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Abstract: A new method, named relocation, was proposed to reduce the impact of sensor errors systematically, especially when

available data of sensors are abundant. The procedure includes evaluating the reliability of every sensors datum, processing the initial
location by the credible data, and selecting a set of equations with optimal noise tolerance according to the relative relationship
between the initial location and sensors location, then calculating the final location by k-mean voting. The results obtained in this
research include comparing traditional location method with the presented method in both simulation and field experiment. In the
field experiment, the location error of relocation method reduced 41.8% compared with traditional location method. The results
suggested that relocation method can improve the fault-tolerant performance significantly.
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1 Introduction

The first rock-burst may be observed in 1640 in
Altenbergtin according to the relative record [1]. Since
then, a large number of mines all over the world have
subjected to adverse impacts from seisms. For example,
Kladno Black Mine (Czech) has subjected to 273 mines
seismic event from 1880 to 1894, and Kolar Gold Field
(India), Sudbury Mine (Canada), and Witwatersrand
Mine (South Africa) were also recorded to experience
many seismic subsequently in the 1900s. Now, the world
has seen the severe threat of mine seism such as rock
destabilization, roof  fracture, downfalls and
displacements [2—4]. With the increase of mining depth
in recent years, the number of severe mine seisms is
growing rapidly. It may bring out economic losses,
engineering damage, the gas and coal dust explosion, and
even leads to casualties.

The microseismic (or acoustic emission) monitoring
has been certified to be an effective way to real-timely,
dynamically and continuously monitor the rock pressure
situation, and predict the potential disasters. By
monitoring wave signal (which is generated by rock

failure and recorded by sensors), analyzing and
calculating the data and information of waveform, the
seismic source location and time could be deduced.
According to the principle of the source location, seismic
source localization methods can be divided into two
categories: one is based on three axis sensor, which is
used in the earthquake and ultra-deep drilling operation
commonly, as Fig. 1(a) shows; the other is based on the
time delay of arrival (TDOA), as Fig. 1(b) shows, whose
basic idea is to establish arrival-time equation, and solve
the equation by a certain mathematical method (iterative
method or non-iterative method), then get the source
location and the original time.

The most commonly used source localization
method is the second method (based on the difference of
arrival time) [5,6]. It can be classified into the
non-iterative solution [7,8] and the iterative solution [9]
according to the mathematical method for solving TDOA
function. The most classical iterative algorithm of source
location is Geiger algorithm [9], which is proposed by
Geiger in 1910. Then, some other researchers [10—14]
have made some progress on simplifying the model and
computer programs. This method and its modifications
have been widely used till now. Then, joint epicenter
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Fig. 1 Two kinds of seismic source location methods

determination method [15], relative positioning
method (such as DDA[16]), nonlinear location method
and the simple algorithm [17] have got a rapid develop,
which have improved the precision and stability of
location.

There are a lot of researches on the influence factors
of location accuracy. The sensors array or the seismic
networks station, the sensitivity and precision of sensors,
the difference of arrival time (TDOA), wave velocity
model and the source location algorithm are the key
factors which influence the accuracy of seismic source
localization. Regarding the error from wave velocity
model: In the 1970s, the suppression-subtractive
hybridization (SSH) method is proposed by
CROSSON [18], who makes speed as a variable in the
source localization process, and calculates the source
joint speed. It reduces the error to some extent because of
the proposed speed model. But, the introduction of the
unknown parameter will increase the amount of
calculation and make the solving process not so stable. In
2008, LI and DONG [19,20] proposed a method without
pre-measuring speed, significantly reduced the error
result from velocity measurement. Also, they discussed
the three-dimensional analytical solution of this
problem [21,22]. In terms of the error due to microseism
network, KIJKO [23,24] thought that microseism
network has a significant effect on the source location
accuracy, GONG et al [25] established genetic algorithm
model for large-scale network planning problem by D
value optimization theory; TANG et al [26] and JIA and
LI [27] researched microseismic monitoring network
optimal placement in deep metal mines and coal mines
respectively [26,27]. LI [10] and GE [5,6] verified that
with the increase of the distance between source and
sensors, the location accuracy and stability are
decreasing consistently and nonlinearly [10].

Considering the different importance of each sensor
in location, the relocation method is proposed in this
work. Here, the data of each sensor will be validated
according to the probability and reliability of data, the
erroneous data will be removed prior. And then the part

of some optimal equation groups will be picked out by
the procedure of equations selection. The final location is
considered to be the average result from all selected
high-confidential equation groups.

2 Problem and motivation

Firstly, the problem description and the terminology
of this paper will be given out. The goal of source
location is getting the location of a microseism by sensor
data. Assuming that the location of the source is (x, y, z),
it is an unknown variable, and it is the target of our
research. ¢ denotes the time when the microseism event
generated. It is also unknown, but it can be gotten as long
as the source location is known. The number of sensors
is N, and the location of the ith sensor is (a;, b;, ¢;) (i=1,
2, *>+, N), this is known beforehand. The time when the
microseismic wave arrived the ith sensor is ¢, which is
known. And #—t, named time delay of arrival (TDOA for
short), will be denoted as 7; The velocity of the
waveform is v, which is a constant and can be measured
beforehand. Then, the location of the source can be
transform to a classical propagate problem in the
homogeneous medium as follows.

D, =[(a;—x)* +(b; —y) +(c;—2)° 1> =wt,—1) (1)

It can be transformed by subtracting two equations
(1) with different sensors i and j introduced.

The location of microseism can be gotten from
above equations if the number of sensors is greater than
4 in 3-dimensional space, or the number is greater than 3
in 2-dementional space. There are a lot of researches
about how to solve the Eq. (2), such as Refs. [10,14,20].
In these traditional methods, nearly all sensors data are
used to construct equation with the same weight value.
This will inevitably introduce errors in the following two
steps, so we specifically put forward two strategies to
optimize the calculation results according to these two
steps respectively. 1) Inappropriate data or failed sensors
may bring in error. Some random factors may cause
some abnormal data of sensors, for example, instability
of circuit, field construction, system error or some
human influence. These abnormal data would introduce
considerable errors to the ultimate location. Therefore,
they should be picked out and discarded before
computing. 2) Inappropriate equations may amplify the
measurement error. In practice, it can often be found that
the error of location varies considerably when different
sensor data are used. Figure 2 gives an example, where
solid line is the original hyperbola without errors, and the
dashed line is the hyperbola with noise. In two
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subfigures of Fig. 2, TDOA is the same, but one of the
hyperbola is different, and then the location error makes
a significant difference. From the figure, we can found
that the included angle of two hyperbolae in Fig. 2(a) is
higher than that in Fig. 2(b).

| ® Real hypocenter o Estimated hypocenter |

/ 74
J Same TDOA -

/
/

/ Location error /'

/ /
/ /
S (a) , (b)
Fig. 2 Principle of sensors data effect on location precision:
(a) Configuration 1; (b) Configuration 2

As Fig. 2 shows, if some inappropriate equation
combinations are used in calculation, the sensor error
will be amplified in the final location result.
Therefore, we expect to choose the data with high
reliability and the reasonable combination of equations
with optimal noise tolerance to get the more accurate
microseismic source location, in which, the data with
high reliability could be selected according to the voting
principle and propagation theory. In terms of the
equation selection, is determined the approximate
location of a micro source according to the traditional
method, and equations with optimal noise tolerance are
selected according to the relative position relationship
between the source and sensors, then the exactly source
location is gotten.

3 Model

Here we present a new method named relocation
method to solve the select problem of the optimal sensors
data and equation groups respectively.

3.1 Voting method and constraint method
3.1.1 Voting method

It is assumed that most of the sensor data are normal,
while a little may be exceptional, i.c., with a high error.
Then we can design a method which could identify those
exceptional data by a voting mechanism and get a better
location result. The voting method is described in
Algorithm 1. Here, the location and TDOA of sensors are
known. Then we will search all possible combination of
four sensors (because four sensors are the minimum
number of locating a source in 3-dimentional space) to
get C(N, 4) different locations of the source, as step 1
shows. Then the k-mean method is used to find out a

reliable centre of those possible locations of the source.
Here, reliable centre means that most of the locations are
close to this point. If a location fixed by sensor Sy, S,, S3
and S, belongs to the biggest cluster, then the credit of Sy,
S>, S5 and S, will increase respectively. The outstanding
80% sensors with higher credit value will be kept for
future computation.

Input: Sensor location (x;, y;, z;), TDOA (%), (i, j=1,
2, ==, N)

Output: Source location (a, b, ¢)

Step 1: For any arbitrary selected 4 sensors, get a
source location by solving equation group (2)
with (x;, y;, z) and (¢;). Then M=C(N, 4)
location can be gotten totally.

Step 2: Clustering M location by k-mean method with
K=2, and location similarity is defined as
Euclid distance

Step 3: If radius of the biggest cluster is content with
requirement of precision, then goto step 4,
else K=K+1, goto step 2.

Step 4: If a location within the biggest cluster is fixed
by sensors Sj, S,, S; and Sy, then the credit of
S, S5, Sz and S, will be added one.

Step 5: Ranking all sensors by their credit, and then
pick out outstanding 80% sensors with
higher credit value for future computation.

Step 6: Return the center (a, b, ¢) of the biggest
cluster for the future use.

Algorithm 1 Voting method

3.1.2 Constraint method

Assuming S, and S, are two sensors, O is the
microseismic source. According to the theory that the
sum length of any two edges of a triangle is not less than
the third one, it can be easily known:

{Dl -D, <S,S, 3)

D,-D,<5,S,

where S5, means the distance between two sensors.
If the velocity of the waveform is v, then we can get
the following inequality from Eq. (3) directly.

AYRY
-ty e 22 @)

where S,S,, t1, t,, and v are all known. Therefore, we can
get C(N, 2) constraint inequality totally. If the two
sensors data did not meet the inequality, they would be
removed. The procedure is described in Algorithm 2. In
the algorithm, each pair of sensors data will be checked
to see if they meet the inequality. If not, they will be
deemed as untrustworthy data, and will be removed from
the data set. The return value of algorithm is the reliable
data set.
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Input: Sensor location (x;, y;, z;), Arrival time (2, i=1,
2, =+, Ny), Velocity (v)

Output: Reliable sensor data set Q.

Step 1: i=1; O={1, ***, N};

Step 2: j=i+1;

Step 3: if |t—¢>sqrt[(x—x)*+(i—y)+(z—2)*]/v, then

0=0-1{i.j};

Step 4: j=j+1; if j<Nj, then goto step 3

Step 5: i=i+1; if i<N}, then goto step 2

Step 6: Return set O

Algorithm 2 Constraint method

If constraint method is executed first, it is probable
that data with larger error will make all other data to be
discarded. Therefore, in the process of picking data, the
voting method should be executed first, and then the
constraint method is performed.

3.2 Combination of equations

At least four sensors are needed to compute a
location in 3-dimentional space. Then we will discuss
how the location error will be affected by the distribution
of sensors. Assuming four sensors are So(ao,b0,¢0),
Si(ay,bi,c1), Sy(az,ba,cr), Si(as,bs,cs), respectively, then
we can list the following equations.

D[=d(al', b[, Ci)=V(t,'_t), l=0, 1, 2, 3 (5)
ADi:D,'_Dlz\)(ti_tl), izl, 2, 3 (6)

If we differentiate two sides of Eq. (6) at the same
time, we can get Eq. (7).

dd4p=vdri=(Cy—Co1)dx+(Cip—=Coa)dy+

(CB_CO})dZ, lzl, 23 3 (7)
where

Cy = @ =4
Ox D,
oD; —b,

=t =20 20,1, 2,3 ®)

oy D,

Cs= @ =4
oz D,

Then we rewrite Eq. (7) to array forms as follows.
vdr,=K € (10)
where
dzp=[dz)p dryo dT30]T (11)

e=[dx dx dz]" (12)
Ci=Co Cp=Cp Ci3-Cy

K=\C) -Gy Cp—-Cp Cp—Cy (13)
Gi—Cn Cn-Cp C-Cy

Pseudo-inverse method can be used to solve
Eq. (10), then

e=w(K'K) 'K"dr, (14)

From Eq. (14), mean value of the location error can
be denoted as follows:

E =\(dx)? +(dy)* +(d2)> =\e"e (15)

Because the above equation is nonlinear, there is no
obvious solution. Therefore, simulation is used to get the
closest solution. For the sake of obtaining better
performance sensors, we divide the layout of four
sensors into the following categories and discuss their
merits and drawbacks respectively.

Situation 1: S,5,5,S; in the same plane. Here the
arrangement that four sensors located at four corners of a
square is simulated, the side length of the square is
10 km, dzy=[0.1 ms, 0.1 ms, 0.1 ms]. Figure 3 shows the
mesh graph of £ computed according to Eq. (15). By the
simulation, it is found that singular area exists in plane
S0515,8; If the source is in this area, the error will be
high. So if sensors distributed like this, they should not
be considered to locate the source effectively.

Fig. 3 Error distribution for situation 1

Situation 2: S,S5,5,S; are on the four corners of a
tetrahedron respectively, and the projection of Syto plane
S15,8; locates outside of the triangle S5,S;. Here, we
assign sensors Sy, S, and S; located at three corners of a
square with side length of 10 km, and the projection of S,
to plane S,5,5; locates to the rest corner. dz;=[0.1 ms,
0.1 ms, 0.1 ms]. Figure 4 shows the mesh graph of E
computed according to Eq. (15). By the simulation, it is
found that there exists singular area in and out the
triangle S,5,5; If the source is in this area, the error is
colossal. So, it is not a good choice for locating the
source accurately if sensors distribute like this.

Situation 3: S,5,5,S; are on the four corners of a
tetrahedron, and the projection of S, to plane S.5,5;
locates on the edge of the triangle $,5,S;. Here, we
assign sensors Sy, S, and S; located at three corners of an
equilateral triangle with side length 10 km, and the
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projection of Sy to plane S,5,S; situated on the line of
S1S;. dz=[0.1 ms, 0.1 ms, 0.1 ms]. Figure 5 shows the
mesh graph of E computed according to Eq. (15). By the
simulation, it is found that there exists singular area in
and out the triangle S5,S;. If the source is in this area,
the error is very significant. So, if sensors distribute like
this, they should not be considered to locate the source
effectively.

Fig. 5 Error distribution for situation 3

Situation 4: S,5,5,5; are on the four corners of a
tetrahedron, and the projection of S, to plane S:5,5;
locates inside of the triangle S;5,S;. Here, we assign
sensors S;, S, and S; located at three corners of an
equilateral triangle with side length of 10 km, and the
projection of Sy to plane S,5,S; situated in the center of
triangle S15,5;. drp=[0.1 ms, 0.1 ms, 0.1 ms]. Figure 6
shows the mesh graph of E computed according to
Eq. (15). By the simulation, it is found that it is
convergent when the source is located on the triangle
S15,55. When the source is outside the triangle, the error
is also acceptable. Therefore, four sensors distributed
like this are the best choice for the precise location.

From the above analysis, it is evident that when the
source is located in the tetrahedron S,S5,5,Ss, it has a
better performance. Then, we can design the following
relocation algorithm.

Fig. 6 Error distribution for situation 4

Input: Estimate of source location (a’, b', '), sensor
location (x;, y;, z;), TDOA (¢;)

Output: Source location (a, b, ¢)

Step 1: n=1;

Step 2: Select 4 sensors arbitrary named S, S,, S3, Sy;

if all combination is reached, then go to step 5;

Step 3: if (a', b', ') is in the inside of tetrahedron S,

S5, 83, Sy, then go to step 4; else go to step 2;

Step 4: Use sensors i, S», S3, Sy to locate the source,
and the result denoted as (a,, b,, ¢,);

Step 5: n=n+1; go to step 2;

Step 6: a=sum(a;)/n, b=sum(b;)/n, c=sum(c;/n);

Step 7: Return

Algorithm 3 Process of relocation method

Here, the (@', b', ¢) is gotten from algorithm 1,
sensor location and TDOA are known. All sensor groups
which include exactly four sensors (named S, S5, S3, S,
respectively) are considered by algorithm 3 in step 2; if
(a', b', ") is located inside the tetrahedron §15,55S4, then
we relocate the position of the source by these sensors
and save the result as step 4. When all the sensor
quaternaries are considered, the k-mean method is used
to find out a precise centre of those possible locations of
the source within all saved results and made it as the
return value of the algorithm.

4 Experimental

The experiment has been divided into two parts.
One is the simulation experiment, and the other is the
field experiment. The traditional microseism source
location method such as the global optimization method
is selected as the reference. For the sake of brevity, we
will name them RL(relocation method) and
TL(traditional location method) in the
paragraphs respectively.

ensuing

4.1 Simulation
There are some complicated factors like system
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errors and noise level that cannot be controlled in real
microseism application. Here, synthetized data are used
to verify the relocation method. MATLAB is used to
simulate a scene, and specify the distribution of the
sensor position as shown in Fig. 7. Assume that the
10 km x 5 km x 2 km cubic is an ore body, in which 12 s
are arranged at the corner and assigned to monitor the
vibrated wave. Wave velocity is set as 5.0 km/s. And
then 50 microseismic events are generated in space

A(-5,5,2)

randomly and sequentially. The arrival time of seismic
wave of sensor is calculated by the source location,
sensors location and the assumed velocity.

In order to simulate the actual condition as much as
possible, white noise is added to smear the simulated
seismic wave. Then, these data are used to predict the
source location by relocation algorithm and its
counterpart. Four configures are assigned as Fig. 8 shows.

The experiment result is shown in Fig. 9, it can be

E(0, 5, 0)®

©

w\
|
|
m@ |F(0.0.2)5

O

Fig. 7 Distribution of sensors

H(0,0,0)~

ol | |
ol | I 7[\

Error/ms

Error/ms

Data pair

—— Traditional location

®
L(5,0,0)

Error/ms

Error/ms

Data pair

—s— Relocation

Fig. 8 Location errors when different TDOA are given (here N(a, f) means a normal distribution with mean value o and standard
deviation f): (a) White noise with 1 ms mean value and 1 ms standard deviation; (b) White noise with 1 ms mean value and 1 ms
standard deviation, and a sensor randomly selected with 5 ms error; (c) White noise with 2 ms mean value and 2 ms standard
deviation; (d) White noise with 2 ms mean value and 2 ms standard deviation, and a sensor randomly selected with 8 ms error
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Fig. 9 Boxplot of location errors with different methods and
TDOA errors

found that when N (1 ms, 1 ms) normal TDOA errors is
introduced, the location error of RL reduced by 36.5%
compared with TL. When N (2 ms, 2 ms) is added to all
TDOA, and 8 ms error is added to TDOA of a selected
sensor pair, the location error of RL reduced by 39.1%
than TL method. The result of other situations are shown
in Fig. 9. It is obvious that RL method outperforms TL
methods in each situation. It shows that the RL method
has a better accuracy in simulation.

4.2 Field experiment

In order to prove the validity of the relocation
method in reality, data from microseism monitor system
of Dongguashan Copper Mine is chosen to verify the
precision of the RL algorithm. The monitor system is
called integrated seismic system (ISS), which is

developed by South Africa ISS International Corporation.

18 single component sensors are arranged in three
tunnels to monitoring microseismic events for 24 h for
365 d. Then, 3 blasting events with the known location
are executed. The location coordinate of blast is shown in
Table 1.

We take each blast as a microseismic event and
predict the location of blasts by the arriving time
recorded by sensors. There are 18 sensors deployed in
the mine totally. The location of sensors is shown in
Table 2.

Similar with the simulation part, the relocation
method is compared with the traditional microseism
source location method in field experiment. For each

Table 1 Location of blast experiment

Blast ID X Y VA
1 84528 22556 —753
2 84479 22570 —814
3 84359 22673 —795

Table 2 Location of sensors

Sensor Sensor
Y V4 X Y Z
ID ID

1 84345 22474 —678 9

84591 22453 —862
84349 22271 —862
84429 22332 —863

84157 22717 —737 10
84256 22587 —682 11
84493 22395 —653 12 84509 22391 —862
84299 22861 —764 13 84076 22705 —862
84182 22775 —862
84259 22840 —862

84307 22943 —860

84377 22755 —722 14
84487 22612 —704 15

[ IS I Y B~ VS B S

84580 22489 —693 16

blasting event, the computation is executed 50 times with
random TDOA error. And four noise levels are
considered. The results are compared in Fig. 10. When
N(1 ms, 1 ms) normal TDOA errors exist, the location
error by RL method is reduced by 42.5% than TL method.
When N(2 ms, 2 ms) normal TDOA errors and 8 ms
assumed sensor error exist, the location error of RL
method is reduced by 41.8% compared with TL method.
The results of other situations are shown in Fig. 10. In
general, the RL outperforms TL method and gives more
accurate locating results in the field computation.

351 I

» TL (Traditional location) :

30r = RL (Reloction) |

25| :

g T |

£ 20t *‘ |

E T

& 15} } [
Ty ! I T |
| | O
SH- h lh L.
ol ® I L1 11
N(1,1) N(1,1) N(2,2) N2.2)

with 5 ms error with 8 ms error

Fig. 10 Boxplot of location errors in field experiment
5 Conclusions

1) The location precision of micro-seismic source
can be improved in following ways when there are
abundant sensors data available: I) Removing incredible
data by the constraint of the model; II) Removing the
inappropriate equations that may amplify the sensor error;
IIT) Voting for locations by different sensor groups by
k-mean cluster.

2) The location error of relocation method is
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reduced by 41.8% compared with traditional location

method when error of normal distribution with mean

value 2 ms is added.

3) The

relocation method can improve the

fault-tolerant performance significantly and get more
accurate location results. It will play an important role in
later practical application. In future, we will explore the

use of machine learning in removing both incredible data

and inappropriate equations.
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