

Available online at www.sciencedirect.com



Trans. Nonferrous Met. Soc. China 19(2009) 199-204

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

# Thermodynamic investigation of Fe-Ti-Y ternary system

GONG Wei-ping(龚伟平), CHEN Teng-fei(陈腾飞), LI Da-jian(李大建), LIU Yong(刘 咏)

State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China

Received 5 March 2008; accepted 9 September 2008

**Abstract:** An extensive investigation on the Fe-Ti-Y system was performed via experimental measurement and thermodynamic calculation. The Fe-Ti-Y ternary couples at 1 273 K were prepared with a desire to provide accurate phase relationships needed for the refinement of this ternary phase diagram. And a tentative isothermal section of Fe-Ti-Y at 1 273 K was built based on the experimental information. In the thermodynamic modeling, the thermodynamic parameters for the Ti-Y binary system and the ternary phase in the Fe-Ti-Y system were evaluated. Those for the Fe-Ti and Fe-Y systems from literature were slightly modified for the compatibility. The isothermal sections of Fe-Ti-Y ternary system at 873 K and 1 273 K were calculated. The ternary compound Fe<sub>11</sub>TiY and Fe<sub>2</sub>(Ti, Y) solid solution formed from Fe<sub>2</sub>Ti and Fe<sub>2</sub>Y are detected, which is in good agreement with the literature information.

**Key words:** Fe-Ti-Y; thermodynamic calculation; Fe<sub>11</sub>TiY; diffusion couple

# 1 Introduction

A promising approach for achieving high creep strength and radiation damage resistant alloys is to create a very high density of fine-scale features that act as dislocation obstacles, serve as the dominant nucleation site for small helium bubbles and can promote vacancy-interstitial recombination. A high density of coherent nanometer-scale Y-O-Ti nanoclusters(NCs) are produced by mechanical alloying (MA) Fe-Cr-Ti powders with  $Y_2O_3$  followed by hot consolidation[1–8]. Its high-temperature strength, radiation response, lattice Monte Carlo simulations of nanocluster formation in nanostructured ferritic alloys were studied[5–7].

In the targeted technological application, basic knowledge is required for process development and optimization, in particular the thermodynamic and transport properties of Fe-Cr-Ti powders and their mixtures with  $Y_2O_3$  as well as in the addition of elements. However, these data are scarce and not easily accessible in literatures. As a consequence, intensive efforts are made both on research and development aspects and on data development.

The Fe-Ti-Y system is investigated in this work because it is the subsystem of the Fe-Cr-Ti-Y-O steel and

it has not been thermodynamically evaluated up till now.

#### 2 Evaluation of data from literatures

The information on phase diagram for the binary sub-systems of Fe-Ti-Y is available in Refs.[9-14]. MURRARY[9-10], KUBASCHEQSKI[11] and HARI KUMAR et al[12] evaluated the Fe-Ti system respectively and indicated that there are two stable intermediate phases, FeTi and Fe<sub>2</sub>Ti. The Fe-Y system has been studied quite thoroughly by various investigators and the latest assessment was carried out by ZHANG et al[13]. In the work of ZHANG et al[13], four intermediate compounds Fe<sub>17</sub>Y<sub>2</sub>, Fe<sub>23</sub>Y<sub>6</sub>, Fe<sub>3</sub>Y and Fe<sub>2</sub>Y were detected. According to Ref.[14], the Ti-Y system is a simple eutectic-type phase diagram with limited mutual solubility of components. This work adopted the thermodynamic data from Refs.[10, 13] for Fe-Ti, Fe-Y system, respectively, but made a thermodynamic assessment on the Ti-Y system with the available information.

For Fe-Ti-Y system, a ternary compound  $Fe_{10.8}Ti_{1.2}Y$  was observed by DE MOOIJ and BUSCHOW[15] in the alloys with composition of  $Fe_{12-x}Ti_xY$  homogenized and equilibrated at 1 123 K for 14–21 d. In the work of LIU et al[16], the compound

Fe<sub>10.8</sub>Ti<sub>1.2</sub>Y was confirmed.

# 3 Experimental

#### 3.1 Experimental procedure

Prior to the present experiment, a preliminary thermodynamic calculation for the Fe-Ti-Y system is performed by using the available thermodynamic database. The computed Fe-Ti-Y phase diagram is used to guide the choice of the experimental temperatures. Another reason to conduct the experiment is that even the most detailed measurement[15–16] failed to obtain accurate data on the ternary phases.

Iron (99.95%, mass fraction), titanium (99.5%, mass fraction) and yttrium (99.5%, mass fraction) were used as the starting materials. The binary Fe-Ti couples were first prepared by diffusion welding the elemental bars in a silica capsule back-filled with high purity argon at 1 273 K for 72 h. One of the Fe-Ti couples and a Y block were ground, polished, cleaned, and then swathed together with Mo wires to make a Fe-Ti-Y diffusion couple, which was wrapped in Mo foil. The Fe-Ti-Y diffusion couples as shown schematically in Fig.1 were annealed in a diffusion furnace at (1  $273\pm1$ ) K for 1200 h and subsequently quenched in water.

After standard metallographic preparation, all of the Fe-Ti-Y couples were examined by optical microscopy and scanning electron microscopy (SEM).

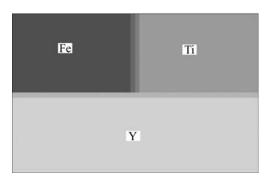
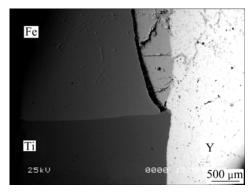




Fig.1 Construction of Fe-Ti-Y diffusion couple

#### 3.2 Experimental results

The microstructure of a Fe-Ti-Y couple annealed at 1 273 K for 1 200 h is shown in Fig.2. The backscattered electron images (BSE) of the Fe-Ti, Fe-Y and Fe-Ti-Y couple annealed at 1 273 K for 1 200 h are given in Figs.3–5, respectively. The isothermal section of Fe-Ti-Y system at 1 273 K is constructed in Fig.6 according to the experimental data.



**Fig.2** Microstructure of ternary couple annealed at 1 273 K for 1 200 h

As shown in Figs.3 and 4, the data close to the boundary binary systems are in accord with the literature ones and the reported binary compounds  $Fe_2Ti$ , FeTi in the Fe-Ti system,  $Fe_2Y$ ,  $Fe_3Y$ ,  $Fe_{23}Y_6$ ,  $Fe_{17}Y_2$  in the Fe-Y system are confirmed by the present experiments. The experimental results show that  $Fe_2Ti$  and  $Fe_2Y$  form a continuous solid solution, namely  $Fe_2(Y, Ti)$ . In the ternary triple, a ternary phase with the composition of approximate  $Fe_9TiY$  is detected. Several works have reported the ternary phase  $Fe_{12-x}Ti_xY$ , so in this work the detected ternary compound is treated as  $Fe_{12-x}Ti_xY$ . More experimental measurements are required.

# 4 Thermodynamic models

In the present modeling, thermodynamic assessments on Ti-Y and Fe-Ti-Y system are carried out.

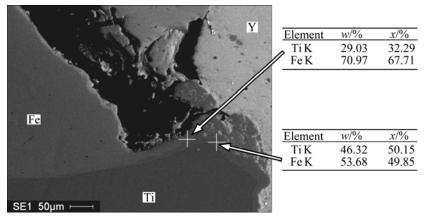



Fig.3 Backscattered electron image (BSE) of Fe-Ti binary couple annealed at 1 273 K for 1 200 h

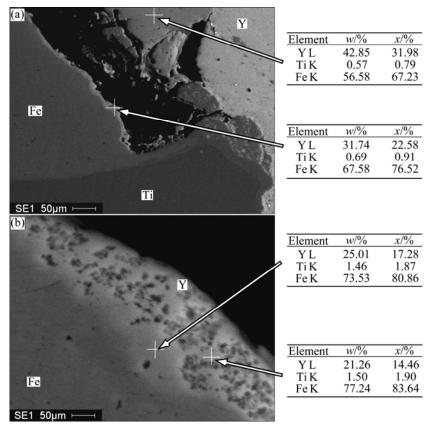



Fig.4 Backscattered electron images (BSE) of Fe-Y binary couple annealed at 1 273 K for 1 200 h

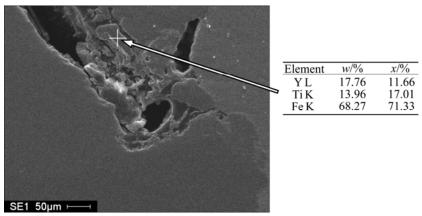



Fig.5 Backscattered electron image (BSE) of Fe-Ti-Y ternary couple annealed at 1 273 K for 1 200 h

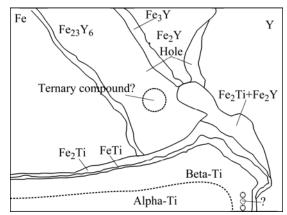



Fig.6 Scheme of Fe-Ti-Y diffusion triple at 1 273 K

The thermodynamic parameters in the Fe-Ti and Fe-Y systems are taken from Refs.[10, 13], respectively. In this work, only the analytical expressions for Gibbs energies of the ternary phases are briefly presented.

## 4.1 Liquid phase

The Gibbs energy of the ternary liquid phase is described by the Redlich–Kister polynomial[17]:

$${}^{\Theta}G^{L}(m) = x^{0}(Fe)G^{L}(Fe) + x^{0}(Ti)G^{L}(Ti) + x^{0}(Y)G^{L}(Y) + RT(x(Fe)\ln x(Fe) + x(Ti)\ln x(Ti) + x(Y)\ln x(Y)) + x(Fe)x(Ti)L^{L}(Fe, Ti) + x(Fe)x(Y)L^{L}(Fe, Y) + x(Ti)x(Y)L^{L}(Ti, Y) + {}^{ex}G^{L}(Fe, Ti, Y)$$
(1)

where R is the gas constant, x(Fe), x(Ti) and x(Y) are the mole fractions of Fe, Ti and Y, respectively. The standard element reference(SER) state[18], i.e. the stable structure of the element at 298 K and  $10^5$  Pa, is used as the reference state of the Gibbs energy. The parameters denoted as  $L_{i,j}^L$  (i, j=Fe, Ti, Y) are the interaction parameters from the binary systems.

The excessive Gibbs energy  ${}^{\mathrm{ex}}G^{\mathrm{L}}(\mathrm{Fe},\mathrm{Ti},\mathrm{Y})$  is expressed as

$${}^{\text{ex}}G^{\text{L}}(\text{Fe}, \text{Ti}, \text{Y}) = x(\text{Fe})x(\text{Ti})x(\text{Y})[x(\text{Fe})L^{\text{L}}(\text{Fe}) + x(\text{Ti})L^{\text{L}}(\text{Ti}) + x(\text{Y})L^{\text{L}}(\text{Y})]$$
(2)

where  $L^{L}(Fe)$ ,  $L^{L}(Ti)$  and  $L^{L}(Y)$  are the ternary interactive parameters to be optimized.

### 4.2 Model used for ternary compound

Due to the very few experimental data, the ternary phase  $Fe_{12-x}Ti_xY$  is treated as a stoichiometric compound with the formula  $Fe_{11}TiY$ . The Gibbs energy for  $Fe_{11}TiY$  relative to the pure elements is expressed by

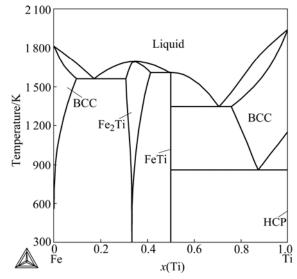
$$^{\Theta}G^{S}(Fe_{11}TiY) = (11/13)^{\Theta}G^{BCC}(Fe) + (1/13)^{\Theta}G^{HCP}(Ti) + (1/13)^{\Theta}G^{HCP}(Y) + A + BT$$
 (3)

where the coefficients A and B are to be evaluated in the present work. The parameters  ${}^{\Theta}G^{BCC}$  (Fe),  ${}^{\Theta}G^{HCP}$  (Ti) and  ${}^{\Theta}G^{HCP}$  (Y) are the Gibbs energies of BCC-Fe, HCP-Ti and HCP-Y, respectively.

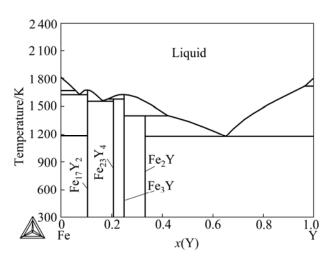
Through taking into account of crystal structure and experimental homogeneities, sublattice models are employed to describe the solid solution phase  $Fe_2(Ti, Y)$ . In accordance with the formula for the sublattice model, the molar Gibbs enrgy of  $Fe_2(Ti, Y)$  can be expressed as

$${}^{\Theta}G_{m}[Fe_{2}(Ti, Y)] = x''(Ti){}^{\Theta}G_{Fe:Ti}[Fe_{2}(Ti, Y)] + x''(Y){}^{\Theta}G_{Fe:Y}[Fe_{2}(Ti, Y)] + x''(Ti)x''(Y) \cdot \{L_{Fe:Ti, Y}^{0} + [x''(Ti) - x(Y)]L_{Fe:Ti, Y}^{1}\}$$
(4)

where x''(Ti) and x''(Y) are the site fractions of Ti and Y in the second sublattice. The two parameters denoted as  ${}^{\Theta}G_{\text{Fe:Ti}}[\text{Fe}_2(\text{Ti},\text{Y})]$  and  ${}^{\Theta}G_{\text{Fe:Y}}[\text{Fe}_2(\text{Ti},\text{Y})]$  are relative to the Gibbs energies of BCC-Fe, HCP-Ti and HCP-Y, respectively, at the same temperature.  $L^i_{\text{Fe:Ti,Y}}(i=0, 1)$  is ternary parameters to be evaluated.


#### **5 Parameter evaluation**

The optimization was conducted using the Thermo-calc software package[19]. The critically selected experimental data were processed with a specific weight factor reflecting the experimental uncertainty. The optimization process consists of five steps.


In the first step, the Gibbs energies of the phases in the Ti-Y system were evaluated by reproducing the experimental phase diagram information. In the next step, the thermodynamic parameters for Fe-Ti and Fe-Y systems were slightly modified from Refs.[10, 13], for the compatibility. In the third step, the Gibbs energy of liquid Fe-Ti-Y mixtures as well as the ternary solid solution phases was calculated, to reproduce the experimental information. An excellent agreement between calculations and experimental data from Refs.[15–16] and this work is obtained. In the fourth step, the Gibbs energy functions of ternary compound Fe<sub>11</sub>TiY were constructed by using the present measurement as well as the literature information. In the last step, all model parameters were assessed simultaneously in a least square optimization to represent the key experimental data within experimental uncertainty.

## 6 Results and discussion

By adopting the thermodynamic parameters in Refs.[10, 13] for the Fe-Ti and Fe-Y binary systems, and combining the present optimized parameters for Ti-Y system and Fe-Ti-Y ternary phases, the thermodynamic properties and phase diagram of Fe-Ti-Y ternary system can be calculated. Figs.7–9 show the calculated phase diagrams for Fe-Ti, Fe-Y and Ti-Y systems, respectively. Fig.10 and Fig.11 show the present calculated isothermal sections of Fe-Ti-Y system at 873 K and 1 273 K, respectively. Compared with the experimental phase diagram at 1 273 K (Fig.6), the good agreement between the experiments and thermodynamic calculation is obtained. Moreover, the present calculation indicates that the ternary compound Fe<sub>11</sub>TiY can exist at temperature between 873 K and 1 273 K.



**Fig.7** Calculated Fe-Ti phase diagram with thermodynamic parameters from Ref.[6]



**Fig.8** Calculated Fe-Y phase diagram with thermodynamic parameters from Ref.[9]

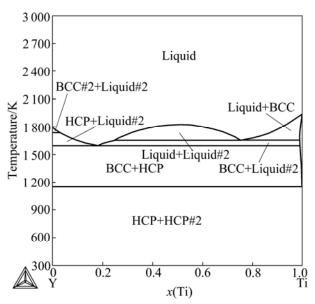



Fig.9 Calculated Ti-Y phase diagram

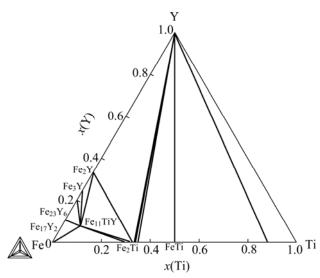



Fig.10 Calculated isothermal section of Fe-Ti-Y at 873 K

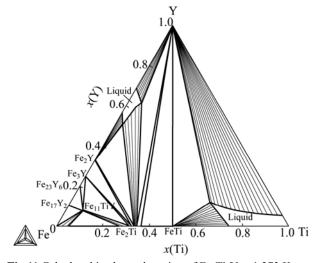



Fig.11 Calculated isothermal section of Fe-Ti-Y at 1 273 K

## 7 Conclusions

On the basis of the literature information, the thermodynamic parameters for the Ti-Y binary system are optimized. On the basis of the thermodynamic parameters for the Fe-Ti and Fe-Y binary systems, a slight modification is made for compatibility. The Fe-Ti-Y ternary diffusion couples at 1 273 K are prepared and analyzed by optical metallurgy and SEM. The thermodynamic optimization and calculation on the Fe-Ti-Y system are carried out to reproduce the information. The ternary phases Fe<sub>2</sub>(Ti, Y) and Fe<sub>11</sub>TiY are detected by both the present experiments and thermodynamic calculation and the good agreement between the calculation and experiments is obtained.

# References

- ALINGER M J, ODETTE G R, HOELZER D T. The development and stability of Y-Ti-O nanoclusters in mechanically alloyed Fe-Cr based ferritic alloys [J] J Nulc Mater, 2004, 329/333: 382–386.
- [2] UKAI S, NISHIDA T, OKUDA T, YOSHITAKE T. R & D of oxide dispersion strengthened ferritic martensitic steels for FBR [J] J Nucl Mater, 1998, 258/263: 1745–1749.
- [3] DEGUELDRE C, CONRADSON S, HOFFELNER W. Characterisation of oxide dispersion-strengthened steel by extended X-ray absorption spectroscopy for its use under irradiation [J]. Computational Mater Sci, 2005, 33: 3–12.
- [4] MILLER M K, KENIK E A, RUSSELL K F, HEATHERLY L, HOELZER D T, MAZIASZ P J. Atom probe tomography of nanoscale particles in ODS ferritic alloys [J]. Mater Sci Eng A, 2003, A353: 140–145.
- [5] ALLEN T R, GAN J, COLE J I, MILLER M K, BUSBY J T, SHUTTHANANDAN S, THEVUTHASAN S. Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation [J]. Journal of Nuclear Materials, 2008, 375(1): 26-37.
- [6] ALINGER M J, WIRTH B D, LEE H J, ODETTE G R. Lattice Monte Carlo simulations of nanocluster formation in nanostructured ferritic alloys [J]. Journal of Nuclear Materials, 2007, 367/370(1):

153-159.

- [7] HOELZER D T, BENTLEY J, SOKOLOV M A, MILLER M K, ODETTE G R, ALINGER M J. Influence of particle dispersions on the high-temperature strength of ferritic alloys [J]. Journal of Nuclear Materials, 2007, 367/370(1): 166–172.
- [8] PAREIGE P, MILLER M K, STOLLER R E, HOELZER D T, CADEL E, RADIGUET B. Stability of nanometer-sized oxide clusters in mechanically-alloyed steel under ion-induced displacement cascade damage conditions [J]. Journal of Nuclear Materials, 2007, 360(2): 136–142.
- [9] MURRY J L. Bull alloy phase diagrams [M]. OH: ASM International, Metals Park, 1981: 320.
- [10] MURRY J L. Phase diagram of binary titanium alloys [M]. MURRY J L, ed. OH: ASM International, Metals Park, 1987: 99.
- [11] KUBASCHEQSKI O. Iron-binary phase diagram [M]. Berlin: Springer-Verlag, 1982: 152.
- [12] HARI KUMAR K C, WOLLANTS P, DELAEY L. Thermodynamic reassessments and calculation of Fe-Ti phase diagram [J]. Calphad, 1994, 18(2): 223–235.

- [13] ZHANG W, LIU G, HAN K. The Fe-Y (iron-yttrium) system [J]. J Phase Equilibria, 1988, 13: 304–308.
- [14] ELLIOTT R P. Constitution of binary alloys [M]. First Supplement, New York: McGraw-Hill, 1965: 865.
- [15] DE MOOIJ D B, BUSCHOW K H J. Some novel ternary ThMn12-type compounds [J]. J Less-Common Metals, 1988, 136: 207–215.
- [16] LIU Zhong-yi, JIN Zhan-peng, XIA Chang-sha. 873 K isothermal section of phase diagram for Y-Fe-Ti ternary system [J]. Scripta Mater, 1997, 37(8): 1129–1134.
- [17] REDLICH O, KISTER A T. Algebraic representation of thermodynamic properties and the classification of solution [J]. Ind Eng Chem, 1948, 40: 345–348.
- [18] DINSDALE A T. SGTE data for pure elements [J]. Calphad, 1991, 15: 317–425.
- [19] SUNDMAN B, JANSSON B, ANDERSSON J O. The Thermo-Cale databank system [J]. Calphad, 1985, 9: 153–190.

(Edited by YANG Bing)