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Abstract: Friction stir welding(FSW) is an innovative solid state joining technique and has been employed in aerospace, rail, 
automotive and marine industries for joining aluminium, magnesium, zinc and copper alloys. The FSW process parameters such as 
tool rotational speed, welding speed, axial force, play a major role in deciding the weld quality. Two methods, response surface 
methodology and artificial neural network were used to predict the tensile strength of friction stir welded AA7039 aluminium alloy. 
The experiments were conducted based on three factors, three-level, and central composite face centered design with full replications 
technique, and mathematical model was developed. Sensitivity analysis was carried out to identify critical parameters. The results 
obtained through response surface methodology were compared with those through artificial neural networks. 
Key words: friction stir welding; aluminium alloy; tensile strength; response surface methodology; artificial neural network 
                                                                                                             
 
 
1 Introduction 
 

FSW is an innovative solid state joining process in 
which the material that is being welded does not melt 
and recast[1]. Due to the absence of parent metal melting, 
the FSW process is observed to offer several advantages 
over fusion welding such as no problems of solidification 
cracks and porosity. Moreover, this technique is useful to 
join high strength aluminium alloys especially 2××× and 
7××× which were considered unweldable by conven- 
tional fusion welding processes[2]. To obtain the desired 
strength, it is essential to have a complete control over 
the relevant process parameters to maximize the tensile 
strength on which the quality of a weldment is based. 
Therefore, it is very important to select and control the 
welding process parameters for obtaining the maximum 
strength. Various prediction methods can be applied to 
define the desired output variables through developing 
mathematical models to specify the relationship between 
the input parameters and output variables. The response 
surface methodology(RSM) is helpful in developing a 
suitable approximation for the true functional 
relationship between the independent variables and the 
response variable that may characterize the nature of the 

joints[3]. It has been proved by several researchers[4−7] 
that efficient use of statistical design of experimental 
techniques, allows development of an empirical 
methodology, to incorporate a scientific approach in the 
fusion welding procedure. 

Recently, in the fields of materials joining, 
computer aided artificial neural network(ANN) modeling 
has gained increased importance. DUTTA et al[8] 
modeled the gas tungsten arc welding process using 
conventional regression analysis and neural 
network-based approaches and found that the 
performance of ANN was better compared with 
regression analysis. ATES et al[9] presented the use of 
artificial neural network for prediction of gas metal arc 
welding parameters. OKUYUCU et al[10] showed the 
possibility of the use of neural networks for the 
calculation of the mechanical properties of friction stir 
welded(FSW) aluminium plates incorporating process 
parameters such as rotational speed and welding speed. 

Even though sufficient literature is available on 
friction stir welding of aluminium alloys, no systematic 
study has been reported so far to correlate the process 
parameters and tensile properties of friction stir welded 
aluminium alloy joints. Hence, in this investigation, the 
design was used to conduct the experiments for exploring 
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the interdependence of the process parameters and 
second order quadratic model for the prediction of tensile 
strength was developed from the data obtained by 
conducting the experiments. The results obtained through 
response methodology are compared with those through 
artificial neural network. 
 
2 Experimental 
 
2.1 Identifying important parameters 

From the literature[11] and the previous work 
[12−13] done in our laboratory, among many 
independently controllable primary and secondary 
process parameters (as shown in Fig.1) affecting the 
tensile strength, the primary process parameters viz 
rotational speed(N), welding speed(S), and axial force 
(F), were selected as process parameters for this study. 
The rotational speed(N), welding speed(S), and axial 
force(F) are the primary parameters contributing to the 
heat input and subsequently influencing the tensile 
strength variations in the friction stir welded aluminium 
alloy joints. 
 
2.2 Finding working limits of parameters 

A large number of trial runs were carried out using 
6 mm-thick rolled plates of AA7039 aluminium alloy to 
find out the feasible working limits of FSW process 
parameters. The chemical composition and mechanical 
properties of AA7039 aluminium alloy are presented in 
Tables 1 and 2. Different combinations of process 
parameters were used to carry out the trial runs. This was 
carried out by varying one of the factors while keeping 
the rest of them at constant values. The working range of 
each process parameter was decided upon by inspecting 
the macrostructure (cross section of weld) for a smooth 
appearance without any visible defects such as tunnel 

Table 1 Chemical composition of base metal (mass fraction, %) 

Zn Mg Mn Fe Si Cu Cr Ti Al

3.62 2.49 0.18 0.28 − 0.1 − − Bal.

 
Table 2 Mechanical properties of base metal 

Yield 
strength/

MPa 

Ultimate 
tensile 

strength/MPa

Elongation/ 
% 

Reduction in
cross sectional

area/% 

Hardness
(Hv) 

304 383 15.0 10.25 130 

 
defect, pinhole, kissing bond, lazy S. From the above 
inspection, the following observations were made: 

1) When the rotational speed was lower than 1 200 
r/min, wormhole at the retreating side of weld nugget 
was observed (Fig.2(a)) and it may be due to insufficient 
heat generation and insufficient metal transportation; on 
the other hand, when the rotational speed was higher 
than 1 600 r/min, tunnel defect was observed (Fig.2(b)) 
and it may be due to excessive turbulence caused by 
higher rotational speed. 

2) Similarly, when the welding speed was lower 
than 22 mm/min, pin holes type of defect was observed 
(Fig.2(c)) due to excessive heat input per unit length of 
the weld and no vertical movement of the metal; when 
the welding speed was higher than 75 mm/min, tunnel at 
the bottom in retreating side was observed (Fig.2(d)) due 
to inadequate flow of material caused by insufficient heat 
input. 

3) When the axial force was lower than 4 kN, tunnel 
and crack like defect at the middle of the weld cross 
section on retreating side was observed (Fig.2(e)) due to 
the absence of vertical flow of material caused by 
insufficient downward force; when the axial force was 
increased beyond 8 kN, a large mass of flash and 
excessive thinning was observed (Fig.2(f)) due to higher 
heat input. 

 

 
Fig.1 Cause and effect diagram 
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Fig.2 Cross sectional macrostructures of joints: (a) 1 100 r/min; (b) 1 700 r/min; (c) 15 mm/min; (d) 100 mm/min; (e) 3 kN; (f) 9 kN 
 

The chosen levels of the selected process 
parameters with their units and notations are presented in 
Table 3. 
 
Table 3 Important FSW process parameters and their levels for 
AA7039 aluminum alloy 

Parameter 
Level 

(−1) (0) (+1) 
Rotational speed, N/(r·min−1) 1 200 1 400 1 600
Welding speed, S/(mm·min−1) 22 45 75 

Axial force, F/kN 4 6 8 
 
2.3 Conducting experiments 

The rolled plates of 6 mm in thickness were cut into 
the required sizes (300 mm× 100 mm) by power 
hacksaw cutting and milling. The design matrix chosen 
to conduct the experiments was a central composite face 
centered design, which is listed in Table 4. Square butt 
joint configuration was prepared to fabricate FSW joints. 
A non-consumable rotating tool made of high carbon 
steel was used to fabricate FSW joints. An indigenously 
designed and developed machine (15 hp; 3 000 r/min; 25 
kN) was used to fabricate the joints. The welded joints 
were sliced (as shown in Fig.3(a)) using a power 
hacksaw and then machined to the required dimensions 
as shown in Fig.3(b). American Society for Testing of 
Materials (ASTM E8M-04) guidelines were followed for 
preparing the test specimens. Three tensile specimens 
were prepared from each joint to evaluate the transverse 
tensile strength. Tensile test was carried out in 100 kN, 
electro-mechanical controlled Universal Testing Machine 
(Maker: FIE-Bluestar, India; Model: UNITEK−94100) 
and the average of the three results is presented in Table 
4. 

 
Fig.3 Scheme of welding with respect to rolling direction and 
extraction of tensile specimens (a) and dimensions of flat 
tensile specimen (b) (unit: mm) 
 
3 Development of mathematical model 
 
3.1 Response surface methodology 

Response surface methodology(RSM) is a 
collection of mathematical and statistical technique 
useful for analyzing problems in which several 
independent variables influence a dependent variable or 
response and the goal is to optimize the response[14]. In 
many experimental conditions, it is possible to represent 
independent factors in quantitative form as given in 
Eq.(1). Then these factors can be thought of as having a 
functional relationship or response as follows: 
 
Y=Φ(x1, x2, …, xk)±er                         (1) 
 
Between the response Y and x1, x2, … , xk of k 
quantitative factors, the function Φ is called response 
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Table 4 Experimental design matrix and results 

Std Run 
Coded value  Real value Tensile 

strength/MPaN S F  Rotational speed/(r·min−1) Welding speed/(mm·min−1) Axial force/kN 

1 15 −1 −1 −1  1 200 22 4 180 

2 9 +1 −1 −1  1 600 22 4 238 

3 8 −1 +1 −1  1 200 75 4 170 

4 7 +1 +1 −1  1 600 75 4 211 

5 10 −1 −1 +1  1 200 22 8 200 

6 18 +1 −1 +1  1 600 22 8 224 

7 5 −1 +1 +1  1 200 75 8 209 

8 17 +1 +1 +1  1 600 75 8 214 

9 1 −1 0 0  1 200 45 6 255 

10 16 +1 0 0  1 600 45 6 292 

11 11 0 −1 0  1 400 22 6 258 

12 12 0 +1 0  1 400 75 6 243 

13 3 0 0 −1  1 400 45 4 296 

14 20 0 0 +1  1 400 45 8 298 

15 2 0 0 0  1 400 45 6 317 

16 13 0 0 0  1 400 45 6 315 

17 4 0 0 0  1 400 45 6 309 

18 14 0 0 0  1 400 45 6 311 

19 6 0 0 0  1 400 45 6 312 

20 19 0 0 0  1 400 45 6 314 

 
surface or response function. The residual er measures 
the experimental errors. For a given set of independent 
variables, a characteristic surface is responded. When the 
mathematical form of Φ is not known, it can be 
approximate satisfactorily within the experimental region 
by polynomial. In the present investigation, RSM has 
been applied for developing the mathematical model in 
the form of multiple regression equations for the quality 
characteristic of the friction stir welded AA7039 
aluminium alloy. In applying the response surface 
methodology, the independent variable was viewed as a 
surface to which a mathematical model is fitted. 

The second order polynomial (regression) equation 
used to represent the response surface Y is given by[15] 

r
2

0 exxbxbxbbY jiijiiiii ++++= ∑∑∑        (2) 

and for three factors, the selected polynomial could be 
expressed as 
 
σ=b0+b1(N)+b2(S)+b3(F)+b11(N2)+b22(S2)+b33(F2)+ 

b12(NS)+b13(NF)+b23(SF)                     (3) 
 

In order to estimate the regression coefficients, a 
number of experimental design techniques are available. 
In this work, central composite face centered design 
(Table 4) was used which fits the second order response 

surfaces very accurately. Central composite face centered 
(CCF) design matrix with the star points being at the 
center of each face of factorial space was used, so α= ±1. 
This variety requires three levels of each factor. CCF 
designs provide relatively high quality predictions over 
the entire design space and do not require using points 
outside the original factor range. The upper limit of a 
factor was coded as +1, and the lower limit was coded as 
–1. All the coefficients were obtained applying central 
composite face centered design using the Design Expert 
statistical software package. After determining the 
significant coefficients (at 95% confidence level), the 
final model was developed using only these coefficients 
and the final mathematical model to estimate tensile 
strength is given: 
 
Tensile strength(σ)={311.44+16.50(N)–5.30(S)+5.00(F)− 

4.50(NS)−8.75(NF)+4.50(SF)−35.59N2− 
58.59S2−12.09F2                          (4) 

 
3.2 Checking adequacy of model 

The adequacy of the developed model was tested 
using the analysis of variance(ANOVA) technique and 
the results of second order response surface model fitting 
in the form of analysis of variance (ANOVA) are given 
in Table 5. The determination coefficient(R2) indicates 
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Table 5 ANOVA results for tensile strength (only significant terms) 

Source Sum of squares df Mean square F value p-value probability＞F 

Model 44 763.17 9 5 307.02 342.33 ＜0.000 1 

Rotational speed, N 2 722.50 1 2 722.50 175.61 ＜0.000 1 

Welding speed, S 280.90 1 280.90 18.12 0.001 7 

Axial force, F 250.00 1 250.00 16.13 0.002 5 

NS 162.00 1 162.00 10.45 0.009 0 

NF 612.50 1 612.50 39.51 ＜0.000 1 

SF 162.00 1 162.00 10.45 0.009 0 

N2 3 483.46 1 3 483.46 224.70 ＜0.000 1 

S2 9 440.46 1 9 440.46 608.95 ＜0.000 1 

F2 402.02 1 402.02 25.93 0.000 5 

Residual 155.03 10 15.50   

Lack of fit 113.03 5 22.61 2.69 0.150 6 

Pure error 42.00 5 8.40   

Corrected total 47 918.20 19    

Standard deviation 3.94 R2=0.969 9 
Mean 258.85 Adjusted R2=0.953 9 

Coefficient of variation 1.52 Predicted R2=0.952 2 
Press 758.28 Adequate R2=50.94 0 

 
the goodness of fit for the model. In this case, the value 
of the determination coefficient (R2=0.969 98) indicates 
that only less than 3% of the total variations are not 
explained by the model. The value of adjusted 
determination coefficient (adjusted R2=0.953 9) is also 
high, which indicates a high significance of the model. 
Predicted R2 is also in a good agreement with the 
adjusted R2. Adequate precision compares the range of 
predicted values at the design points to the average 
prediction error. At the same time a relatively lower 
value of the coefficient of variation (CV=1.52) indicates 
improved precision and reliability of the conducted 
experiments. 

The value of probability ＞F in Table 5 for model 
is less than 0.05, which indicates that the model is 
significant. In the same way, rotational speed(N), 
welding speed(S) and axial force(F), interaction effect of 
rotational speed with welding speed, interaction effect of 
rotational speed with axial force(NF), interaction effect 
of welding speed with axial force(SF) and second order 
term of rotational speed(N), welding speed(S) and axial 
force(F) have significant effect. Lack of fit is non 
significant as it is desired. The normal probability plot of 
the residuals for tensile strength shown in Fig.4 reveals 
that the residuals are falling on the straight line, which 
means the errors are distributed normally[16]. All the 
above consideration indicates an excellent adequacy of 
the regression model. Each observed value is compared 
with the predicted value calculated from the model in 
Fig.5. 

 
Fig.4 Normal probability plot of residuals for tensile strength 
 

 
Fig.5 Plot of actual vs predicted response of tensile strength 
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3.3 Optimising parameters 
Contour plots show distinctive circular shape 

indicative of possible independence of factors with 
response. A contour plot is produced to visually display 
the region of optimal factor settings. For second order 
response surfaces, such a plot can be more complex than 
the simple series of parallel lines that can occur with first 
order models. Once the stationary point is found, it is 
usually necessary to characterize the response surface in 
the immediate vicinity of the point by identifying 
whether the stationary point found is a maximum 
response or minimum response or a saddle point. To 
classify this, the most straightforward way is to examine 
through a contour plot. Contour plots play a very 
important role in the study of the response surface. By 
generating contour plots using software for response 
surface analysis, the optimum is located with reasonable 
accuracy by characterizing the shape of the surface. If a 
contour patterning of circular shaped contours occurs, it 
tends to suggest independence of factor effects while 
elliptical contours as may indicate factor interactions[17]. 
Response surfaces have been developed for both the 
models, taking two parameters in the middle level and 
two parameters in the X and Y axis and response in Z axis. 
The response surfaces clearly reveal the optimal response 
point. RSM is used to find the optimal set of process 
parameters that produce a maximum or minimum value 
of the response[18]. In the present investigation the 
process parameters corresponding to the maximum 
tensile strength are considered as optimum (analyzing the 
contour graphs and by solving Eq.(4)). Hence, when 
these optimized process parameters are used, then it will 
be possible to attain the maximum tensile strength. 

Fig.6 presents three dimensional response surface 
plots for the response tensile strength obtained from the 
regression model. The optimum tensile strength is 
exhibited by the apex of the response surface. Fig.7(a) 
exhibits almost a circular contour, which suggests 
independence of factor effect namely rotational speed. It 
is relatively easy by examining the contour plots 
(Figs.7(b) and 7(c)), that changes in the tensile strength 
are more sensitive to changes in rotational speed than to 
changes in welding speed and axial force. When welding 
speed is compared with axial force at a constant 
rotational speed of 1 400 r/min, welding speed force is 
slightly more sensitive to changes in tensile strength as 
illustrated in contour plot (Fig.7(c)). Interaction effect 
between the factors rotational speed and welding speed, 
rotational speed and axial force, and welding speed and 
axial force on tensile strength also exists, which is 
evidenced from the contour plot. Increase in rotational 
speed resulted in drop in initial axial force with 
increasing time[19]. The interaction effect between 
rotational speed and axial force has more significance than 

 

  
Fig.6 Response plots of process parameters on tensile strength 
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Fig.7 Contour plots of process parameters on tensile strength 

the interaction effect between rotational speed and 
welding speed, welding speed and axial force. Predicted 
optimum tensile strength obtained from the response 
surface and contour plots by using a rotational speed of  
1 460 r/min, welding speed of 40 mm/min, and axial 
force of 6.5 kN is 311 MPa. To demonstrate the validity 
of the model, three experiments were conducted at the 
optimum values of process parameters and average 
tensile strength of friction stir welded AA7039 
aluminium alloy was found to be 319 MPa, which shows 
the excellent agreement with the predicted values. 
 
3.4 Sensitivity analysis 

Sensitivity analysis, a method to identify critical 
parameters and rank them by their order of importance, 
is paramount in model validation where attempts are 
made to compare the calculated output to the measured 
data. This type of analysis can study which parameter 
must be most accurately measured, thus determining the 
input parameters exerting the most influence upon model 
outputs[20]. Mathematically, sensitivity of a design 
objective function with respect to a design variable is the 
partial derivative of that function with respect to its 
variables. To obtain the sensitivity equation for rotational 
speed, Eq.(4) is differentiated with respect to rotational 
speed. The sensitivity equations (5), (6) and (7) represent 
the sensitivity of tensile strength for rotational speed, 
welding speed and axial force, respectively. 
 

NFS
N

18.7175.85.456.16 −−−=
∂
∂σ              (5) 

SFN
S

18.1175.45.430.5 −−−−=
∂
∂σ             (6) 

SSN
F

18.245.475.800.5 −−−=
∂
∂σ               (7) 

 
In this study, it is aimed to predict the tendency of 

tensile strength due to a small change in process 
parameters for FSW process. Sensitivity information 
should be interpreted using mathematical definition of 
derivatives. Namely, positive sensitivity values imply an 
increment in the objective function by a small change in 
design parameter whereas negative values state the 
opposite[21]. Sensitivities of process parameters on 
tensile strength are presented in Table 6. Fig.8 shows the 
sensitivity of rotational speed, welding speed and axial 
force respectively on tensile strength. The small variation 
of rotational speed causes large changes in tensile 
strength when the speed increases. The results reveal that 
the tensile strength is more sensitive to rotational speed 
than welding speed and axial force. 
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Table 6 Tensile strength sensitivities of process parameters (S= 
45 mm/min) 

Axial 
force/ 

kN 

Rotational 
speed/ 

(r·min−1) 

Tensile 
strength/ 

MPa 

Sensitivity 

∂σ/∂N ∂σ/∂S ∂σ/∂F

4 
1 200 215 96.43 3.7 37.93
1 400 296 25.25 −0.8 29.18
1 600 269 −45.93 −5.3 20.43

6 
1 200 255 87.68 −0.8 13.75
1 400 317 16.5 −5.3 5.00 
1 600 292 −54.68 −9.8 −3.75

8 
1 200 246 78.93 −5.3 −10.43
1 400 298 7.75 −9.8 19.18
1 600 266 −63.43 −14.3 −27.93

 

 
Fig.8 Sensitivity analysis result: (a) Rotational speed (N);    
(b) Welding speed (S); (c) Axial force (F) 

 
4 Artificial neural network(ANN) 
 

ANNs are computational models, which replicate 
the function of a biological network, composed of 
neurons and are used to solve complex functions in 
various applications. Neural networks consist of simple 
synchronous processing elements that are inspired by the 
biological nerve systems. The basic unit in the ANN is 
the neuron. Neurons are connected to each other by links 
known as synapses, associated with each synapse there is 
a weight factor. Details on the neural network modeling 
approach are given elsewhere[22]. One of the most 
popular learning-algorithms is the back-propagation(BP) 
algorithm. In this present study, BP algorithm was used 
with a single hidden layer improved with numerical 
optimization techniques called Levenberg-Marquardt 
(LM)[23]. The architecture of ANN used in this study is 
3-121-1, with 3 corresponding to the input values, 12 to 
the number of hidden layer neurons and 1 to the output. 
The topology architecture of feed-forward three-layered 
back propagation neural network is illustrated in Fig.9. 
MATLAB 7.1 was used for training the network model 
for tensile strength prediction. The training parameters 
used in this investigation are listed in Table 7. The neural 
network described in this work, after successful training, 
was used to predict the tensile strength of friction stir 
welded joints of AA7039 aluminium alloy within the 
trained range. Statistical methods were used to compare 
the results produced by the network. Errors occurring at 
the learning and testing stages are called the root-mean 
square(RMS), absolute fraction of variance (R2), and 
mean error percentage values. These are defined as 
follows, respectively: 
 

2/12
)/1(RMS ⎥⎦

⎤
⎢⎣
⎡ −= ∑ jj otp                    (8) 

2/1
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∑
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j
jj

o

ot
R                      (9) 

 
Table 7 Training parameters used 

Parameter Value 

Number of input nodes 3 

Number of hidden nodes (feed forward) 11 

Number of output nodes 1 

Learning rule Levenburg-Marquatt

Number of epochs 500 

Error goal 1.0×10−4 

Mu 0.01 

Number of training sets used 1  
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Fig.9 ANN architecture used 
 

Mean error= ∑ ×
−

j j

jj

t
ot

p 100)/1(                (10) 

 
where p is the number of patterns, tj is the target tensile 
strength, oj is the actual tensile strength. 
 
5 Comparison of ANN and RS models 
 

The trend in the modelling using RSM has a low 
order non-linear behaviour with a regular experimental 
domain and relatively small factors region, due to its 
limitation in building a model to fit the data over an 
irregular experimental region. Moreover, the main 
advantage of RSM is its ability to exhibit the factor 
contributions from the coefficients in the regression 
model. This ability is powerful in identifying the 
insignificant main factors and interaction factors or 
insignificant quadratic terms in the model and thereby 
can reduce the complexity of the problem. On the other 
hand, this technique requires good definition of ranges 
for each factor to ensure that the response(s) under 
consideration changes in a regular manner within this 
range. It is noted that ANNs perform better than the other 
techniques, especially RSM when highly non-linear 
behaviour is the case. Also, this technique can build an 
efficient model using a small number of experiments; 
however, the technique accuracy would be better when a 
larger number of experiments are used to develop a 
model. On the other hand, the ANN model itself provides 
little information about the design factors and their 
contribution to the response if further analysis has not 
been done. Generation of ANN model requires a large 
number of iterative calculations whereas it is only a 
single step calculation for a response surface model. 
Depending on the nonlinearity of the problem and the 
number of parameters, an ANN model may require a 
high computational cost to create. Although 
computationally much more costly than a response 

model, ANN model leads to comparatively accurate 
tensile strength predictions as shown in Table 8. The 
mean errors for ANN and RS models are about     
0.258 847% and 0.769 831% respectively. The error 
against observation order of both the models is compared 
in Fig.10. 
 
Table 8 Comparison between RSM and ANN 

Model summary and
prediction errors 

Response surface 
methodology(RSM) 

Artificial neural
network(ANN)

Root mean square
(RMS) 2.784 724 1.454 125 

R2 0.969 978 0.991 814 

Mean error/% 0.769 831 0.258 847 

Computational time Short Long 

Experimental domain Regular Irregular or 
regular 

Model developing With interactions No interactions

Understanding Easy Moderate 
Application Frequently Frequently 

 

 
Fig.10 Comparison of observation order with residuals 
 
6 Conclusions 
 

This paper has described the use of design of 
experiments(DOE) for conducting experiments. Two 
models were developed for predicting tensile strength of 
friction stir welded AA7039 aluminium alloy using 
response surface methodology and artificial neural 
network(ANN). From this investigation, the following 
important conclusions are derived. 

1) Rotational speed is the factor that has greater 
influence on tensile strength, followed by welding speed 
and axial force. 

2) A maximum tensile strength of 319 MPa is 
exhibited by the FSW joints fabricated with the 
optimized parameters of 1 460 r/min rotational speed, 40 
mm/min welding speed and 6.5 kN axial force. 
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3) The predictive ANN model is found to be capable 
of better predictions of tensile strength within the range 
that they had been trained. The results of the ANN model 
indicate it is much more robust and accurate in 
estimating the values of tensile strength when compared 
with the response surface model. 
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