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Abstract: A novel data mining approach, based on artificial neural network(ANN) using differential evolution(DE) training 
algorithm, was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical 
properties of Cu-15Ni-8Sn-0.4Si alloy. In order to improve predictive accuracy of ANN model, the leave-one-out-cross-validation 
(LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer. The forecasting 
performance of the proposed global optimization algorithm was compared with that of local optimization algorithm. The present 
calculated results are consistent with the experimental values, which suggests that the proposed evolutionary artificial neural network 
algorithm is feasible and efficient. Moreover, the experimental results illustrate that the DE training algorithm combined with 
gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore 
considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu-15Ni-8Sn-0.4Si alloy. 
 
Key words: Cu-15Ni-8Sn-0.4Si alloy; electrical property; aging process; artificial neural network; differential evolution; leave-one- 
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1 Introduction 
 

Cu-15Ni-8Sn alloys have been widely used in the 
electronic industry for bushings, bearings, springs, and 
electronic connectors[1−3]. They combine excellent age 
hardenability and formability with good stress relaxation, 
electrical conductivity and corrosion resistance. Because 
of low price, outstanding properties and being harmless 
to health, Cu-15Ni-8Sn alloys have been considered as 
substitutes for Cu-Be alloys. Many studies have been 
done on the age hardening in these alloys for a long time 
[4−8]. How to improve the overall properties of these 
alloys has been the subject of a number of studies[9−12]. 
Up to now, the process optimization of these alloys has 
been mainly studied empirically by trial-and-error 
methods, which are expensive and time-consuming. 
Therefore, simulation of the effects of aging treatment 
processes by numeric methods to obtain optimal 
properties of these alloys is very important. 

With the development of computer science, a kind 

of data mining and artificial intelligence technique such 
as the artificial neural network(ANN) has been used in 
the fields of processing and design of copper alloys 
[13−14]. ANN is a non-linear statistical analysis 
technique and especially suitable to simulate systems, 
which are hard to be described by physical models. Since 
the development of the back-propagation method, many 
algorithms have been proposed and used to train neural 
networks, such as modified back-propagation, back- 
propagation using the conjugate-gradient approach, scaled 
conjugate-gradient (SCG), and Levenberg–Marquadt 
algorithm(LM). However, these training algorithms only 
based on gradient information usually converge to local 
minima. The global optimization algorithms, such as 
genetic algorithm(GA) and simulated annealing(SA), 
may be useful to avoid such a local minima problem. In 
fact, there is no single training algorithm that has the best 
performance compared with all other methods on all 
problem domains. One feasible solution method is to use 
the global optimization algorithms combined with 
gradient information methods to train the neural network 
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to achieve acceptable solution. 
Differential evolution(DE) is one of the recent 

population-based global optimization techniques[15−16]. 
DE corresponds to an improved version of GA. However, 
the principle difference between them consists of the 
mutation operation. DE is significantly fast and robust at 
numerical optimization and is more likely to find a true 
global optimum of function. The aim of this work is to 
investigate the use of ANN based on DE training 
algorithm(DEANN) and compare DEANN with different 
type of training algorithms. Furthermore, in this study, it 
is focused on using the novel neural network-based 
method to forecast the hardness and electrical 
conductivity of Cu-15Ni-8Sn-0.4Si alloy. 
 
2 DE training algorithm 
 

DE is a heuristic method for minimizing nonlinear 
and non-differentiable continuous space functions, so it 
can be applied to global searches within the weight space 
of a typical neural network. The most popular neural 
network model is the so-called back-propagation neural 
network(BPN). Training a BPN is typically realized by 
adopting an error correction strategy that adjusts the 
network weights through minimization of learning error: 
 
E=gED+(1−g)EW                              (1) 
 
where  EW is the mean value of the sum squares for the 
network parameters, ED is the mean value of the sum 
error squares between the real output and the target 
output, and g is the performance ratio. The optimization 
goal is to minimize the objective function E by 
optimizing the values of the network weights: W=(w1, 
w2, …, wD). 

DE can be briefly described as follows. 
1) Initialization operation: generate the initial 

individuals ,GiW  where i (i=1, 2, …, Np) is the index 
to the population and G (G=1, 2, … , Gmax) is the 
generation to which the population belongs; determine 
the mutation probability F, the crossover probability CR, 
and the maximal number of generations Gmax; set the 
current generation G=0. 

2) For each individual ,GiW do steps 3−5 to 
produce the population for the next generation G+1. 

3) Mutation operation: a perturbed individual 
1ˆ +G

iW  is generated as follows: 
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where  Rk is a random number within [0, 1]. 
5) Evaluation operation: the offspring 1+G

iW  
competes with its counterpart parent G

iW  in the current 
population. As a result, the vector with lower objective 
function value wins a place in the next generation 
population. The evaluation operation is expressed as 
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6) G=G+1. 
7) Repeat steps 2−7 until the number of generation 

G reaches the maximum number Gmax. 
The minimum value of mean square learning error 

(E in Eqn.(1)) is expressed as Emin in the context of this 
study. The parameters of DE are chosen in accordance 
with the rules summarized by STORN and PRICE 
[15−16]. 
 
3 Modeling using ANN and DEANN 
 
3.1 Model setting 

For forecasting a multivariate regression problem, the 
inputs of ANN are ageing temperature and aging time, 
respectively. The outputs are the hardness and electrical 
conductivity of copper alloy. Thus, the mapping function 
can be described as 
 
Y1, 2=F(X1, X2)                                (5) 
 
where  Y is the predicted hardness and electrical 
conductivity of copper alloy, X1 is the aging temperature 
and X2 is aging time. The algorithms by means of the 
integration of the ANN model and DE were written in 
MatLab 7.0. 
 
3.2 Collecting experimental data 

The data used herein have been published in Ref.[17]. 
Cu-15Ni-8Sn alloy (mass fraction, %) was prepared by 
melting the component metals in an intermediate 
frequency induction furnace. The ingot obtained was 
homogenized at 860 ℃  for 6 h, then hot rolled at 
860−650 ℃, and subsequently cold rolled after solution 
at 800 ℃ for 1 h and shaped into a suitable form for the 
following measurements. The conductivity was 
measured by double bridge. The hardness was measured 

≤ 
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by model HMV-2T low load micro-Vickers hardness 
tester. 

The performance of the neural network and 
DEANN model is still strongly dependent upon the 
homogeneity of the model errors and the uniformity of 
the data sets. To ensure reasonable distribution and 
enough information in the data set, the aging tem- 
peratures are 350, 400 and 450 ℃. The aging time is 0, 
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0 and 8.0 h. 
 
3.3 Results and discussion 

Before the ANN is trained, all the data in the database 
are scale standardized by the expressions as follows: 
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To evaluate the forecasting performance of the ANN 

model, some statistical metrics are used, such as root 
mean square error(RMSE), mean absolute percentage 
relative error(MAPE) and correlation coefficient(R). 
These metrics are calculated by the following equations:  

RMSE=
n

yy
n

i
ii∑

=

−
1

2)ˆ(
                        (7) 

MAPE= %100
/ˆ

1 ×

−∑
=

n

yyy i

n

i
ii

                  (8) 

∑∑

∑

==

=

−−

−−
=

n

i
i

n

i
i

n

i
ii

yyyy

yyyy
R

1

2

1

2

1

)ˆ()(

)ˆ)((
                  (9) 

 
where  iŷ  is the predicted value, yi is the measured 
value and n is the number of samples. RMSEP value 
means RMSE obtained by LOOCV technique for the test 
set in the context of this work. 

The BPN model with one hidden layer was used in 
this study. Firstly, LOOCV technique was applied to 
select the optimal number of hidden layer units. The 
optimal BPN structures are {2, 5, 2} for scaled conjugate 
gradient back-propagation(SCG) training algorithm and 
{2, 4, 2} for Levenberg-Marquardt back-propagation 
(LM) training algorithm, respectively. Performance 
comparison results for different training algorithms 
based on LOOCV technique are illustrated in Table 1. 
The correlation between the observed and calculated 
values by SCG training algorithm based on LOOCV 
technique is shown in Fig.1. It can be seen that the 
predicted values are in good agreement with the 
measured values of hardness and electrical conductivity, 
indicating that the correlation is quite good. 

Secondly, the efficiency of DE training algorithm 
for BPN was tested. In this experiment, we set F=0.8, 
CR=0.9. Furthermore, the performances of different 
neural networks training algorithms were compared. The 

 
Table 1 Performance comparison results for different training algorithms based on LOOCV technique 

R-train  R-test MAPE-train/%  MAPE-test/% Training 
method 

RMSEP 
HV EC  HV EC HV EC  HV EC 

LM 13.020 0 0.985 2 0.988 0  0.940 1 0.946 2 1.741 9 1.801 2  3.417 1 3.687 4 

SCG 11.144 8 0.988 9 0.992 5  0.953 7 0.960 9 1.539 2 1.311 8  3.243 8 2.880 3 
HV: Hardness; EC: Electrical conductivity 
 

 
Fig.1 Comparison of measured and predicted hardness and electrical conductivity by SCG training algorithm based on LOOCV 
technique (Symbols “○” denote experimental values of hardness and electrical conductivity[17]): (a) Hardness; (b) Electrical 
conductivity 
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performance was estimated through minimization of 
learning error at a restricted training iteration number. 
The maximal number of iteration is set to 10 000 for all 
training algorithms. Performance comparison results for 
different training methods are illustrated in Table 2 and 
Fig.2. As shown in Table 2 and Fig.2, the SCG training 
algorithm has a better forecasting performance than LM 
training algorithm. Although the LM training algorithm 
converges fastest, it leads to the highest forecasting 
errors. From all the experimental results, it is shown that 
the networks can achieve the best convergence 
performance and lowest forecasting errors if the DE 
training method combines with gradient information. 
 
Table 2 Performance comparison results for different training 
methods 

Training method Emin/10−2 
Maximal number

 of iteration 

LM 4.876 836 15 

SCG 2.729 455 608 

DE 2.702 094 10 000 

DE+SCG 2.702 093 857 
Emin is minimum value of learning error (E in Eqn.(1)). 
 

 

Fig.2 Performance comparison results with different training 
methods 

Therefore, using both DE optimization and gradient 
information is a better alternative to that of the LM and 
SCG methods. 

Once the BPN model is sufficiently trained, it can 
be used to predict new input data in the same knowledge 
domain. All the data from 350 to 450 ℃ and from 0 to 8 
h are estimated. Fig.3 shows the predicted results for 
hardness and electrical conductivity of Cu-15Ni-8Sn- 
0.4Si alloy as a function of aging time at different aging 
temperature. The predicted results are very close to the 
experimental values. The DE training algorithm 
combined with SCG training algorithm provides the 
lowest forecasting errors. It can be seen that the electrical 
conductivity increases gradually with the increases in 
aging time and aging temperature. The increase of the 
electrical conductivity is mainly due to the following 
factors[17−18]. Firstly, spinodal decomposition occurs in 
Cu-15Ni-8Sn-0.4Si alloy and it forms a modulated 
structure with Sn-rich zone and Sn-lean zone. Thus, the 
alloying agent is depleted and the probability of electron 
scattering is reduced. As a result, the electrical 
conductivity increases. Secondly, the dislocation 
produced by cold roll moves or restructures at the 
beginning of ageing so that the conductivity of the alloy 
increases very quickly. Subsequently, because        
γ& ((Cu,Ni)3Sn, coherent with matrix) and γ(Cu,Ni)3Sn, 
incoherent with matrix) phases precipitate in turn, the 
electrical conductivity of the alloy increases slowly. 
Lastly, the precipitation of Ni3Si phase during aging 
causes the alloying agent in the matrix to be depleted 
further. Therefore, the electrical conductivity of the alloy 
is higher than that of Cu-15Ni-8Sn alloy without Si. 

It can be seen from the hardness curves that at the 
aging treatment of 350 ℃, 5 h and 400 ℃, 4 h, the alloy 
can reach the maximal hardness (HV 460 or so[17]). The 
higher the aging temperature, the shorter the time of the 
peak hardness is reached. Although the time of the peak 
hardness is shorter, the peak hardness (HV 410 or so[17]) 
is lower after aging at 450 ℃ for 2.5 h. The peak value 
of calculated hardness at 450℃ is mainly attributed to 
the noise of the experimental data and the predicted error 
of the model. In short, the optimal aging temperature is 
400 ℃ in this study. The increase of the hardness is 
mainly due to following reasons[17]. Firstly, the 
hardness is increased quickly because of the effect of 
spinodal hardening at the beginning of ageing. Spinodal 
decomposition forms fine modulated structure and 
creates coherent stress field periodically which hinders 
the movement of the dislocation. Secondly, the γ&  
metastable phase that is converted from modulated 
structure is coherent with the matrix and thus its 
contribution to the strengthening effect is large. Lastly, 
the precipitation of Ni3Si phase during aging can 
produce additional strengthening effect on the hardness 
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Fig.3 Predicted results for hardness and electrical conductivity as function of aging time at different aging temperatures (Symbols 
“○” denote experimental values of hardness and electrical conductivity[17]. Lines are predicted results of ANN model using different 
training algorithms): (a) Hardness after aging at 350 ℃; (b) Electrical conductivity after aging at 350℃; (c) Hardness after aging at 
400 ℃; (d) Electrical conductivity after aging at 400 ℃; (e) Hardness after aging at 450 ℃; (f) Electrical conductivity after aging 
at 450 ℃ 
 
of the alloy. The decrease of the hardness after overaging 
is mainly due to the discontinuous precipitation of γ 
phase, which softens the alloy usually. 
 
4 Conclusions 
 

1) ANN model using different training algorithms 

based on LOOCV technique has been developed to 
forecast mechanical and electrical properties of 
Cu-15Ni-8Sn-0.4Si alloy. The predicted values are in 
good agreement with the measured values of hardness 
and electrical conductivity. 

2) A novel approach based on artificial neural 
network(ANN) using differential evolution(DE) training 
algorithm has been applied to forecast the hardness and 



FANG Shan-feng, et al/Trans. Nonferrous Met. Soc. China 18(2008) 

 

1228

electrical conductivity of Cu-15Ni-8Sn-0.4Si alloy. The 
DE training algorithm combined with SCG training 
algorithm provides the lowest forecasting errors. Hence, 
this black-box model (DEANN+SCG) is very applicable 
for simulation of the aging process optimization of the 
alloy. 

3) The maximal hardness (HV 460 or so[17]) is 
obtained after aging at 400 ℃ for 4 h. The increase of 
the hardness is mainly due to the effects of spinodal 
hardening, the precipitation of γ&  metastable phase and 
Ni3Si phase. 
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