; (b) 80%
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Fig. 3 EBSD micrographs of spray-forming high magnesium aluminum alloy at different deformations: (a) As-extruded; (b) 40%;

(c) 60%; (d) 80%
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Fig. 4 Tensile engineering stress—engineering strain curves of

spray-forming high magnesium aluminum alloy at different

deformations
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Fig. 5 Elongation change of spray-forming high magnesium

aluminum alloy at different deformations
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Table 2 Comparison of tensile properties of spray-forming high magnesium aluminum alloy and other Al-xMg alloy at different

deformations

Material Deformation Deformation Deformation  ¢yp/MPa  g,/MPa /%

temperature/K process
Al-9Mg (Spray-forming) 723 Extrusion 15:1" 312 427 10.0
Al-9Mg (Spray-forming) 673 Rolling 40% 391 480 12.7
Al-9Mg (Spray-forming) 673 Rolling 60% 452 543 18.0
Al-9Mg (Spray-forming) 673 Rolling 80% 515 619 19.8
Al-5.31Mg-1.15Li-0.28Zr(Spray-forming)"”’ 673 Forging 40% 388 459 11.0
Al-7Mg (Casting)" 293 ECAP 3 passes 446 507 14.0
Al-6Mg-0.3Sc (Casting)'®! 598 ECAP 4 passes 285 389 29.0

1) Extrusion ratio.

. R 2 WO, 28 80%HAKLARTE HIMES BOE i Bk
T 0 ) 2 PRI T Al T 2 (K ) S A <
A ERE, AIEREE S 20RO R iy ik
AT S IEAM M. (AU, AR TR,
BAARDRIAT I Al-Mg < S S SN R
i A S 15 S ) SCRRRE

3 STSITE

3.1 mAAEHLEH

PRI A G AR il BT % Hs (723 K) AL il (673K)
BN, BIRAET AEHLEROLE 3), ShAT4Es 5 &)
NIRRT 2 NG | SO S R A AL A P S e
A, B 1@ FTREH S G ST RE, =
LM T A SR iR B RN IS P g S T B,
BN P45 b K AR 01 52 BT S UK AR Y BE D B 2
i B LA TE (B RS TR BE R A, BT
gh SRR Tl BRSSO R s A4
b BHAS PG AN RIS T S B AGAE N T
AR AN, HBEAEFLHIAR RO, XA
F AN ) 22 BE AN TS 0, AT 3 BRI AR R
(1) A7 8 240 R 32 v T 35 s 25 AR AR 2 A% L 1) 2
(LB 1(d))e B 1(0)FI(e)FT7s R 23 devkis P4 35 S . 45
A BRI A7 i 280 55 AN 5 (1) IR 5 W I 6 R A £ i
PSSR RAR I R A 2 T AR R I N AR, 39 kb T
RREMARTHPIR A, I, BEEAERE IR, W
SERZ AL 7] ZE X5 538K, LAGB B i A8 K
1% b FH(HAGB).

RBITR,  REBEAR b R e (1 v VA2 2 R4

W EER 2 7 ARG A S oE i AR L AR T
R A B, TP RO IAL S R AR
LAGB J (WL 3). CAWIRRNY, XA FE
(1INIT. 25 K A7 AN [l B2 S R AR A, > AR e
5 K, LAGB Hifgd 42 HAGB, M et A diki
()3 BRI, NI b A Ak SR, B 3(b)H Ry
X AR BB R A G ST B f R AR TR, AR
ARG R R T EATE, A5 T g2
BT RMGEBAN L A% A XA B R4S dh 4l
2, BRLRSE/N, o 1 A A AR S SRR
Ty TR RS D E R N AR AR A, A
M FEGENLE K. B 3(d)H WARCK SO 41 Sk
DX T BE AL G PR RIS AR P 45 i Aok — B A K AR
AL TR P U LRSS TR 45 ah dhks, LT3
DL REL S s 5B A R i
FER I« KRN AN T 2 5 25 1 45 Aok
X5 GHOLINIA VO g 4 F A — 3.

LIU Z5BIERF o8 KMEAR T Al-Mg & 4 b AL,
Mg i, A8 PR RGN . Mg B
BN BOE 2 A S TUR FA73K, Xh R AR
Z4Hg W AE R T KB AT AR, A TIAERE T A4
RTINS T . ARSI A4 Mg & Eih 9% (i
WD), HWH R T2 I PR Ry s A
T Mg fEa& g, BnfEdoE bAge TR
KEEN Mg W TR T8RRI F2 7 R4
B, NIMSRAFII SN AN dRi gl R, el
VI Mg I RE AL B AN HE R R, A7 A 1
R ARS8 AT Bh T 5 DR A5 T st 20 28 AR R, AT
TERER N AR B 45 B, KR
WK T4 b A RL(ILIE 3(d)).
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1) LA FE A R 40 AL S B0 4l ik 2)
AR R P 10 S SO AR SR 3) A
Mg Ji 5 B0 [l s

1) 4l itk

RIS A LR T R P 32 LA S A T RS
HEANA L mIILFEER, SHESIREEH L,
R ANk, FELAR T 80% AT (T~ 1 dik N ~F 4
h 1 pme SERLERAN, fFEIIREOR, B AE S 1
PEMZ, ATy R, Ml 2 & /e
Fo B 1(b)~(d) A7 5 58 1R T i i A7 A 7T o T AN
FERUNGE R, AT RE IR R G S i .
DRI, AroREBRAN /)N, G 4 IR e AR B e, e JIR AR
5 SRR/ Z T 5C 5 T K H Hall-Petch 22 K& R

e ooy NEIRGEIL: oy WEEBN T K ik
s d HERLEAR; oy A SRR M TR
SN QDL P11 2 VAN N TN AN B 3 Q7 R e R T
NG I IR AN %4 APt I R S e it
DUHRAE AR o

2) frfuRAL

HB 1R, BEAE LSRRI R, ol A
SR R A B B K AN TR £ B T Y
RELNGTE ARG AT R R A 3 & 2
ANB G5 i I AN AN T N ARG, A 2
JEE (R0 K e 0 8 e 20y 5 L B3 A B 157 A 2 45 X 3l
(K38 2 LA Ay A O 25 S R KRBT P A 0 0
REAE K AR A P i A F1 o7 8 8 A 2 1R (L

R3 W 80%EE A SRS HIE

Table 3 Parameter values of experiment alloy after 80% rolling

bYAI(e)). IR, AELAETERLEE 41 (LA T
e IR, I OB 30 BT M LI £ 51
HIARSRL, ISR T RASTBALAR, 172ETE
M I EEB AR 2 G IO, BB 3A
BRI o, A £ G B R TR T LU Taylor v 30K
B,

Ogs = Male\/; (2)

Kb MOh Taylor H4: a« G b IMELREG p
AR RE . Q) PTAN, S7E R, AR
Xof B 4 R IR DU R AEL AR AR

3) [t

ARSI R T R TR [ (1 AR R R
i TS B b Mg IV, Mg W st 1 (1 14 22 42
i TR AL R A, O ) AR AR, R
WA I K T RIS SR g, AT BELRS A5 4 (0 75 A%
JEo [FII, Mg FIEIFEEBOC, Mg #1173k A
(P BE AR, 3 80E G AR RE A SOV s PR
[ Mg i1l i B S AR T R b (8 ] 52Kk
S VAT ) R IR 5 et/ G R NI E A S e i ]
SR . Mg JET I R SR SR TR oy nT3RoR A1)

o, = Hc" 3)

RN

s o W IR TR RIREE . H A n AR 2

h RETE VS RE M IR A dr R Al . AR AN R ] o
A0S A 4 i B = R DURRAEL, S SCAE R 2 A DG S
R SN PV B AU, T 45 A AR K 5
Regi A, () QM)A SO,
FZHIMIERMEWR 3 P, iRPEER 3 nrc it 5
A A DL RN A SR FAFL AR T 80% 7 43
Je AR (R DRRE, TR 4 T & 4 L, WS
Y AR A G RN AR RFLAS TR I R v, 40 it A
AN R A D ] 5 5 A o) 4 S ) DR oy i Rt
JEE R AME 23 5 2 23.3%. 40.4%F11 30.7%, X LLIT{LL

K/(MPa-m'?) d/pm M o G/GPa

b/m p/m? HI(MPa-%") n /%

0.12 1 3 0.3 27

2.86X1071°

9.0x10™ 13.8 1.14 8.5

R4 L ERACHLHT N JE B B < 1 DR

Table 3 Contribution of strengthening mechanism for spray-forming high magnesium aluminum alloy

Deformation/% ops/MPa o4/MPa

o/MPa o/MPa 09,/MPa

80 120 208

158 29 515

og: Contribution value of yield strength.
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EVEW T A dsmtb . AR s A AN [ a2 S 5 <
B BB SR .

1) WS RO B AR B BT IR IR LA R A S L
BOETERE, 1E 673 K HUE R ELHIARTE 80% M AT,
WA IR Ty 2 MR e, L b i A K % 431
) 619 MPa #1 19.8%, SHFEIRAMLL, 73 hlfdim 45%
H198%.

2) JUAT )y 25 T 45 R0 AN 3 8 5)) 25 T 45 ot A2 I 55
BV i R 4 K AR AL AR T v 2 B R 41
AR A Mg 3 5UR B AR RS, R E
R TR T AR AL S AR T B PR ah B I R A

3) IR A SR ] i A 2 B BB
BERRA S RN AR AL AR T o R e T R A AL,
XA T 80% T (1 i IR FEE DO R AMIE 7390 2 120
208 F1 158 MPa.
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Microstructures and mechanical properties of spray-forming high
magnesium aluminum alloy during large strain hot rolling

FAN Cai-he"2, YAN Hong-ge**, PENG Ying-biao', ZHOU Wei', ZHOU Xing-ling'

(1. School of Metallurgical Engineering, Hunan University of Technology, Zhuzhou 412007, China;
2. College of Materials Science and Engineering, Hunan University, Changsha 410008, China;
3. Hunan Provincial Key Laboratory of Spray Deposition Technology and Application,
Hunan University, Changsha 410008, China)

Abstract: The extrusion preform of the spray-forming Al alloy with high Mg content is hot rolled by 1-pass large
deformation based on the conventional rolling technology. By transmission electron microscopy (TEM), electron
backscatter diffractometry (EBSD) and X-ray diffractometry (XRD), the microstructure and mechanical properties of the
alloy were investigated. The results indicate that the density of dislocation and the amount of dislocation cells,
non-equilibrium low angle grain boundaries (LAGB) and subgrains increase with the increase of deformation during the
hot rolling process. At the hot rolling deformation of 80%, the LAGB among the grains with high dislocation density
transforms into high angle grain boundaries (HAGB), a large number of submicron dynamic recrystallization grains form,
and the grains are significantly refined. The tensile strength and elongation at the room temperature of the alloy reach 619
MPa and 19.8%, respectively. The main strengthening mechanisms of the spray-forming Al alloy with high Mg content
during the large hot rolling process are fine grain strengthening, dislocation strengthening and solid solution
strengthening, the contribution of which to the yield strength of the alloy with 80% deformation are 120, 208 and 158
MPa, respectively, reaching 94.4% of the total strength.

Key words: Al-Mg alloy; spray forming; large strain hot rolling; microstructure; mechanical property
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