Article ID: 1003 - 6326(2004) 02 - 0351 - 05

Microstructure of interaction interface between AFSi, ZmAl alloys and $Al_2O_{3p}/6061Al$ composite

XU Zhrwu(许志武), YAN Jiurchun(闫久春), Lŕ Shrxiong(吕世雄), YANG Shrqin(杨士勤) (State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001, China)

Abstract: Interaction behaviors between Al Si, Zrr Al alloys and Al₂O_{3p}/6061Al composite at different heating temperatures were investigated. It is found that Al₂O_{3p}/6061Al composite can be wetted well by AlSr 1, AlSr 4 and Zrr Al alloys and an interaction layer forms between the alloy and composite during interaction. Little Al Si alloys remain on the surface when they fully wet the composite and Si element in Al Si alloy diffuses into composite entirely and assembles in the composite near the interface of Al Si alloy/composite to form a Sr rich zone. The microstructure in interaction layer with Si penetration is still dense. Much more residual Zrr Al alloy exists on the surface of composite when it wets the composite, and porosities appear at the interface of Zrr Al alloy/composite. The penetration of elements Zn, Cu of Zrr Al alloy into composite leads to the generation of shrinkage cavities in the interaction layer and makes the microstructure of Al₂O_{3p}/6061Al composite loose.

Key words: Al₂O_{3p}/6061Al composite; Zrr Al alloy; Alr Si alloy; interaction interface; wettability

CLC number: TG 453.9 Document code: A

1 INTRODUCTION

The discontinuously reinforced metal matrix composite is one of the new structure materials, and has many excellent properties and wide application. With the rapid development in material research and the great potential needs in application, researchers have paid more and more attention to the secondary process for the material such as joining technology, machining technology^[1-4]. In many joining processes, brazing^[5], diffusion^[6-8] and transient liquid phase(TLP) bonding^[9-14] attract considerable attention, and many research results on interaction behavior between the interlayer material and the composite matrix have been obtained. ZHANG et al^[5] found that the low joint strength could be improved by using AFSFMg interlayer. Klehn et al^[9] concluded that increasing the aluminum content in the interlayer would reduce the meltback of the matrix material and form a joint with less reinforcement segregation in weld zone. It was found that Ni interlayer could avoid the production of reinforcement rich zone in the joint, which was attributed to its high diffuse coefficient^[10]. Thus, it is important to research the mechanism of the interaction between the interlayer alloy and the composite to be welded due to the key role of an interlayer in welding aluminum MMCs.

Moshier et al^[15] detected that after the penetration of Si, Zn into SiC_w/6061Al, the distribution of

 ${\rm SiC_w}$ in the composites would be disarranged and ${\rm SiC_w}$ rich zone formed when studying the interaction between AFSi, ZmAl eutectic alloys and ${\rm SiC_w}/6061{\rm Al}$ composite. Little research concerned about the interaction between ${\rm Al_2O_{3p}}/6061{\rm Al}$ composite and AFSi or ZmAl alloys. Therefore, in the present paper the interactions that occur between ${\rm Al_2O_{3p}}/6061{\rm Al}$ composite and BAlSi-1, BAlSi-4 and ZmAl alloys are discussed, with the aim to lay a foundation for bonding ${\rm Al_2O_{3p}}/6061{\rm Al}$ composite.

2 EXPERIMENTAL

The materials used were BAlSr1, BAlSr4, Zm Al alloys with the mass of 0.2 g, and $Al_2O_{3p}/6061Al$ composite made by squeeze casting, which contain 30% Al₂O₃ (volume fraction) particles with an average diameter of 0.4 \(\mu\mathrm{m}\). The chemical compositions of the matrix alloy (6061-T6 alloy) and BAISr 1, BAISr 4, Zn-Al alloys are listed in Table 1 and 2, respectively. All samples with dimension of 25 mm × 30 mm × 2 mm were mechanically polished and then ultrasonically degreased in acetone before heating. The interaction experiments of BAlSr1, BAlSr4 and Zn-Al alloys with Al₂O_{3p}/6061Al composite were conducted in an vacuum furnace ($5 \times 10^{-3} \text{ Pa}$). The AF Si alloy samples were heated to 580 - 630 °C, and held for 1 - 10 min. The Zn-Al alloy samples were heated to 400 - 600 °C, and held for 1 - 5 min. All samples were cooled under vacuum.

1

		Table 1	Chemical compositions of 6061Al alloy			(mass fraction, %)		
М д	Si	Cu	Fe	Мn	Zn	Тi	Ni	Al
1.03	0.75	0. 43	0.36	0. 22	< 0.05	< 0.05	< 0.05	Bal.

Table 2 Chemical compositions and melting point of alloys

Alloy		Chemical composition (mass fraction)/%							
	Si	Cu	Zn	Fe	Мn	М д	Al	Melting point/°C	
BAlSi 1	4.5 - 6.0	< 0.30	< 0.20	< 0.80			Bal.	577 - 629	
BAlSr4	11.0 - 13.0	< 0.30	< 0.20	< 0.80			Bal.	577 - 582	
Zm-Al	0.81	3.22	89.3	0.01	0. 91	0.82	4. 20	382 - 399	

To observe the wetting effect of alloys on the composite, the samples were cut along cross-section, then were polished and etched in a solution of 2 mL HF+ 3 mL HCl+ 5 mL HNO₃+ 250 mL distilled water. The microstructure of the interface between the two materials was examined by scanning electron microscopy (SEM). The element diffusion in the interaction layer was tested by electron probe micro-analysis (EPMA). The chemical composition of the interaction layer was determined by energy dispersive X-ray spectroscopy (EDX). X-ray diffractometry (XRD) was used to analyze the phase construction of the interaction layer.

3 RESULTS AND DISCUSSION

3. 1 AFSi alloy

The temperature is one of the key parameters in the wettability experiments of brazing. At the temperature below 600 °C, it can be found that both BAlSr1 and BAlSr4 alloys could hardly wet Al₂O_{3p}/ 6061Al composite in any holding time. When the temperature rises to 600 °C, it can be seen that BAI-Si-4 alloy could wet the composite, but quite an amount of non-melted BAISi-4 alloy still remains on the surface of the composite. However, BAlSr1 alloy could not wet the composite at 600 °C for any holding duration. When increasing the heating temperature up to (615 ± 5) °C, BAlSi-4 alloy fully wets the composite for any holding duration; BAIS-1 alloy partially wets the composite when the holding time is less than 5 min, and all BAISr1 alloy melts wet the composite when the holding time is beyond 8 min. When the heating temperature exceeds (630 \pm 5) Al₂O_{3p}/6061Al composite can be excellently wetted by BAlSi-1 alloy for any holding duration.

Fig. 1 shows the microstructure of interaction interface between AFSi alloy and composite. It can be found that little AFSi alloy remains on the surface of $Al_2O_{3p}/6061Al$ composite when AFSi alloy fully wets the composite. Meanwhile, AFSi alloy penetrates into $Al_2O_{3p}/6061Al$ composite to a certain depth. It can be also found that the penetration of BAlSi-4 alloy is

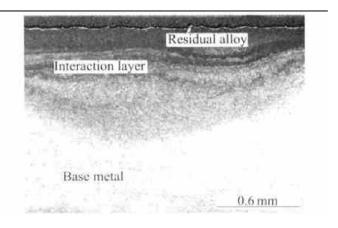


Fig. 1 Morphology of cross-section of interaction interface of AFSi alloy/composite

deeper than that of BAlSi-1 alloy under the same condition. For example, When the temperature is up to 610 °C and the holding time is 5 min, the penetration of BAlSi-4 alloy reaches 1 mm in depth (the largest depth here), while that of BAlSi-1 alloy is only 700 µm.

Fig. 2 shows the microstructure of interaction interface between AFSi alloy and Al₂O_{3p}/6061Al composite. It can be observed that the microstructure of interaction layer keeps compact after the interaction between AFSi alloy and Al₂O_{3p}/6061Al composite in comparison with that of the base metal, and there is no crack or void at the bondline of AFSi alloy/composite. Some shrinkage voids appear in the residual AFSi alloy on the surface of composites when short holding time is used (Fig. 2(a)). This may result from the fact that there is not enough melted alloy to supplement the shrinking position due to the poor fluidity of the melted alloy when the residual AFSi alloy solidifies. When the holding time is extended, shrinkage voids disappear(Fig. 2(b)).

Figs. 3(a) and (b) show the backscattered electron images of interaction interface between AFSi alloy and composite, and Figs. 3(c) and (d) show the Si distribution images corresponding to the position in Fig. 3(a) and (b). It should be noted that almost all Si elements in AFSi alloy diffuse into the

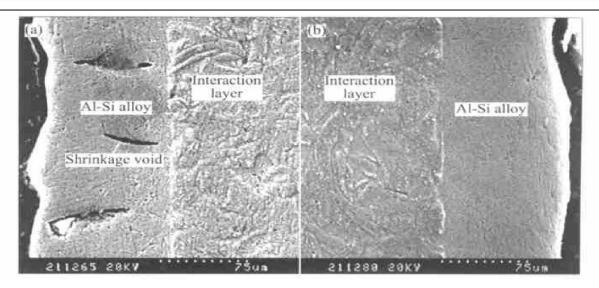


Fig. 2 Microstructures of interaction interface between AFSi alloy and Al₂O_{3p}/6061Al composite (a) —Holding for 2 min; (b) —Holding for 7 min

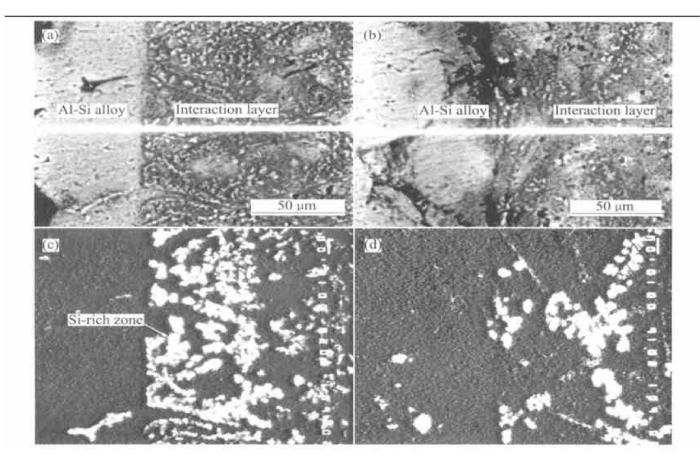


Fig. 3 Back scattered electron images((a) and (b)) and corresponding element distributions((e) and (d)) of interaction interface of AFSi alloy/composite

composite after the interaction between AFSi alloy and composite. And the majority of the element Si assembles in the composite near the interface of AFSi alloy/composite to form a Sirich zone during diffusion (Fig. 3(c)). If prolonging diffusion, the element Si in the composites will penetrate further into the composite, and the Sirich zone will disappear (Fig. 3 (d)).

3. 2 Zrr Al alloy

When the heating temperature is higher than

430 °C, Al₂O_{3p}/6061Al composite can be wetted well by Zm-Al alloy. The wetting area increases with increasing the temperature. The microstructure of cross-section of Zm-Al alloy/composite is presented in Fig. 4. Fig. 4(a) showed the cross section of Zm-Al/composite is divided into three layers: residual Zm-Al alloy layer, interaction layer and untouched base metal layer. Compared with Al-Si samples, more Zm-Al alloys remain on the surface of the composite. There exists a lot of dendrites in the residual Zm-Al alloy,

and porosities appear in the residual alloy close to the interface of ZmAl alloy/composite(Fig. 4(a)). More and larger shrinkage cavities appear in the residual alloy close to the interface of ZmAl alloy/composite at the temperature beyond 550 °C, which results in extreme loosening of ZmAl residual alloy(Fig. 4(b)).

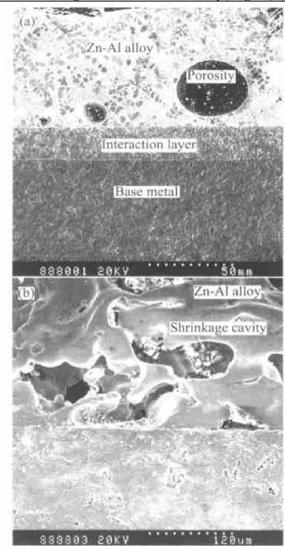


Fig. 4 Microstructures of cross section of ZmAl alloy/composite at different heating temperatures
(a) -460 °C; (b) -600 °C

Fig. 5 illustrates the microstructure of interaction interface between ZmAl alloy and Al₂O_{3p}/6061Al composite. The interaction layer of ZmAl alloy/composite is more uniform than that of Al-Si alloy/composite. Experimental results show that the depth of interaction layer increases with increasing temperature, and is about 100 μ m at 430 $^{\circ}$ C and 500 μ m at 600 $^{\circ}$ C.

Fig. 6 shows the backscattered electron images and element distributions of interaction interface of ZrrAl alloy/composite. Line scanning results of Zn element in Figs. 6(c) and (d) reveal that Zn penetrates deeply into the composite with a great decline in content at the interface of ZrrAl alloy/composite

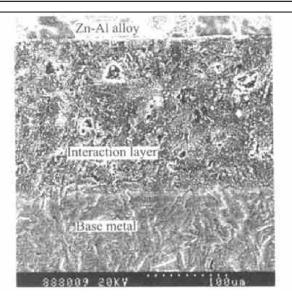


Fig. 5 Microstructure of interaction interface between Zn-Al alloy and Al₂O_{3p}/6061Al composite

and an increase up to a certain value at a penetration depth of 50 µm. From interaction layer to base metal, Zn content increases and keeps invariable in the base metal (Fig. 6(d)). Line scanning results of Cu element are similar to those of Zn. Al content rises greatly at the interface of both Zn-Al alloy/composite and interaction layer/base metal, and obtains the highest in the base metal. Line scanning results in Fig. 6 show that the Alrich phase and Zn(Cu)-rich phase alternatively occur in the residual Zn-Al alloy which accords to the alternative presence of Al and Zn (Cu) content peak value. It should be noted that the diffusion of elements of Zn-Al alloy into composite could not change the uniform distribution of Al₂O₃ particles in the interaction layer and no Al₂O₃ particle segregation is observed in composite (Figs. 6(a) and (b)). Zn(Cu)-rich phase appears in some regions in the interaction layer similar to those in the residual Zn-Al alloy where the element Zn and Cu distributions appear in high peak value, while Al in low peak value(Fig. 6(c)). This phase is testified to be CuZn₅ by XRD analysis. EDX results show that the contents of Zn and Cu in the interlayer are in the range of 38. 04% - 62. 24% and 2. 71% - 10. 07%, respectively.

As shown in Fig. 5 and Fig. 6, it can be found that quite a number of shrinkage cavities exist in the interaction layer, while the microstructure of $Al_2O_{3p}/6061Al$ composite without interaction keeps dense. The appearance of shrinkage cavities is tied up with the penetration of Zr-Al alloy to $Al_2O_{3p}/6061Al$ composite, and they make the microstructure of the interaction layer (it forms on basis of elements Al, Zn, Cu that diffuse from Zr-Al alloy) loose. Evidently, if such a microstructure is produced during joining of $Al_2O_{3p}/6061Al$ composite with alloys, it would weak

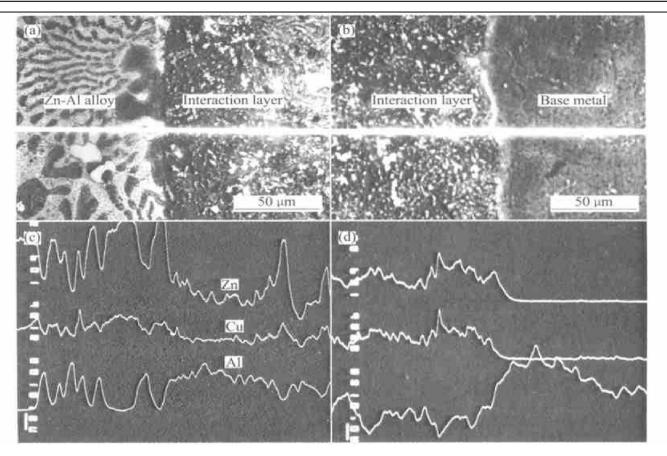


Fig. 6 Back scattered electron images((a) and (b)) and corresponding element distributions((c) and (d)) of interaction interface of Zrr Al alloy/composite

the ultimate strength of bonded joints. So it is necessary to decrease heating temperature in order to limit the penetration of elements Zn, Cu into the composite.

REFERENCES

- [1] Midling O T, Grong Φ. Joining of particle reinforced Al-SiC MMCs[J]. Key Engineering Material, 1995, 104 – 107: 355 – 372.
- [2] Ellis M B D, Gittos M, Threadgill P L. Joining of aluminum base metal matrix composites [J]. International Materials Reviews, 1996, 42(2): 41 58.
- [3] CHEN Maorai, WU Chuarrsong, GAO Jirr qiang. Welding of SiC particle reinforced 6061Al matrix composite with TIG [J]. Trans Nonferrous Met Soc China, 2002, 12(5): 805 – 810.
- [4] LIU Liming, ZHU Meili, XU Desheng, et al. Interface reaction in aluminium matrix composite at laser welding [J]. Trans Nonferrous Met Soc China, 2001, 11(5): 671-675.
- [5] ZHANG X P, QUAN G F, WEI W. Preliminary investigation on joining performance of SiC-reinforced aluminum metal matrix composites (Al/SiC_p-MMC) by vacuum brazing [J]. Composites Part A—Applied Science and Manufacturing, 1999, 30: 823 827.
- [6] LIU Liming, ZHU Meirli, PAN Long-xiu, et al. Studying of micro-bonding in diffusion welding joint for composites [J]. Mater Sci Eng A, 2001, A315: 103-107
- [7] Partridge P G. The role of interlayers in diffusion bonded

- joints in Al MMC[J]. J Mater Sci, 1991, 26: 4953 4960.
- [8] LIU Liming, NIU Jirtai, TIAN Yamhong, et al. Diffusion bonding mechanism and microstructure of welded joint of aluminum matrix composite Al₂O_{3p}/6061 [J]. Trans Nonferrous Met Soc China, 1999, 9(4): 826 830.
- [9] Klehn R, Eagar T W. Joining of 6061 aluminum matrixceramic particle reinforced composites[J]. WRC Bulletin, 1993, 385: 1 - 26.
- [10] Askew J R, Wilde J F, Khan T I. TLP bonding of 2124 aluminum metal matrix composite[J]. Material Science and Technology, 1998, 14: 920 924.
- [11] Li Z, Fearis W, North T H. Particle segregation and mechanical properties in transient liquid phase bonded metal matrix composite material [J]. Material Science and Technology, 1995, 11: 363 - 369.
- [12] MacDonald W D, Eagar T W. Transient liquid phase bonding[J]. Annu Rev Mater Sci, 1992, 22: 23-46.
- [13] Shirzadi A A, Wallach E R. New approaches for transient liquid phase diffusion bonding of aluminum based metal matrix composites [J]. Materials Science and Technology, 1997, 13: 135 142.
- [14] Zhai Y, North T H. Transient liquid phase bonding of alumina and metal matrix composite materials [J]. J Mater Sci, 1997, 32: 1393 - 1397.
- [15] Moshier W C, Ahearn J S, Cooke D C. Interaction of AFSi, AFGe, and Zrr Al eutectic allays with SiC/Al discontinuously reinforced metal matrix composites[J]. J Mater Sci, 1987, 22: 115 - 122.

(Edited by YANG Bing)