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Abstract: The dendrite growth process during the solidification of the AF4. 5% Cu binary alloy was simulated using the
¥ y g
phase field model, proposed by Kim et al. Solute diffusion equation and heat transfer equation were solved simultaneously.

T he effects of the noise on the dendrite growth, solute and temperature profile in the undercooled alloy melt were investr

gated. The results indicate that the noise can trigger the growth of the secondary arms, and increase the highest tempera-

ture and solute concentration, but not influence the tip operating state. The solute and temperature gradients in the tip are

the highest.
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1 INTRODUCTION

In recent years the phase-field method has been
extensively used for simulations of dendrite growth.
Phase-field method is expected a powerful tool for de-
scribing complex phase transitions in norrequilibrium
state. In the phasefield method a new variable @ is
introduced to indicate the physical state of the system
at each point. The phase field model is based on the
Ginzburg-Landau or CahnrHilliard type of free energy
function, and the solution of equation can be used to
describe the complicated morphologies of dendritic
growth without explicitly tracking the complex free
boundaries.

Kobayashil! developed a phasefield involving
anisotropy for simulating the dendrite growth in the
undercooled melt of pure material. For evaluating the
reliability and accuracy of the phase-field, Wheeler et
124 ysed this model to compute dendrite growth
speeds and compared them with the predictions of

al

solvability theory. Karma et al'> ® used the thin in-
terface limit phase field to 2D and 3D dendrite growth
in the solidification of pure metal quantitatively. T he
results agree well with the solvability theory.
Charach, Beckermann and Tong et al'’! investigated
the effect of melt convection on the dendrite growth
in pure material solidification by using the phase
field.

The first phase-field model for alloys was devel
oped by Wheeler et all'” (WBM model) in a thermo-
dvnamicallv consistent wav. In this model. the mix-
ture of solid and liquid both with the same composi-
tion is assumed in the interface region. The phase

field parameters are determined not only in a sharp
interface limit, but also in a finite interface thickness
limit. The model has been used by the original au-
thors "' ™!

cence.

to study solute trapping and the recales-

Recently, Kim et all' have proposed a new
phasefield model for binary alloys ( KKS model).
The model is equivalent with the WBM model, but it
has a different definition of the free energy density for
the interfacial region. The limit of the interface width
in the WBM model disappears. The model has been
used by the original authors to study the microstruc
ture evolution during the rapid solidification of Fe-C,
Fe C-P and A}Si alloys! ™. Seol et al'* developed
the high temperature stress model for continuously
cast steels based on this model, and studied the effect
of the dendritic morphology on the mechanical
strength of carbon steels.

In the present paper, we adopt KKS model '
to study the dendrite growth in solidification of AFCu
alloys, and use a vanishing kinetic coefficient. T he
concentration and temperature equations are solved si-
multaneously.

2 GOVERNING EQUATIONS

2.1 Phasefield equation

In the phase-field model, the state of the phase
is represented continuously by an order parameter,
the phase-field, ®. For example, $= 1, #= 0 and a
finite region in which 0< %< 1 represent solid, liquid
and the interface respectively. The time change of the
phase-field is assumed to be proportional to the varia-
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tion of the free energy functional.

¢ &
0= M se (1)
where M is the phase-field mobility which is related

to the driving force for the interface. The Helmholtz
free energy functional F has the form:

F:J; Tel vers peer)av )

In KKS model, the free energy density is the
sum of the free energies of solid, liquid and a double
well potential in the interface region. The free energy

density is expressed as
FORT)=h(9f (ecs)+ (1= h( )
frCen)+ We( 9 (3)

h( 9= ¥(10- 159+ 6F) (4)
g( 9= P(1- 9° (3)
where h( 9 is the potential function, g( ?) is the

double-well potential, W is the height of the double
well potential, f>(cs) and f"(cL) are the free ener
gies of the solid and liquid phases respectively.

For a dilute alloy, the detailed equation of the
phase-field is given by

ik RT ..
5= M g(0) v P th (9
(1= (1= c1) ,
1 - W
where € is the phasefield parameter, R is the gas

constant, T is the temperature, V., is the molar vol-
ume, and c is the solute composition; the superscript
e shows equilibrium state, the subscripts S and L
show solid and liquid phases respectively.

Usually, the interface energy of metal has
anisotropy, so the anisotropy is introduced in the
phase-field parameter as follows:

g 0)= g 1+ vcos( k0)) (7)
where £ is the mode number; v is the magnitude of
anisotropy; 0 is the angle between the direction of
phase-field gradient and reference axis of the system,
tanf= 9/ 4.

The phase-field parameter of € and W are relat-
ed to the interface energy, O, and the interface
width, 2 X M is related to the kinetic coefficient, B.
Then they are given by

. |6A _6.60

& J2.2% V=) (8)
., €| RT1-k. € e e

M~ = ol V. m. B+DiJ2_W/Q(CS’ ci)

(9)
Y c8, ef) = fol e9)f el el) (el c§)
h(9(1- h(®) .—d®
.[(1— h(Of el §)+ h( Of a(ci) F1- 9
(10)
m . is the equilibrium slope of the liquidus, k.

where

is the equilibrium partition coefficient, and D; is the
diffusion coefficient in the interface region.
2.2 Diffusion equation

The solute diffusion equation is given by:

%?: V’I fe Vfc‘ (11)
where D ( 9 is the solute diffusion coefficient, sub-
scripts f ¢ and f . stand for the first and second deriva-
tives by corresponding variables.

The solute composition in the interface region is
the fraction-weighted sum of solid and liquid composi-
tions. The chemical potentials of solute and solvent
are selected as a thermodynamic variable of con-
straint, and those of solid and liquid phases are as-
sumed to be equal at any point within the interface re-
gion, 1.e.

c= h( ®Pes+ (1- h(P))ecr (12)

W(es(x,t))= HW(en(x, 1)) (13)

The stochastic noise is needed to stimulate the
fluctuations in the solid/ liquid interface region, which
gives rise to most structures observed in real systems.
Here we have incorporated the concentration noise in
the diffusion equation by a simple manner. Specifical-
ly, the noise can be introduced by modifying equation
(11), i.e.

Oc/ 0t 0c/ D1+ 16g( ®) X ® (14)
where X is a random number between — 1 and + 1,
® gives the magnitude of the fluctuation. Note that
the factor 16g( ?) has a maximum value of 1 at ?=
0.5 and drops off rapidly away from the interface.

2.3 Thermal diffusion equation

In this study, the temperature equation is solved
simultaneously using a double grid method. Since the
thermal diffusivity of AF4. 5% Cu alloy is about sev-
eral hundred times larger than that of the solute, the
grid size for temperature calculation is set to be ten
times larger than that for the phase-field and concen-
tration-field calculation in order to save the calculation
time. The latent heat extraction is estimated by sum-
ming up the change of phase-field within the corre-
sponding temperature grid, then the thermal diffusion
equation is obtained as follows:

’ ¢
Q, %;L:kva+ AHZAh(‘P)% (15)
where k is the thermal conductivity, AH is the heat
of fusion per volume, ¢, is the specific heat capacity
and A represents the area ratio of the phase-field grid
to thermal one.

3 CALCULATIONS

In the calculation, Eqns. (6) and (11) were dis-
cretized on uniform grids using an explicit finite dif-
ference scheme. Eqn. (15) was numerically solved
using an alternating direct implicit ( ADI) method,
which is unconditionally stable, irrespective of the
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time step, At, employed. The AF4. 5% Cu alloy is
selected. The physical properties for AF4. 5% Cu al-
loy used in calculation are shown in Table 1.

Table 1 Physical properties of AF4. 5% Cu alloy

Physical properties Value
Interface energy, 0/ (Jem™ %) 0. 093
Melting point, T,/K 933.3
Solute diffusivity (liquid), Dy/(m?*ss™ ")  3.0x10"°
Solute diffusivity (solid), Ds/(m*ss™ ") 3.0x10° 13
Latent heat, L/(kJekg ') 389.0
Slope of liquids, m./(K*mol% ') - 640.0
Specific heat capacity, ¢,/ (kJekg™ '*K™ ") 1.13
Thermal conductivity, k/(Wem™ 'eK™ ") 192.6
Equilibrium distribution coefficient, k. 0.14

The two dimension square calculation area of 750
x 750 grids for the phase-field and solute field and
that of 75 x 75 grids for the thermal field are pre-
pared. The grid sizes of the phase-field and the con-
centration field, and the thermal calculation are 1. 0
x10"* m and 1. 0 x 10" " m respectively. A small
triangle solid of 15 X 15 grids is initially put in the
corner. The equations are solved with 7= 900 K as
initial temperature fixed on the boundary for the ther
mal equation. This is done in order to fit the non
isothermal temperature system to the isothermal case.
The choice of At must be made in such a way that the
equations remain stable under time-step iteration. For
the diffusion equation in two dimensions it can be
shown that At< Ax 2/4DL for stability, so a value of
At= Ax%/5D; has been selected in this study.

We only calculate the quarter of the dendrite be-
cause of the symmetry of the dendrite. The calcula
tion is done in a computer of P4-1. 6GMHz.

4 RESULTS AND DISCUSSION

4.1 Dendrite growth
The dendrite shapes of AF4. 5% Cu alloy are

shown in Fig. 1 for two different noise levels at time

of 0. 16 ms. In Fig. 1(a) there is no noise( W= 0),
the primary dendritic arms are very smooth, and
there are no welldeveloped secondary arms. In Fig. 1

(b) the stochastic noise is imposed ( @= 0.01), the
dendrite has welFdeveloped secondary arms, and the
primary arms become finer. This result shows that
the stochastic noise could trigger the growth of the
secondary arms. The competitive growth of the sec
ondary arms in the solidification is observed. The
sidebranches begin their growth in a direction not
perpendicular to the primary arm, but later, gradualk

(a)

(b

Fig. 1 Change in dendrite shape of

AF%4Cu alloy due to noise
(a) —w=0; (b) —w=10.01

ly develop a growth axis that is perpendicular to the
primary arm. Behind the dendritic tip, the root of
the side arm is significantly narrower than the body of
the side arm. These features are commonly observed
in real dendrites.

The tip position, speed and radius as a function
of time are plotted in Figs. 2 = 4 respectively. Each
figure shows the results for two different noise levels.
The plots show that the tip position, speed and radius
are very similar under two conditions. The results
demonstrate that the concentration noise does not influence
the tip operating state. The plots of the tip speed and radius
show that the computed values of the tip speed and radius
are of a little oscillatory, and the cooperation of

the noise make the computed values tend to be a
700

— Imposing noise
600 | - No noise

0 40 80 120 160

200 280
{100 XAf)

Fig.2 Tip position versus time for dendrite growth
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Fig.3 Tip speed versus time for dendrite growth
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Fig.4 Tip radius versus time for dendrite growth

constant.

It is noted here that using average values of
the tip radius (R= 1.06x% 10" " and speed (v=
0.040 5), we obtain a value for the Peclet number,
Pe = 0. 718, Pe = v
R/2D;. The two dimensional Ivantsov solution,
which does not include capillarity or kinetics, yields
Pe= 0. 725 for AT = 33.3 K. This shows that the

computed values agree well with Ivantsov theory.

w here

4.2 Solute field

The concentration fields for AF4. 5% Cu alloy
dendritically growing into a supercooled melt are
shown in Fig. 5. The results show that the concentra-
tion profiles agree well with the dendrite growth.

Firstly, the spine of the primary arm has a low
concentration, and the mushy regions between the
dendritic secondary arms have the highest concentra-
tion. Secondly, the existence of spines of low concen-
tration on the secondary arms that are as low as the
spines of the primary arms. Thirdly, because the so-
lute diffusivity is much less than the speed of the
boundary transition, the solute, which precipitates

Fig. 5 Concentration field for dendrite growth

at time 0. 16 ms
a) —a= 0; (b) —a= 0.01

from the solid, does not diffuse in time, and the so-
lute gradients form in the interface regions. The tip
speed is the rapidest, therefore, the solute gradients
existed in the interface before the dendritic tip is the
highest, and that in the root of the primary arms is
the smallest.

Fig. 6 shows the solute redistribution of the den-
drite tip during the solidification. The results agree
well with the solute redistributing theory in nomrequi-
librium state involving the diffusion in the solid and
liquid.

20
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Fig. 6 Evolution of solute field in dendrite tip
for different times

4.3 Temperature field

Fig. 7 demonstrates spatial redistribution of the
temperature field for two different noise levels at time
of 0. 16 ms. The location of the hottest point during
the crystal growth varies and in general corresponds
to the tips of those secondary arms which grow to-
wards each other and form a closed liquid pocket.
Melt in this pocket is of the highest temperature due
to the release of the latent heat by these growing sec
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ondary arms. The temperature does not vary much
neither in time nor in space, and the spatial tempera
ture difference does not exceed 0.4 K (Fig. ).

SO0 167

200 125
200 053

S00.041

Fig. 7 Temperature field for dendrite

growth at time of 0. 16 ms
(a) —a= 0; (b) —a= 0.01
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Fig. 8 Maximal temperature of system versus time

(Minimal temperature 7= 900 K is
kept on the boundary all the time)

The maximal value of the system temperature as
a function of time are shown in Fig. 8. Each figure
shows the results for two different noise levels. The
curve of imposing noise is slightly oscillatory because
the temperature is taken at different grid points wher
ever the maximum value occurs. The local peaks oc
cur when two or more sidebranches growing tow ards
each other merge and stop growing and consequently
produce the latent heat. Then another sidebranch
surrounded by hot melt starts to release more latent
heat than the others and becomes the hottest place in
the system. This reflects the change of the tempera-
ture gradient owing to the release of latent heat. The

curve with no noise is smooth, and the maximal value
is less than that of imposing noise. This is because the
stochastic noise could trigger the dendritic growth,
then release more latent heat.

5 CONCLUSIONS

1) The dendrite growing morphologies could be
simulated by using the phase-field method realistical-
ly, the growth of the secondary arms could be simu-
lated by incorporating the concentration noise.

2) The noise could trigger the growth of the sec
ondary arms, and increase the highest temperature in
solid; but not influence the tip operating state. The
computed value of Pelect number agrees well with the
Ivantsov solution. The temperature gradients in the
tip are the highest.

3) The spine of the primary arm has a low con-
centration, and the mushy regions between the den-
dritic secondary arms have the highest concentration.
The solute gradients exist in the interface before the
dendrite tip is the highest.

4) The results of simulation agree well with the
features commonly observed in real solidification of
binary alloy.
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