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Abstract: A kinematically admissible continuous velocity field was proposed for the analysis of three-dimensional forging. The 
linear yield criterion expressed by geometric midline of error triangle between Tresca and Twin shear stress yield loci on the π-plane, 
called GM yield criterion for short, was firstly applied to analysis of the velocity field for the forging. The analytical solution of the 
forging force with the effects of external zone and bulging parameter is obtained by strain rate inner product. Compression tests of 
pure lead are performed to compare the calculated results with the measured ones. The results show that the calculated total pressures 
are higher than the measured ones whilst the relative error is no more than 9.5%. It is implied that the velocity field is reasonable and 
the geometric midline yield criterion is available. The solution is still an upper-bound one. 
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1 Introduction 
 

In recent years, the researches on metal forging are 
focused on numerical simulations[1], including FEM 
[2−5] and UBEM[6]. Unfortunately, no theoretical 
analytical solution about three-dimensional forging 
taking into account of the effects of external zone has 
been reported in the past twenty years. So, how to 
substitute the non-linear Mises yield criterion with linear 
yield criterion to get analytical solution attracts much 
attention. TRESCA[7] first proposed a linear yield 
criterion but only took two principal stresses into account. 
HILL[8] also introduced a linear yield criterion to 
approach Mises criterion in 1950 but with a relative error 
by 8%. Until 1983, YU[9], HUANG and ZENG[10] 
proposed a linear criterion, called Twin shear stress yield 
criterion, but its application to analysis of metal forging 
[11−12] usually shows a greater value than that of Mises 
yield criterion. Based on the error triangles consisting of 
Tresca and Twin shear stress yield loci on the π-plane, 
the GM yield criterion was proposed by ZHAO et 
al[13−15]. 

In this work, a new velocity field was put forward to 
the three-dimensional forging and the GM yield criterion 
was firstly applied to analysis of the forging. The 
solution was compared with the tested result. 
 
2 Velocity field 
 

Three-dimensional forging with external zone 
between two parallel indenters is shown as Fig.1. 

Because of symmetry, only one eighth of the 
deformation zone is taken into account and it is assumed 
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Dividing the both sides of Eqn.(1) by time 

increment Δt yields 
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Let the velocity component vz vary linearly with z 
coordinate, then it follows 
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Fig.1 Deformation zone of 3-dimensional forging 
 

Assuming that in Fig.1 the free-edge surface is 
parabolic, the width b is 
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where  ∆b1=b1−b0 is measured at the maximum width 
point. Dividing Eqn.(4) by ∆t yields 
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Let vy vary linearly with y coordinate, which leads to 
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From the Cauchy equation it follows 
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From ), ,(d zyxv xx ψε += ∫ & and letting x=0, vx=0 

yields 
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Note that in Eqn.(8), y=0, vy=0; y=b0, vy=vb; z=0; 

vz=0; z=h0; vz=−v0; and in Eqn.(7), .0=++ zyx εεε &&& So, 
Eqns.(7) and (8) satisfy kinematically admissible 
conditions. 

With integral mean value theorem and the volume 
constancy, it follows 
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Values of Eqn.(9) are used to calculate the ratios of 

components of strain rate and velocity field. 
The characteristic equation of strain rate tensor has 

a non-vanishing solution only if the following 
determinant vanishes, that is 

 

0
00

0
0

=
−

−
−

εε
εεε

εεε

&&

&&&

&&&

z

yyx

xyx

 

 
Therefore, the principal strain rate field is 
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3 GM yield criterion 
 

So-called GM yield criterion is a short of geometric 
midline yield criterion, whose yield locus on π-plane is 
the geometric midline B′E of error triangle B′BF between 
Tresca locus B′F and Twin shear stress locus B′B. It 
intersects with Mises circle as shown in Fig.2. The detail 
of the criterion can be seen in Refs.[12−14]. Its plastic 
work rate done per unit volume is as follows[12]: 
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Fig.2 GM loci on π-plane 
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4 Total power and pressure 
 
4.1 Plastic work rate(Nd) 

Substituting Eqn.(10) into Eqn.(11) and the 
following equation, and from Eqn.(7), it yields 
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where  I1, I2 and I3 are the termwise integrations of the 

inner-product of strain rate vector[15−17]. Substituting 
the values of Eqn.(9) into the denominator of the 
following fraction and integrating leads to 
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Substituting I1, I2 and I3 into Eqn.(12) yields 
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4.2 Friction power(Nf) 

At contact interface, let 
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Substituting yx vv / of Eqn.(9) for vx/vy into Eqn.(16), 

it follows 
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4.3 Shear power (Ns) 

At the interface between deforming and external 
zones, the velocity discontinuity and shear power are 
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4.4 Total power and pressure 
Let applied power equal to the upper bound total 

power, we can have 
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Substituting Eqns.(13), (17) and (18) into the 
equation above and rearranging yields 
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Noting symmetry of the deforming zone，the total 

pressure becomes 
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Letting dnσ/da=0 in Eqn.(20) gives 
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Eqn.(22) is the relationship among a, m, l/h0 and 

b0/h0, which can be used for optimization of a. 
The value of the friction factor m can also be 

calculated by the following Tarnovskii equation: 
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where  f  is coulomb friction coefficient. 
In this work the authors suggest the following 

method to measure value of a. Substituting x=0 and y=b0 
into the second formula in Eqn.(8) and multiplying ∆t 
yields 
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where  ∆b1=b1−b0 is the measured spread at the 
maximum width point, and ε is the reduction in the pass. 
 
5 Verification by press test 
 

The press tests were performed with 200 kN 
universal material testing machine in the State Key 
Laboratory of Rolling and Automation, Northeastern 
University. Four groups of pure lead sample were 
compressed with different indenters and reductions. The 
indenter  speeds were from 15 to 30 mm/min. The 
sample size and tested data are listed in Table 1. Pm is the 
measured total pressure. 

Calculated results according to Eqn.(20) with 
measured values of a by Eqn.(24) are listed in Table 2. 
Taking the No.2 as an example, the detailed procedure is 
as follows: from Table 1 and Eqn.(24), ε= 
(9.85−8.745)/9.85=11.2%, l/h0=1.52, a=0.51, f=0.23 (for 
quenched heads). By Eqn.(23), m＝0.3. Substituting all 
data of No.2 into Eqns.(20) and (21) yields nσ=1.296. 

P=32.31 kN, and the relative error with Pm is Δ= 
(32.31−30)/30=7.7%. In above calculation σs=20.26 MPa, 
is checked out by ε& =0.112/t=0.025 s−1, ε=11.2%. 
Calculations of the other specimen are the same. 

It can be seen from Table 2 that the total pressure P, 
calculated by Eqn.(20), are greater than measured ones 
Pm. Both relative errors get to 7.5%−18.3%. 

It can be seen from Table 3 that the optimized total 
pressures P, by golden mean according to Eqns.(20) and 
(22), are lower than those in Table 2. Whilst the relative 

 
Table 1 Sample size and tested data 

Test No. h0/mm b0/mm l/mm h1/mm b1/mm Pm/kN 
1 10.165 10.165 15.0 9.250 10.85 14.1 
2 9.850 19.930 15.0 8.745 21.08 30.0 
3 5.035 15.025 7.5 4.325 15.59 11.9 
4 5.060 19.990 7.5 5.540 20.38 14.5 

 
Table 2 Calculated results by measured a (m=0.3) 

Test No. b0/h0 a nσ P/kN Pm/kN Δ/% 

1 1 0.75 1.210 15.44 14.1 9.5 
2 2 0.51 1.296 32.31 30.0 7.7 
3 3 0.27 1.380 12.80 11.9 7.5 
4 4 0.19 1.410 17.15 14.5 18.3 

(20) 

(22) 
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Table 3 Optimized results by golden mean (m=0.3) 
Test No. b0/h0 a nσ P/kN Pm/kN Δ/% 

1 1 0.72 1.120 14.44 14.10 2.4 
2 2 0.60 1.201 30.21 30.0 0.4 
3 3 0.45 1.270 11.90 11.9 0 
4 4 0.33 1.310 15.88 14.5 9.5 

 
errors of P and Pm are reduced to 0−9.5%. 

Fig.3 shows the calculation curve corresponding to 
b0/h0=3. For a given l/h0, nσ increases with increase of m, 
but for definite m and l/h0 from 1 to 5, it always has a 
minimal value. 

Fig.4 shows that the value of nσ increases with 
increase of m and b0/h0 for a given l/h0. 
 

 
Fig.3 Dependence of nσ on m and l/h0 with b0/h0=3 
 

 
Fig.4 Dependence of nσ on b0/h0 and m 
 

The dependence of a on l/h0, b0/h0 and m is shown 
in Fig.5. It can be seen that for a given m, a increases 
with increase of l/h0. 
 
6 Conclusions 
 

1) The velocity and strain rate fields proposed 
satisfy kinematically admissible condition of three- 

 
Fig.5 Dependence of a on l/h0 and m 
 
dimensional forging. 

2) With the velocity and strain rate fields, the GM 
linear yield criterion is first applied to analysis of 
three-dimensional forging and an analytical solution of 
nσ is obtained. 

3) With press test, the calculated total pressures are 
higher by 7.5%−18.3%, but optimized total pressures are 
higher only by 0−9.5%, compared with the measured 
results. It is still an upper-bound solution. 

4) Formula of measuring bulge parameter a is 
presented, and the measured values of a are lower than 
optimized ones. 
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