2016年12月 December 2016

文章编号: 1004-0609(2016)-12-2656-12

含锡二次资源隔膜电积回收锡新工艺试验

彭思尧,杨建广,陈 冰,李树超,雷 杰,李焌源 (中南大学 冶金与环境学院,长沙 410083)

摘 要:针对现行含锡二次资源处理工艺尚存在"流程长、污染重、能耗高"等问题,以锡精炼过程产出的锡铜渣为原料,开展基于隔膜电积锡回收新工艺试验研究。结果表明:在液固比为 5:1、盐酸为 4 mol/L、温度 50~60 ℃ 的条件下,锡铜渣中 98%以上的锡被浸出;在温度为 30 ℃、Na₂S 用量为理论量的 1.3 倍、反应时间 15 min 和 BaCO₃ 用量为理论量的 3 倍的条件下,溶液中的铜、铅可以降低到 50 mg/L 以下。采用隔膜电积技术对净化后液进行锡电积试验研究表明,在阴极液中[Sn²⁺] 80 g/L、盐酸 3 mol/L、电流密度 200 A/m² 及电积温度 40℃的优化条件下,可以得到致密平整的阴极锡,阴极电流效率大于 98%,阴极锡纯度大于 99%,吨锡电耗小于 1200 kW·h。阳极再生的 SnCl₄溶液可以作为浸出剂返回浸出锡铜渣,实现流程的闭路循环。

关键词:锡铜渣;氯化浸出;净化;隔膜电积;锡;清洁工艺中图分类号:TF818文献标志码:A

锡是最早生产和使用的金属之一,广泛用于电子、 化工、航空航天、国防军工等领域^[1]。我国是世界最 重要的锡生产国、消费国和贸易国之一^[2]。随着我国 社会的进步与发展,锡的用量不断增加,相应地含锡 废料也逐年增多。包括锡阳极泥、锡精炼渣、锡电镀 污泥、锡冶炼渣、废焊锡和镀锡钢材等^[3-4]。含锡废渣 富含锡、锌、锑、铜等有价金属,也含砷、镉等有害 元素。如锡阳极泥含 Sn 10%~50%、Pb 8%~30%、Sb 0.8%~2%、As 0.1%~5%(质量分数);锡精炼的浮渣中 含 Sn 50%~65%、Pb 5.0%~10%、Cu 0.1%~10%、As 0.1%~2%、Sb 2.0%~20%等,有些还有 Ta、W、Mo、 Ag 等稀贵金属^[5],对含锡废渣进行资源化、无害化处 理意义重大。

传统冶炼工艺中,炼锡渣的处理方法以火法工艺 为主,主要有还原熔炼法^[6]和挥发法两种。例如,雷 霆^[7]采用熔池熔炼-连续烟化法处理高钨电炉锡渣,锡 挥发率 96%,直收率 93%,弃渣含锡 0.2%,每吨金属 锡煤耗 4.6 t,烟尘含锡 60%;湿法处理工艺主要有酸 浸-熔炼^[8]、焙烧-酸浸^[9-11]、碱浸^[12-13]、熔炼-电解等 工艺。例如,李健宝^[14]用电解工艺处理焊锡渣:先火 法熔炼,得到锡铅合金并铸阳极板,在硅氟酸盐体系 进行电解,得到锡铅合金及阳极泥;张荣良等^[15]以含 锡渣为原料,采用碱溶-浸出-除杂-浓缩结晶工艺直 接制取锡酸钠,锡直收率为 86.3%。此外,还有采用 浮选法处理锡渣^[16-17]:浮选法处理锡硫渣,铜精矿产 率为 27%,含 Cu53%、Sn27%,铜直收率为 80%,锡 精矿产率为 73%,含 Sn78%、Cu4.9%,锡的直收率小 于 88%。

上述含锡废渣处理工艺各具特点,但存在一些问题。熔炼挥发工艺在炼锡炉渣、中矿等锡含量较低原料上有应用,而在锡含量较高的锡铜渣中尚未应用^[18-19]。电解工艺采用的硅氟酸体系成本较高,电流效率低,锡的直收率通常约60%;而焙烧工艺由于锡铜渣中大量金属锡的存在使其软化点低,一般进行多段焙烧才能既不结窑又脱硫,导致焙烧时间很长,处理成本较高;而浮选法仅能得到分离不彻底的铜精矿和锡精矿,锡直收率也不理想。

从综合利用及环保角度来看,研究并开发一种锡 资源清洁、高效回收技术意义重大。近期,本团队对 基于隔膜电积的含锡废渣湿法清洁提锡过程进行了系 列研究^[20-22]。膜电解技术应用前景广阔,在于离子膜 可以将电解池的阴、阳极室隔开,维持极室间良好的 导电性,同时具有电流效率高和产物纯度高的优点。 目前,在废水处理^[23]、提取冶金^[24-25]、电镀电泳和化 合物合成等研究应用领域得到重视。前期研究结果表 明,基于隔膜电积的含锡废渣湿法清洁提锡的新工艺

基金项目: 国家自然科学基金资助项目(51574294, 51174237); 中南大学创新驱动项目(2015CX001)

收稿日期: 2015-10-19; 修订日期: 2016-03-10

通信作者:杨建广,教授,博士,电话: 13975100872; E-mail: jianguang_y@163.com

具有原料适应性强、效率高、能耗低、流程简单等突 出优点:采用常规的工业试剂,全湿法工艺,条件温 和,所得电锡产品质量好;氧化剂可在阳极室再生, 有效利用了电能,整个工艺实现了溶液的闭路循环。 本文作者以锡冶炼过程产出的含锡精炼渣为研究对 象,开展的新工艺条件优化的内容。

1 实验

1.1 原料

本次试验使用的是锡精炼过程产出的锡铜渣,由 广西某锡冶炼厂提供。其主要化学成分采用 ICP-AES 分析结果如表 1 所列。其他所用试验试剂如 HCl、Na₂S 等均为化学纯。

表1 锡铜渣主要化学成分分析

Table 1Chemical composition of tin-copper slag (massfraction, %)

Sn	Pb	Cu	As	Fe	Sb	S	Others
62.2	9.2	16.3	1.3	0.9	0.8	8.5	0.8

1.2 实验方法及原理

基于隔膜电积的锡精炼中间渣处理新工艺流程示 意图如图1所示。主要包括浸出、净化及电积三大工 序。

Fig. 1 Schematic diagram of processing tin secondary resources based on membrane electrodeposition

1) 浸出。在玻璃反应釜中加入一定量的四氯化锡 和盐酸溶液,在一定液固比及温度条件下加入锡铜渣。 反应结束后液固分离,即可得到浸出液及铜渣。SnCl₄ 浸出锡铜渣时,锡铜渣中的锡被 SnCl₄选择性浸出^[26] (如式(1)所示),而其中的铜、锑、砷等基本不被浸出, 仅少量的铜、铅、铁进入溶液。浸出过程锡浸出率(E) 按式(1)计算:

$$\eta = \frac{(m_1 - m_2)}{m} \times 100\%$$
(1)

 $Sn+SnCl_4 \rightarrow 2SnCl_2$ (2)

式中: η 为浸出率; m_1 为浸出液中金属质量; m_2 为浸 出剂中的金属质量;m为原料中金属质量。

2)净化。浸出液净化分两步进行,先加入硫化钠 硫化沉淀除去铜和大部分铅,反应后再向溶液中加入 一定量的钡盐与硫酸除铅。净化过程的反应和净化率 公式如下:

$$\zeta = \frac{(m_a - m_b)}{m_a} \times 100\% \tag{3}$$

$$Cu^{2+} + S^{2-} \longrightarrow CuS \tag{4}$$

$$Pb^{2^{+}}+S^{2^{-}}\longrightarrow PbS \tag{5}$$

$$Ba^{2+} + Pb^{2+} + 2SO_4^{2-} \longrightarrow PbSO_4 \cdot BaSO_4$$
(6)

式中: ζ 为浸出率; m_a 为溶液中的起始金属质量; m_b 为溶液中剩余金属质量。

3)电积。电积过程在阴离子隔膜电解槽中进行。 钛板为阴极,石墨为阳极。极室中采用搅拌器搅拌, 以减轻浓差极化,并根据每小时理论电积锡量向阴极 室中补加一定量锡溶液,阴极电积主要反应为

$$Sn^{2+}+2e \longrightarrow Sn(主反应)$$
 (7)

阳极室中,阳极主要反应为

Sn²⁺−2e→Sn⁴⁺(主反应) (8)
电积过程的电流效率(
$$\eta$$
)公式如下:

$$\eta = \frac{M}{q_{\rm c} I t} \times 100\% \tag{9}$$

式中: M为阴极析出锡的质量, g; q_c 为由 Sn(II)析出 金属锡的电化当量, 2.214g/(A·h); I为电流, A; t为 时间, h。

2 结果与讨论

浸出试验采用前期研究获得的优化条件开展^[21], 即在温度 50~60℃、液固比 5:1、盐酸浓度 4 mol/L 的 条件下氧化浸出锡铜渣。完全反应后,液固分离,所 得浸出液主要化学成分分析如表 2 所列。试验结果表明,锡铜渣中 98%以上的锡被浸出进入到溶液中。而铜、铅、铁等杂质元素浸出率均较低,较好地实现了对锡铜渣中锡的选择性浸出。

表2 锡铜渣浸出液主要化学成分

 Table 2
 Main chemical composition of leaching solution

 (g/L)
 (g/L)

Sn	Cu	Fe	Pb	As	Sb	HCl
203.55	0.76	1.62	1.11	0.03	0.17	128

2.1 净化结果与讨论

浸出液中除 SnCl₂ 外,还含有铜、铅等杂质金属 离子,在进行锡隔膜电积前,有必要降低其含量,以 减轻这些杂质金属离子对锡电积过程的影响,尤其是 铜、铅等离子的还原电位高于或与锡相当,电积时将 放电析出从而降低电锡品质并影响电锡形貌。

2.1.1 硫化除杂

硫化除杂过程以硫化钠溶液为硫化沉淀剂,以溶液中 Cu²⁺、Pb²⁺完全沉淀计算硫化钠的理论用量(见式(2)、式(3))。为避免可能产生的 H₂S 有毒气体,均采取缓慢滴加、强化搅拌、控制溶液用量等方式进行试验。硫化除杂试验主要研究硫化钠用量倍数(相对于理论用量)、反应温度、反应时间对除铜、除铅效果的影响,同时还考察了硫化除杂时锡的损失情况。

1) 硫化钠用量的影响

在温度 30 ℃、反应时间为 60 min 条件下,考察 不同 Na₂S 用量对溶液除铜、铅沉淀率及锡损失率的 影响。试验结果如表 3 所列。

表 3 硫化钠用量对铜、铅的沉淀率及锡的损失率的影响 **Table 3** Effect of dosage of sodium sulfide on Cu, Pb removal ratio and Sn loss

Na ₂ S dosage/times	Cu removal ratio/%	Pb removal ratio/%	Sn loss ratio/%
0.85	66.94	38.85	1.95
1.1	81.56	47.97	2.24
1.3	98.04	47.72	3.99
1.5	98.17	48.22	8.13

由表 3 结果可知,随着 Na₂S 用量的增多,溶液 中铜的沉淀率逐渐增大,当 Na₂S 用量为理论量的 1.3 倍时,Cu²⁺的沉淀率已达 98.04%,继续增加 Na₂S 的 用量,Cu²⁺、Pb²⁺的沉淀率增加不大,反而锡的沉淀 损失率却由 3.99%增大到 8.13%,不利于锡的回收。 综合考虑,确定 Na₂S 用量为理论量的 1.3 倍。

2) 反应温度的影响

在 Na₂S 用量为理论量的 1.3 倍、反应时间 60 min 的条件下,考察不同反应温度对溶液除铜、铅沉淀率 及锡损失率的影响。试验结果如表 4 所列。

表4 温度对铜、铅的沉淀率以及锡的损失率的影响

Table 4	Effect	of reaction	temperature	on	Cu,	Pb	removal
ratio and S	Sn loss						

Temperature/ °C	Cu removal ratio/%	Pb removal ratio/%	Sn loss ratio/%
30	98.04	47.72	3.99
50	91.17	48.21	3.74
70	3.16	49.99	3.57

结果表明,在低温下铜有较高的去除效果。随着 温度的升高,除铜率逐渐降低,而除铅率略增,锡损 失逐渐减少。一般情况下,298 K 时硫化氢在溶液中 的溶解度约为 0.1 mol/L。反应温度过高,硫化氢溶解 度急剧降低,而硫化氢气体大量逸出溶液,反应容器 密闭性不好使得硫化钠损耗严重,所以除铜率急剧降 低到 5%以下,故硫化除铜时温度不宜过高。为了获 得较好的除铜效果,确定反应温度为 30 ℃。

3) 反应时间的影响

在反应温度为 30 ℃、Na₂S 用量为理论量的 1.3 倍的条件下,考察反应时间对铜、铅的沉淀率及锡损 失率的影响,试验结果如表 5 所列。

表5 反应时间对铜、铅沉淀率以及锡损失率的影响

Table 5 Effect of reaction time on Cu, Pb removal ratio andSn loss

Time/ min	Cu removal ratio/%	Pb removal ratio/%	Sn loss ratio/%
15	97.81	50.00	1.39
30	99.04	43.35	2.29
45	98.77	44.50	2.89
60	98.04	43.72	3.99

由表 5 结果可知,反应时间对铜和铅沉淀率影响 不大,且在 15 min 除杂率达到了较高水平,说明硫化 物与铜和铅的反应速率快;而随着时间的延长,除杂 率没有明显提高,锡的损失率增大,因为锡与硫化物 亲和力较弱,随着时间的延长,过量的硫化物与锡结 合,增加了锡的损失。因此,硫化除铜的反应时间不 宜过长,确定为 15 min。

2.1.2 钡盐除铅

硫化除杂后,98%以上的铜被除去,还剩约50%

2659

的铅未除去,电锡前有必要对溶液中的铅进行深度净 化以保证电锡的质量。试验主要研究了钡盐种类、钡 盐用量对铅沉淀率的影响。

1) 钡盐种类的影响

在温度 45 ℃、反应时间 1 h 时、硫酸用量为理论 量的 2 倍时,选取了两种钡盐: BaCl₂和 BaCO₃,比 较除铅效果的差异。BaCl₂和 BaCO₃用量均为理论量 的 3 倍,试验结果如表 6 所列。

表6 钡盐种类对铅沉淀率的影响

Table 6 Ef	ffect of different	barium salt on	Pb removal ratio
------------	--------------------	----------------	------------------

Barium salt	Pb removal ratio/%
BaCl ₂	54.47
BaCO ₃	97.13

从表 6 结果可以看出,同等试验条件下,BaCO₃的铅沉淀率要优于 BaCl₂的,溶液中铅沉淀率可达 97.13%。原因分析为将 BaCO₃加入到溶液中后,会与 溶液中的酸剧烈反应生成 CO₂,气体扰动,使得生成 的硫酸钡晶体粒度更小、活性更强;同时,气泡逸出 起到很好的搅拌作用,使大量细微 BaSO₄晶核迅速分 散到溶液中,更加有利于溶液中的 Pb²⁺能够同步附着 其上形成复盐 PbSO₄·BaSO₄沉淀。而 BaCl₂却由于形 成硫酸钡晶体粒度更大,分散性及活性相较略差,使 得其沉铅率低于 BaCO₃的。故本研究中选定沉铅剂为 BaCO₃。

2) 钡盐用量的影响

在反应温度 45 ℃、反应时间 1 h、硫酸用量倍数 为理论量的 2 倍(硫酸和 BaCO₃ 理论用量按式(4)计 算)、BaCO₃ 为沉铅剂的条件下,考察不同 BaCO₃ 用 量倍数对除铅率的影响,试验结果如表 7 所列。

由表 7 可以看出,随着钡盐用量增多,溶液中铅沉 淀率逐渐增加,在 Ba²⁺用量为理论量的 3 倍时,铅的 沉淀率达 97%以上,再继续增加钡盐用量对除铅没有 明显的效果,故本研究选定钡盐用量为理论量的 3 倍。

|--|

BaCO ₃ dosage/times	Pb removal ratio/%
1	54.76
1.5	63.84
2	84.33
3	97.13
4	98.30
5	98.55

2.1.3 净化综合试验

由前述试验获得的溶液净化条件为:硫化除铜: 温度 30℃,时间 15min, Na₂S 用量为理论量的 1.3 倍; 钡盐除铅: BaCO₃用量为理论量的 3 倍。在此优化条 件下进行 3 次扩大综合试验,试验规模为 1L/次。试 验结果如表 8、表 9 所列。由试验结果可以看出,在 优化试验条件下,溶液中铜和铅去除率达到 99.33%和 97.98%,锡的损失率在 3%以下,净化液中 Cu²⁺及 Pb²⁺ 的浓度小于 0.05g/L。对于其他杂质元素(如 Fe、As、 Sb 等),由于铁与硫的亲合力较弱,硫化沉淀的方法 除铁能力较弱,而砷和锑虽然能与硫结合成稳定的硫 化物沉淀,但其初始的浓度就较低,在除杂过程中有 部分砷和锑会与铜共沉淀,未对其深度净化开展详细 研究。

表8 溶液净化的扩大综合试验结果

Table 8	Results	of co	nfirm	ation	purifica	ation	experiment	ċ.
	10000000	01.00			partie		en per mien	٠

Experiment No.	Cu removal ratio/%	Pb removal ratio/%	Sn loss ratio/%
1	99.77	98.16	2.33
2	99.94	98.69	3.55
3	98.27	97.10	2.69
Average	99.33	97.98	2.86

表9 锡净化液主要化学成分的质量浓度

 Table 9
 Main chemical composition of purified solution (g/L)

Sn	Cu	Fe	Pb	S	As	Sb
190.30	0.01	1.32	0.03	1.74	0.01	0.03

2.2 电积结果与讨论

以净化后液为原料进行锡隔膜电积试验。通过单 因素试验确定电流密度、酸度、锡浓度和温度等条件 对阴极电锡形貌和电积过程能耗指标(阴极电流效率 和槽电压)的影响。

2.2.1 电流密度的影响

在固定条件为阴极液[Sn²⁺]80 g/L、[HCl]2 mol/L、 电解温度 25 ℃时,分别考察不同电流密度分别为100、 150、175、200、250、300 A/m²对阴极成板、阴极电 流效率及槽电压的影响。电积时间为 10h,试验结果 如表 10 所列,所得阴极电锡板外观如图 2 所示。

试验结果表明,电流密度较小时,电流效率较低, 槽电压较小,阴极锡沉积状况较好(见图 2(a)和(b)), 晶须被很好的抑制;随着电流密度的增大,电流效率 增大,槽电压也随之增加,同时阴极所得阴极锡沉积 状况变粗糙,晶须会有一定长度;当电流密度超过

表10 电流密度对锡电沉积的影响

 Table 10
 Effect of different current density on electrodeposition

Current density/ (A·m ⁻²)	Current efficiency/%	Cell voltage/ V	Cathode surface morphology
100	95.24	1.09	Flat and light
150	99.00	1.57	Flat and light
175	98.03	1.59	Flat and whiskers
200	99.80	1.36	Little whiskers
250	99.08	3.27	Some whiskers
300	99.47	3.10	Great whiskers

250 A/m²,电锡板易长粗大的晶须。因为锡属于电化 学反应超电势很小且电极还原速率高的金属,在较大 的电流下电解析出时更容易得到粗糙、树枝状或针状 的沉积物(见图 2(e)和(f)),所以要控制电解的电流密度 不宜过大。综合考虑选取电流密度为 200 A/m²。

2.2.2 电解液酸度的影响

在固定条件为阴极液[Sn²⁺]为 80 g/L、电流密度 200 A/m²、电积温度 25 ℃的条件下,分别考察阴极液 酸度分别为 0.5、1、2、3、4 和 6 mol/L 时,对阴极成 板、阴极电流效率及槽电压的影响。电积时间为 10 h, 试验结果如表 11 所列,所得阴极板外观形貌如图 3 所示。

图 2 不同电流密度条件下所得阴极电锡板形貌

Fig. 2 Tin optical photo under different current densities: (a) 100 A/m²; (b) 150 A/m²; (c) 175 A/m²; (d) 200 A/m²; (e) 250 A/m²; (f) 300 A/m²

表11 阴极液酸度对锡电沉积的影响

 Table 11
 Effect of different acidity in catholyte on electro-deposition

Acidity/ (mol·L ⁻¹)	Current efficiency/%	Cell voltage/V	Cathode surface morphology
0.5	-	-	Scaly surface
1	99.90	2.74	Scaly, many whiskers
2	99.00	1.42	Flat and light
3	97.51	1.24	Flat and light
4	93.20	1.11	Rough
6	92.80	1.16	Rough and dark

试验结果表明,当阴极液酸度较低(0.5~1 mol/L) 时,阴极锡沉积状况较差,多为鳞片、针状晶须(见图 3(a)和(b))。随着酸度的增大(2~3 mol/L),成板状况会 变好,多为平整光亮,晶须较少(见图 3(c)和(d))。酸 度过高(4~6 mol/L),电流效率降低,阴极表面开始有 气泡析出,且在高酸度下所得电锡板表面粗糙发黑, 不平整(见图 3(e)和(f))。因为在酸性条件下,盐酸不仅 起到防止锡离子水解,稳定溶液的作用,还能起到提 供氯离子参与配位反应和传递电荷的作用,降低槽电 压,而过多的酸却又影响表面质量。综合考虑确定阴 极电解液酸度为 3 mol/L 较为适宜。

图 3 不同阴极液酸度条件下所得阴极锡形貌

Fig. 3 Tin optical photo under different acidity in catholyte: (a) 0.5 mol/L; (b) 1 mol/L; (c) 2 mol/L; (d) 3 mol/L; (e) 4 mol/L; (f) 6 mol/L

2662

2.2.3 阴极锡浓度的影响

在固定条件为阴极液酸度 3 mol/L 电流密度 200 A/m²、25 ℃条件下,分别考察阴极锡浓度分别为 20、40、60、80、100、120 g/L 时,对阴极锡沉积状况、阴极电流效率及槽电压的影响。电积时间为 10 h,试验结果如表 12 所列,所得阴极板外观形貌如图 4 所示。

试验结果表明, 阴极液中锡浓度太低(<20 g/L) 时, 阴极锡沉积状况一般,表面粗糙、不光亮; 而随 着阴极液中锡浓度的增大(>40 g/L),成板形貌变好, 多为平整光亮锡板,晶须得到抑制,而电流效率和槽 电压变化不大。综合考虑,进行隔膜电积锡时,电解 阴极液中锡浓度为 80 g/L。

 Table 12
 Effect of different tin concentration in catholyte on electro-deposition

$[Sn^{2+}]/(g\cdot L^{-1})$	Current efficiency/%	Cell voltage/V	Cathode surface morphology
20	95.10	1.67	Scaly surface
40	97.00	1.49	Flat and rough
60	98.60	1.55	Flat
80	99.30	1.48	Flat
100	99.50	1.47	Flat
120	98.70	1.43	Flat and rough

Fig. 4 Tin optical photo under different tin concentrations in catholyte: (a) 20 g/L; (b) 40 g/L; (c) 60 g/L; (d) 80 g/L; (e) 100 g/L; (f) 120 g/L

2663

2.2.4 电解温度的影响

在阴极液[Sn²⁺]为 80 g/L、[HCl]为 3 mol/L、电流 密度 200 A/m²条件下,分别考察温度为 25、35、40、 50 ℃时对阴极成板和阴极电流效率的影响。电积时间 为 10 h,试验结果如表 13 所列,所得阴极电锡板形貌 如图 5 所示。

结果表明,温度较低时,电流效率较高,但容易 长枝晶,表面粗糙,成板状况不好(见图 5(a));随着温 度的升高,电流效率逐渐升高,晶须和瘤状物逐渐减

表13 电解温度对锡电沉积的影响

 Table 13
 Effect of different electrodeposition temperature on electro-deposition

Temperature/ °C	Current efficiency/%	Cathode surface morphology
25	99.49	Rough and whiskers
35	98.11	Rough and light
40	98.93	Rough
50	81.97	Whiskers, rough and dark

少,成板状况变好,温度为 40 ℃时效果最佳(见图 5(c))。温度过高时,电流效率急剧下降,所得电锡板 表面发黑,晶须增多,成板状况变差(见图 5(d))。因 为低温下锡的电化学沉积速率慢且结晶性能差,倾向 于长枝晶,温度提高有利于电化学反应的进行和溶液 传质;而过高的温度会使得阴极锡变黑、光亮度变差。 故确定电积反应温度为 40 ℃。

2.2.5 综合条件试验

通过上述单因素试验法获得的锡隔膜电积的优化 条件如下: 阴极电解液组成为[Sn²⁺] 80 g/L、[HCl] 3 mol/L,电流密度为 200 A/m²,电积温度为 40 ℃。 在此条件下进行锡隔膜电积综合条件试验,电积时间 12 h,试验阴极电流效率达到 98%,平均槽电压为 1.9 V。所得阴极锡沉积状况如图 6(a)所示,所得锡板 的主要化学成分 ICP-AES 分析如表 14 所列。

由试验结果可知,在优化试验条件下,可以获得 形貌良好的电积锡,所得锡板平整致密,晶须得到有 效控制,阴极锡中锡含量大于99%,杂质含量少。图 6(a)表明阴极宏观表现良好,图 6(b)所示的阴极锡

图 5 不同电积温度下所得阴极电锡板形貌

Fig. 5 Tin optical photo under different electrodeposition temperatures: (a) 25 °C; (b) 35 °C; (c) 40 °C; (d) 50 °C

表 14 日	电沉积锡	板的主要	平化学成分	4		
Table 14	Main	chemical	composi	tion of c	athode tin	(mass
fraction,	%)					
Sn	Fa	Zn	Dh	Cu	٨c	D:

Sn	ге	Zn	PD	Cu	As	BI
99.49	0.022	0.001	0.053	0.092	0.001	0.075

图 6 阴极锡板的外观和 SEM 像

Fig. 6 Tin optical photo and SEM image of confirmation experiment: (a) Optical photo; (b) SEM image

SEM 像显示出锡电沉积结晶性好,表现为粒度均匀的 粒状颗粒。从图 7 的阴极锡的 XRD 谱可以看出,阴 极产物中单质锡的衍射峰和标准谱线重合,且没有其 他杂峰出现,这与表 14 中所示的成分分析结果一致, 即阴极产物为锡单质。

2.3 经济技术指标

基于试验数据结果,计算了新工艺回收每一吨锡 所需要的原料费用(不包含设备、循环利用的原料和工 人工资等费用)(见表 15)。同时列举了几种常见的处理 工艺的原材料估算成本,并与本工艺进行了比较(见表 16)。仅从原料费用上看出,本工艺没有昂贵的试剂和

图 7 阴极锡的 XRD 谱

Fig. 7 XRD pattern of resultant Sn plate

表15 隔膜电积工艺的吨锡回收成本

 Table 15
 Cost of per ton tin recovery through membrane

 electrodeposition process

Parameter	Value	Unit price/¥	Cost/¥
Hydrochloric acid	200 kg	0.4	80
DC consumption	1200 kW·h	1	1200
Power consumption	200 kW·h	1	200
Water	2 m ³	1	2
Sodium sulfide	15 kg	3	45
Barium carbonate	15 kg	2	30
Sulfuric acid	10 kg	0.3	3
Total			1560

表16 本工艺与其他工艺的比较

 Table 16
 Comparisons between proposed process and traditional process

Process	Investment	Tin recovery ratio/%	Raw material cost/¥	Environmental
Leaching-electrodeposition process	Medium	98	1560	Friendly
Sulphuration volatilization process	High	85	5000	unfriendly
Roast-leach process	High	90	4000	unfriendly

燃料消耗,大多数溶液可以返回浸出过程循环使用。 投资上也有很大的优势,没有火法工艺的烟气处理问 题,所以环境影响小。

3 结论

 基于隔膜电积技术回收锡的新工艺处理锡铜 渣,经浸出、净化和电积工序,能够得到平整致密阴 极锡板,产品质量好,锡主含量>99%。该新工艺具 有流程短、能耗低、无废水排放等优点,是一种节能 环保的锡二次资源清洁回收新工艺。

2) 浸出液中铜、铅等金属离子可以通过硫化沉淀 和钡盐沉淀的方式除去。溶液净化条件为:硫化除铜: 温度 30 ℃,时间 15 min, Na₂S 用量为理论量的 1.3 倍;钡盐除铅: BaCO₃用量为理论量的 3 倍。在此条 件下,溶液中铜和铅去除率达到 99%和 97%,锡的损 失率在 3%以下,净化后溶液中 Cu²⁺及 Pb²⁺的浓度小 于 0.05 g/L。

3) 获得锡隔膜电积的优化条件: 阴极电解液组 成: [Sn²⁺] 80 g/L, [H⁺] 3 mol/L, 电流密度 200 A/m², 电积温度 40 ℃。此条件下所得阴极锡板平整致密, 电 流效率可达 99%以上, 吨锡直流电耗小于 1200 kW·h, 锡板锡含量 99.49%。

REFERENCES

- [1] 雷 霆,杨志鸿,余宇楠,张报清.锡冶金[M].北京:冶金工 业出版社,2013:19-23.
 LEI Ting, YANG Zhi-hong, YU Yu-nan, ZHANG Qing-bao. Tin metallurgy[M]. Beijing: Metallurgical Industry Press, 2013: 19-23.
- [2] 袁启奇.锡市场分析[J]. 工程设计与研究, 2013(6): 34-37.
 YUAN Qi-qi. Market analysis of the tin[J]. Engineering Design and Research, 2013(6): 34-37.
- [3] 孔 霞,李沪萍,罗康碧,胡 创. 锡废料综合利用的研究进展[J]. 化工科技, 2011, 19(2): 59-63.
 KONG Xia, LI Hu-ping, LUO Kang-bi, HU Chuang. Research advance on comprehensive utilization of the tin scraps[J]. Science & Technology in Chemical Industry, 2011, 19(2): 59-63.
- [4] 赖 浚, 江 渝, 杨红英, 鲁艳梅, 罗 鸥, 张 晓, 崔 涛.
 锡冶炼废料综合利用进展[J]. 云南冶金, 2014, 43(6): 22-27.
 LAI Jun, JIANG Yu, YANG Hong-ying, LU Yan-mei, LUO Ou, ZHANG Xiao, CUI Tao. The comprehensive utilization progress of tin smelting wastes[J]. Yunnan Metallurgy, 2014, 43(6): 22-27.

- [5] 宋兴诚. 锡冶金[M]. 北京: 冶金工业出版社, 2011: 161-195.
 SONG Xing-cheng. Tin metallurgy[M]. Beijing: Metallurgical Industry Press, 2011: 161-195.
- [6] 张圣南,陈 朴,曹永贵,曹永德. 富锡渣还原熔炼锡铅合金 工艺以及还原熔炼反射炉:中国, CN200910227066.3[P].
 2009-10-22.
 ZHANG Shen-nan, CHEN Pu, CAO Yong-gui, CAO Yong-de.

Reduction smelting tin-lead alloy process from the rich tin slag and reduction smelting reverberatory furnace: China, CN 200910227066.3[P]. 2009–10–22.

- [7] 雷 霆. 熔池熔炼-连续烟化法处理高钨电炉锡渣和低品位
 锑矿[D]. 昆明: 昆明理工大学, 2003: 61-75.
 LEI Ting. The bath smelting-continuous fuming process treating high tungsten tin electric furnace slag and low grade antimony mineral[D]. Kunming: Kunming University of Science and Technology, 2003: 61-75.
- [8] 杨洪飚,王文忠,杨茂才.从锡熔炼烟尘生产七水硫酸锌及 粗锡和粗铅的工艺[J].上海有色金属,2012,33(2):69-72.
 YANG Hong-biao, WANG Wen-zhong, YANG Mao-cai. Study on the process of producing heptahydrated zinc sulfate, crude tin and crude lead from tin smelting dust[J]. Shanghai Nonferrous Metals, 2012, 33(2): 69-72.
- [9] 白堂谋,廖 理. 锡精炼硫渣除铜生产实践[J]. 大众科技, 2014, 16(9): 122-123.
 BAI Tang-mou, LIAO Li. Removal copper from sulfur residue producing in the refining process[J]. Popular Science & Technology, 2014, 16(9): 122-123.
- [10] 唐芸生. 锡系统硫渣处理新工艺[J]. 有色金属(冶炼部分),
 2012(12): 16-18.

TANG Yun-sheng. New process to treat sulfur slag from tin smelting system[J]. Nonferrous Metals (Extractive Metallurgy), 2012 (12): 16–18.

- [11] LEE J I, PARK J B, KIM T W, KONG M S, RYU J H. Selective recovery of Sn from copper alloy dross and its heat-treatment for synthesis of SnO₂[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(S1): s157–s161.
- [12] LI Bin, ZHANG Shen-gen, ZHANG Kun, PAN De-an, TIAN Jian-jun, ZHANG Duan-ting. Preparation of pure SnO₂ powders from tin slag of printed circuit boards waste[J]. Rare Metals, 2014, 33(6): 749–753.
- [13] 戴兴征,杨美彦,陈 凯,曾 鹏,李永祥,黄孟阳.从硬锌 渣中综合回收锌铟锡试验研究[J]. 湿法冶金, 2015, 34(5): 394-397.

DAI Xing-zheng, YANG Mei-yan, CHEN Kai, ZENG Peng, LI Yong-xiang, HUANG Meng-yang. Recovering of zinc, indium and tin from hard zinc slag by alkaline-acid cooperating leaching[J]. Hydrometallurgy of China, 2015, 34(5): 394–397.

[14] 李健宝. 焊锡渣双金属电解[J]. 四川有色金属, 2005(3):

39-41.

LI Jian-bao. The duplex metal simultaneous electrolysis of recovery soldering tin slag[J]. Sichuan Nonferrous Metals, 2005(3): 39–41.

- [15] 张荣良,丘克强.从含锡渣中提取锡制取锡酸钠的研究[J]. 矿冶, 2008, 17(1): 34-41.
 ZHANG Rong-liang, QIU Ke-qiang. Research on extracting tin and preparation of sodium Stannate from slag containing tin[J].
- Mining & Metallurgy, 2008, 17(1): 34-41.
 [16] 张 宝,张佳峰,蒋光佑. 浮选法处理锡系统硫渣工艺实践
 [J]. 有色金属, 2010(4): 102-104.
 ZHANG Bao, ZHANG Jia-feng, JIANG Guang-you. Practice of sulfur slag treatment by flotation in tin smelting system[J].
 Nonferrous Metals, 2010(4): 102-104.
- [17] 杨奕旗,邬清平.锡冶炼炉渣铜锡浮选分离工艺研究[J].有 色金属(选矿部分), 2006(2):12-14.
 YANG Yi-qi, WU Qing-ping. Study on seperation technics of copper and stannum concerning stannun's smelt slag[J]. Nonferrous Metals (Mineral Processing Section), 2006(2): 12-14.
- [18] 张洋洋,李一夫,杨 斌,徐宝强,戴永年. 硫渣真空蒸馏的 实验探究[J]. 真空科学与技术学报, 2014, 34(9): 974-977. ZHANG Yang-yang, LI Yi-fu,YANG Bin, XU Bao-qiang, DAI Yong-nian. Recycling by vacuum distillation of sulfur-slag generated in refining of crude tin[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(9): 974-977.
- [19] YANG Bin, KONG Ling-xin, XU Bao-qiang, LIU Da-chun, DAI Yong-nian. Recycling of metals from waste Sn-based alloys by vacuum separation[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1315–1324.
- [20] YANG Jian-guang, TANG Chao-bo, YANG Sheng-hai, HE Jing, TANG Mo-tang. The separation and electrowinning of bismuth from abismuth glance concentrate using a membrane cell[J]. Hydrometallurgy, 2009, 100(1): 5–9.
- [21] YANG Jian-guang, YANG Sheng-hai, TANG Chao-bo .The

membrane electrowinning separation of antimony from a stibnite concentrate[J]. Metallurgical and Materials Transactions B, 2010, 41(3): 527–534.

- [22] 杨建广, 雷 杰, 彭思尧, 李焌源, 何 静, 杨声海, 唐朝波, 陈 永 明. 一种从锡阳极泥中回收锡的工艺:中国, CN201510043995.4[P]. 2015–10–04.
 YANG Jian-guang, LEI Jie, PENG Si-yao, LI Jun-yuan, HE Jing, YANG Sheng-hai, TANG Chao-bo, CHEN Yong-ming. A process of tin recovery from the tin anode slime: China, CN201510043995.4[P]. 2015–10–04.
- [23] 尚广浩,张贵清,高从堦.双极膜电去离子技术处理模拟低浓度含镍废水[J].中国有色金属学报,2014,24(10): 2684-2691.

SHANG Guang-hao, ZHANG Gui-qing, GAO Cong-jie. Treatment of dilute Ni-containing wastewater by electrodeionization with bipolar membrane: Precipitation[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(10): 2684–2691.

- [24] 孟 龙,曲景奎,谢克强,张培育,韩林芯,郭 强,齐 涛, 张国之.采用阴离子膜电解法从红土镍矿常压浸出液中制备 金属镍[J].中国有色金属学报,2015,25(4):1093-1102.
 MENG Long, QU Jing-kui, XIE Ke-qiang, ZHANG Pei-yu, HAN Lin-xin, GUO Qiang, QI Tao, ZHANG Guo-zhi.
 Preparation of Ni from nickel laterite leaching solution by anion membrane electrolysis method[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(4): 1093-1102.
- [25] REN Xiu-lian, WEI Qi-feng, LIU Zhe, LIU Jun. Electrodeposition conditions of metallic nickel in electrolytic membrane reactor[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 467–475.
- [26] 王 筠, 种保超, 周红艳, 谢文雅. 牙膏用二水氯化亚锡的合成[J]. 口腔护理用品工业, 2013, 23(3): 39-40.
 WANG Jun, ZHONG Bao-chao, ZHOU Hong-yan, XIE Wen-ya. The synthesis of the stannous chloride used for the toothpaste [J]. Oral Care Industry, 2013, 23(3): 39-40.

Novel process for tin recovery from stannous secondary resources based on membrane electrodeposition

PENG Si-yao, YANG Jian-guang, CHEN Bing, LI Shu-chao, LEI Jie, LI Jun-yuan

(School of Metallurgy and Environment, Central South University, Changsha 410083, China)

Abstract: In view of the current tin secondary resource treatment processes existing problems, a new process based on membrane electrodeposition was studied to recover tin from tin-copper slag. The results show that under the solid-to-liquid ratio of 5:1, hydrochloric acid of 4 mol/L, temperature of 50–60 °C, 98% tin can be leached from tin-copper slag. Under the conditions of 30 °C, 1.3 times dosage of stoichiometric Na₂S, 15 min duration, and 3 times dosage of stoichiometric BaCO₃, the Cu²⁺, Pb²⁺ in the leach solution can be reduced to below 50 mg/L. The purified solution was subjected to membrane electrodeposition. Under catholyte [Sn²⁺] of 80 g/L, [HCl] of 3 mol/L, current density of 200 A/m² and electrodeposition temperature 40 °C, a compact and smooth cathode tin can be obtained from cathode. The current efficiency is more than 98%, and tin purity is more than 99%, power consumption is less than 1200 (kW·h)/t. The resultant SnCl₄ solution in anode compartment can be reused as leaching agent for leaching, which achieves the closed-circuit circulation process.

Key words: tin copper slag; chloride leaching; purification; membrane electrodeposition; tin; clean process

Foundation item: Projects(51574294, 51174237) supported by the National Natural Science Foundation of China; Project(2015CX001) supported by Innovation Driven Plan of Central South University, China

Received date: 2015-10-19; Accepted date: 2016-03-10

Corresponding author: YANG Jian-guang; Tel: +86-13975100872; E-mail: jianguang_y@163.com

(编辑 王 超)