

 Trans. Nonferrous Met. Soc. China 26(2016) 2462−2468

Database-oriented storage based on LMDB and

linear octree for massive block model

Lin BI, Hui ZHAO, Ming-tao JIA

School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Received 14 January 2016; accepted 12 June 2016

Abstract: Data organization requires high efficiency for large amount of data applied in the digital mine system. A new method of

storing massive data of block model is proposed to meet the characteristics of the database, including ACID-compliant, concurrency

support, data sharing, and efficient access. Each block model is organized by linear octree, stored in LMDB (lightning

memory-mapped database). Geological attribute can be queried at any point of 3D space by comparison algorithm of location code

and conversion algorithm from address code of geometry space to location code of storage. The performance and robustness of

querying geological attribute at 3D spatial region are enhanced greatly by the transformation from 3D to 2D and the method of 2D

grid scanning to screen the inner and outer points. Experimental results showed that this method can access the massive data of block

model, meeting the database characteristics. The method with LMDB is at least 3 times faster than that with etree, especially when it

is used to read. In addition, the larger the amount of data is processed, the more efficient the method would be.

Key words: block model; linear octree; lightning memory-mapped database; mass data access; digital mine; etree

1 Introduction

3D geological modeling is composed of geological

structure modeling and attribute modeling [1], which is

the basis for digital mine as well as intelligent mine [2].

The structure model, namely surface model, can well

describe the space shape of complex ore body, but the

attributes of any point inside the model need to be

expressed and carried by attribute model because of

inhomogeneity of geological grade. The attribute

modeling of geological body usually means discreting

the geological body into a mesh of voxels [3] which can

be tetrahedral, hexahedral, prism, polyhedral, etc. The

attribute model composed of hexahedral voxels is

generally called block model. The majority mining

softwares (Vulcan, Data mine, Surpac, Mine Sight,

Micro mine, Dimine, QuantyMine, 3DMine, etc.) use

block model as the attribute model. The data quantity of

block model is huge, even massive. In the application of

mining software, the following requirements are

necessary for the block model: 1) Supporting

concurrency and sharing for massive data of geological

attributes, in which it requires that the storage method

meets the characteristics of the database: ACID-

compliant and concurrency support; 2) The data access

should be fast enough, especially the attribute query

based on any spatial point and any spatial 3D area. In

this work, thanks to the linear octree and LMDB, the

efficient storage of massive data of block model was

realized to meet the characteristics of the database by

making comparative analysis with the implementation

based on etree. Meanwhile, the screening algorithm, by

means of 2D grid scanning, improved the efficiency and

robustness of the regional query greatly.

2 Expression of block model

2.1 Way of expression

Based on the geological structure model, the block

model focused on 3D rasterization. As shown in Fig. 1

(using 2D to express for convenience), further

subdivision of the boundary of the ore body is required

to meet the accuracy requirement. The block model was

usually expressed with octree. As a result, complex

geological body with complex boundary can be

accurately interpreted [4,5]. The octree can not only

represent accurately the features of complex geological

Foundation item: Projects (41572317, 51374242) supported by the National Natural Science Foundation of China; Project (2015CX005) supported by the

Innovation Driven Plan of Central South University, China

Corresponding author: Lin BI; Tel: +86-731-88877665; E-mail: mr.bilin@163.com

DOI: 10.1016/S1003-6326(16)64377-7

http://dict.cnki.net/dict_result.aspx?searchword=%e6%95%b0%e6%8d%ae%e9%87%8f&tjType=sentence&style=&t=data+quantity
http://dict.cnki.net/dict_result.aspx?searchword=%e5%b1%9e%e6%80%a7%e6%9f%a5%e8%af%a2&tjType=sentence&style=&t=attribute+query

Lin BI, et al/Trans. Nonferrous Met. Soc. China 26(2016) 2462−2468

2463

Fig. 1 Discrete geological bodies

body boundary, but also take a great significance in

which the storage space could become smaller, generally

only 10%−30% of 3D grid data [6]. In addition, the

hierarchical structure of octree can increase the speed of

retrieval, subdivision, merging and so on.

Owing to the lack in regularity as the grid model,

the octree model does not act as well as the grid model in

querying. In consideration of the requirements of

massive data, this paper adopts the encoding of linear

octree in which address code is usually represented by

Morton code [7]. The Morton code maps a point on the

d-dimensional space to an integer, which can be realized

by exchanging the bits of Cartesian coordinate.

2.2 Location code

Figure 2 shows that a domain is a Cartesian

coordinate space that consists of a uniform grid of 2n×2n

indivisible units. The level 0 at the root covers the entire

domain, and each sub-node ratio increases 1 level than

its parent. The address of each block is determined by the

Cartesian coordinate (x, y, z) of its lower left corner and

its level. For example, b is (0, 0, 0, 1), c is (8, 0, 0, 1),

and j is (6, 10, 0, 3).

The higher the level of the octree is, the more

precise the block model can be subdivided; thus larger

storage space will be required. In order to facilitate

realization of location code comparison function,

considering efficiency, accuracy and other factors,

location codes are represented by 13 bytes. Each

dimension of Cartesian coordinate is represented by

4 bytes, 12 bytes for the three-dimensional, 1 byte for the

node type (leaf or internal node) and level. Obviously,

the location of 13 bytes can define up to 32 levels (0−31)

of the octree. The node at 0 level is the largest one

covering the entire address space, while the smallest

node is at the 31st level, whose size is one basic unit.

The size of the node at k level is 2(31−k) basic units. A

block model with 13 bytes as the location code is

sufficient to express any scale of mine and meets the

accuracy requirements. For example, for a mine of

1000 km, the basic unit length can be 0.5 mm.

Fig. 2 Octree area descriptions

3 Storage of block model

As mentioned above, the block model is represented

by linear octree. The linear octree is a technique for

assigning unique addresses to octants [8,9]. It allows

octants to be located quickly, without actually storing the

topological structure of the octree on disk. The linear

octree only save and deal with leaf nodes, and the leaf

node consists of two parts: the location code and attribute

data. This feature is suitable for the key-value database

to store data. The key-value database is one of the

important types of NoSQL [10] database. NoSQL

database is to solve the challenges of large-scale data

collection of multiple data types, especially for the big

data application problems. Both etree [11] and

LMDB [12] are key-value storage databases. Their basic

idea is to represent all input and output datasets stored on

disk, so as to support the massive data storage. Based on

these two different techniques, we designed two storage

solutions for block model, and made some comparative

analysis, then found the most appropriate solution.

3.1 Storage based on etree

The etree is a database-oriented method for large

out-of-core octree mesh generation. It is widely used in

large data access [13−15]. The main idea is to map an

octree to a database structure and perform all octree

operations by querying and updating the database. The

etree only achieves the storage of massive data, but does

not meet many features of the database, such as ACID,

transaction and concurrency.

Figure 3 shows the structure of etree, and it is based

on B+ tree. B+ tree has been used in database systems for

decades, and is well-suited for efficient data storage and

http://dict.cnki.net/dict_result.aspx?searchword=%e6%a3%80%e7%b4%a2&tjType=sentence&style=&t=retrieval
http://dict.cnki.net/dict_result.aspx?searchword=%e4%bd%8d%e7%bd%ae%e7%82%b9&tjType=sentence&style=&t=location+point

Lin BI, et al/Trans. Nonferrous Met. Soc. China 26(2016) 2462−2468

2464

retrieval [16]. Etree stores a series of fixed length records

that contain location codes and sorted by location code.

Each record, indexed by B+ tree, consists of two parts:

location code and attributes.

Fig. 3 Etree structure of block model

There are two types of nodes in an etree: the leaf

nodes and the index nodes. The leaf nodes contain data

to be searched. The structure of a leaf node is an array of

records with the form <key, data>, shown in Fig. 4(a).

The index nodes contain routing information to guide the

search for a given key value. The structure of an index

node is an array of pairs <key, pointer>, as shown in

Fig. 4(b). These nodes are mapped to disk pages, so the

pointers are actually disk page number.

The block model data are stored in the disk file by

B+ tree index, sorted by location code that can solve the

bottleneck problem of massive data management and fast

access.

Fig. 4 B+tree node: (a) Leaf node; (b) Index node

3.2 Storage based on LMDB

Lightning memory-mapped database (LMDB) is an

embedded key-value data store developed by Symas,

written in C [12,17]. It was developed for the OpenLDA

Project with the aim of replacing Berkeley DB

(BDB [18]) as its storage backend, and improved from

the following aspects:

1) LMDB stores data in a copy-on-write B+ tree.

Figure 5 illustrated this approach. By implementing a

copy-on-write variant of B+ trees, LMDB is able to

provide a form of multi-version concurrency control

(MVCC), allowing write- and read-transactions to

operate concurrently.

2) One of the initial goals of the LMDB project is to

create a system where no buffer and cache configuration

and management are necessary. LMDB achieves this by

using the operation system’s memory-mapping capability

to access on-disk data, leaving caching and buffer-

management up to the file system and OS instead of

LMDB itself. For this approach to be viable, the memory

address space of the operating system that LMDB is

running on must be large enough to contain the expected

data volume. For 32 bit systems, this sets a hard limit on

4 GB. In recent years, 64 bit systems have became more

common, which ups the limit to between hundreds of

terabytes and multiple exabytes [17].

Fig. 5 Copy-on-write B+ tree operations

Based on the above technology, the LMDB has the

following major features: Key/value store implemented

using B+ trees: ordered-map interface with sorted keys;

support for range lookups; fully transactional;

concurrency support, and so on.

More advanced features include support for storage

of multiple databases in a single file, nested transactions,

and storage of multiple values for a single key. So

LMDB is very suitable for the storage of massive block

model, and meets the features of database.

Unlike etree’s node, LMDB has only one node type

illustrated in Fig. 6. First, two unsigned shorts are stored,

which together denote the size of the key-value pair’s

value (for leaf-pages) or the page-number the node

points to (for branch-page). Next is a field used to store

additional information about the node, then the length of

the key-value pair’s key. Finally, there comes a variable-

length array used to store the actual key- and value-data.

Fig. 6 Format of single LMDB node

By using this kind of structure, LMDB is able to

quickly locate where a key-value pair is stored in a page,

as well as to add a new key-value pair without having to

move around a large amount of data.

4 Query and retrieval

4.1 Comparison of location code

Location code is designed to establish the index and

to access the node data quickly and accurately, so the

location code comparison algorithm is very important.

For the purpose of comparison, we treat the byte

Lin BI, et al/Trans. Nonferrous Met. Soc. China 26(2016) 2462−2468

2465

sequence as a large positive integer. The length (13-byte)

of the location code byte sequence may be longer than

any integer data type. To enable the comparison between

two conceptually large integers, we perform a integer-

wise comparison, starting from the most significant

integer of the sequence down to the least significant

integer, as shown in Fig. 7(a), integer pair <I1,I2>

compared first, then <J1,J2> compared, then <K1,K2>

compared. The comparison function returns the

relationship between two levels from the 13th byte if the

three integers are equal. Using this comparison function

to sort the octants of an octree in increasing locational

code order, the ordering of octants is exactly the same as

that processed by the preorder traversal of the octree. By

preorder traversal, we mean visiting the root, and then

recursively visiting its children in directional code order,

as shown in Fig. 7(b). Figure 7(c) shows nodes in

ascending order by location code.

Given these observations, we can get the

characteristics of location code comparison algorithm:

1) The location code of root is the smallest; 2) The

location code of subtree’s root is less than location code

of any child nodes; 3) If the location node of A is less

than location node of B, the location code of any sub

node of A is less than location code of any sub node of B.

Given these features, we can use the locational code of

the query unit as a search key and ask the database to

return the octant whose locational code is the maximum

among all the locational codes that are less than the

search key. Thus, we are guaranteed to locate the leaf

octant only that the query pixel is enclosed in the leaf

octant.

Both etree and LMDB can customize key-

comparator function determining ordering among

different keys. Etree has a handler to application

comparison function (etree_compar_t *compar), and

LMDB has an API (mdb_set_compar) to set the client-

specified key-comparator function.

4.2 Attribute query for any point in space

The location code corresponding to the point must

be calculated from the Cartesian coordinate when

querying the attribute at one point of space. Assuming

that the Cartesian coordinate of the point is (x, y, z), the

coordinate of lower left corner of the block model is

(xorigin, yorigin, zorigin), and the range of the block model is

(xlen, ylen, zlen), the address (ax, ay, az) of the point can be

calculated from the following formula:

origin len

origin len

origin len

/ (/0 80000000)

/ (/0 80000000)

/ (/0 80000000)

x

y

z

a x x x

a y y y

a z z z

     


     


     

 (1)

As mentioned above, location code is composed of

address code and level, but it is difficult to get level of

points. Luckily, according to the characteristics 2) of

location code comparison algorithm, applications can

query arbitrary points without any knowledge of the 4

structure of the octree. That is why we can use the

maximum level (31) as the level to compose the location

code.

4.3 Atribute query for arbitrary 3D region

In practical application, geological attribute within

3D region (polyhedral) often wants to be queried, for

example, the reserves of ore body, the average grade of

stope, the metal amount of stope, the dilution and loss of

mining, the byproduct in tunneling, optimization in

open-pit [19], and so on. These problems can be

attributed to the problem of “query for polyhedral from

block model”. Luckily, the problem can be translated

into “query for point” problem by polyhedron

rasterization that polyhedrons are discretized into voxels

and query by the centers of voxels.

As mentioned above, in condition that the correct

attribute can be hit at any point, the efficiency and

Fig. 7 Preorder traversal of octree: (a) Comparison algorithm diagram; (b) Preorder traversal; (c) Location code

Lin BI, et al/Trans. Nonferrous Met. Soc. China 26(2016) 2462−2468

2466

robustness of the polyhedron rasterization are important

factors. The important technology of discretization is the

fast and accurate judgment of the relation between the

points and the polyhedron. BI et al [4] optimized the ray

method to judge the internal and external relations with

the OBB tree and node intersection test, and the

performance has improved, but the robustness is poor.

JING et al [20] improve the robustness with Feito−

Torres method, but performance has declined. LI

et al [21] used flood-fill to to reduce the time complexity

to O(n); however, a large number of triangle intersection

operations need to be carried out. For solving those

problems, the decision problem of point in polyhedron is

transformed into a point in polygon in which the 3D

problem is transformed into 2D problems. As a result,

the problem is greatly simplified. The ray method is a

common method to judge the relationship between the

point and polygon [22]. Based on the idea of ray method,

we propose a new method, 2D grid scanning to screen

the inner or outer points. The process is as follows:

1) Rasterize the target of 3D space based on the unit

size of block model and create 3D grid;

2) Cut the polyhedron with plane through the center

of each layer and create 2D contour lines;

3) Screen the inner or outer of pixels for every layer

by the raster scan method.

Among them, the raster scanning method is very

important. Assuming the row, column, layer of the 3D

grid is N (N=2i, i is a non-zero positive integer), its

process is as follows:

1) Initialize all elements “outside” mark;

2) Produce a ray Rxj
 from x=xj parallel to the y-axis;

xj is x-component of coordinate of column j,

3) Compare xj and x-component (x1, x2) of all of the

end points of contour lines on k layer. There is an

intersection between line segment and Rxj
, if x1<xj<x2

(without loss of generality, assuming x1<x2);

4) Calculate the y-component value of the

intersection using formula (2):

y=y1+(y2−y1)×((x−x1)/(x2−x1)) (2)

Find all the intersection and calculate all the

y-component values sorted in ascending;

5) Make “intersection pairs” for the y-component

values as (y0, y1), (y2, y3), …, (yc−2, yc−1): (yi, i=0, 1, …,

c−1) (c is number of intersections));

6) Set “internal” flag for the elements which center

is located between one “intersection pairs”;

7) Execute (2) until all layers are processed.

As can be seen from the above, the algorithm does

not have to calculate the intersection, just make a simple

judgment. As a result, the performance and robustness of

the algorithm are improved greatly.

5 Experiments and analysis

The storage method was realized by VC++, running

on windows7 64 bits OS, CPU was Intel (R) Core (TM)

i5-4750 @ 3.20 GHZ CPU, 4G memory, hard drives are

HDD, 7200 RPM. The scope of one mining was

(3450.0 m, 3862.0 m, 812.0 m), its structure model was

shown in Fig. 8(a) and its block model was shown in

Fig. 8(c). The query region was shown in Fig. 8(b), and

its size was (1361.0 m, 1462.0 m, 715.0 m), and its block

model was shown in Fig. 8(d). A comparative analysis

was carried out between LMDB and etree according to

different three scenarios: the same fields but different

number of blocks, the same number of blocks but

different fields and different key-comparator functions.

5.1 Experiment 1: Same fields but different numbers

of blocks

The fields remained unchanged, 3 doubles and one

string of 32 bytes, as well as the number of blocks was

increased by 8 times (the level of octree were

incremented by 1). The two storage methods was

compared by analyzing the data size, consuming time to

create, consuming time to query, and so on. The results

were shown in Table 1.

As can be seen, LMDB occupies more storage space

than etree. The reason is that LMDB can save

variable-length records, and needs to hold the length of

key and value. Nonetheless, the feature of variable-

length key and variable-length value is lamb’s advantage

that can be used to store data collection of multiple data

types. LMDB is much faster than etree, and the more the

number of blocks is, the more obvious the tendency is.

The main reason is that the entire database of LMDB is

mapped into virtual memory and all data fetched are

performed via direct access to the mapped memory

instead of through intermediate buffers and copies. In

addition, the screening is time-used less and does not

increase dramatically as the number of blocks increases

because of the raster scanning method.

5.2 Experiment 2: Same number of blocks but

different fields

In this experiment, the fields of different lengths

(56, 112, 168 bytes) were adopted and the number of

blocks model remained unchanged. We performed the

same comparative analysis as above. The results are

shown in Table 2.

The results showed that the time-consuming of

reading and writing increased with the increase of the

amount of data. The time-consuming of screening

remained about the same because of screening is only

related to number of block to be queried.

Lin BI, et al/Trans. Nonferrous Met. Soc. China 26(2016) 2462−2468

2467

Fig. 8 Mining and query region: (a) Structure model of ore; (b) Structure model of query region; (c) Block model of ore; (d) Block

model of query region

Table 1 Results of same fields but different numbers of blocks

Number of

block
DB

DB size/

MB

Time consumed/s

Create Query Screen

42517
Etree 4.169 0.022 0.011

0.637
LMDB 4.968 0.033 0.005

339265
Etree 32.689 0.549 0.184

0.687
LMDB 39.136 0.316 0.061

2715545
Etree 261.421 7.691 2.373

0.928
LMDB 312.968 3.654 0.601

Note: N of block, the number of block; DB, the storage methods

Table 2 Results of same number of blocks but different fields

Field

length/byte
DB

DB size/

MB

Time consumed/s

Create Query Screen

56
Etree 261.421 7.813 2.404

0.890
LMDB 312.968 3.772 0.602

112
Etree 484.305 12.338 3.327

0.887
LMDB 540.600 10.174 0.679

168
Etree 702.705 15.858 4.217

0.889
LMDB 774.476 13.213 0.749

5.3 Experiment 3: Different key-comparator

functions

In this experiment, both the length of the fields and

the number of blocks remain unchanged, but the

key-comparator function is different, one is integer-wise

comparison proposed previously, one is “memcmp”

which is a function comparing the first n characters of

two object. The results are shown in Table 3.

It is obvious that the key-comparator function

proposed in this work is better than memcmp function.

The reason using this comparison function to sort the

octants of an octree in increasing location code and the

order of octants is exactly the same as that processed by

the preorder traversal of the octree, and the preorder

traversal of the octree can track “z” pattern (z-order)

[23,24], as shown in Fig. 9, and z curve has a good space

accumulation [25].

Table 3 Result of different key-comparator functions

Comparison

type
DB DB size/MB

Time consumed/s

Create Query

Memcmp
Etree 913.009 20.374 4.176

LMDB 942.449 26.750 0.840

Integer-wise
Etree 913.009 12.319 0.834

LMDB 942.449 15.275 0.272

Fig. 9 Spatial aggregation of z-curve

6 Conclusions

1) Owing to usage of memory-map and copy-on-

write B+ tree, LMDB is superior to etree in storage of

massive data of block model.

Lin BI, et al/Trans. Nonferrous Met. Soc. China 26(2016) 2462−2468

2468

2) Combining the advantages of linear octree and

LMDB, the new method is a better way to realize the

storage of massive data of geological attribute on 64 bit

systems, and meets the characteristics of the database.

3) The performance and robustness of querying

from block model are improved greatly by transforming

from 3D to 2D and 2D grid scanning.

References

[1] HUA Wei-hua. Rapid modeling and quantitative analysis of the

complex geological bodies with multi-constraint [D]. Wuhan: China

University of Geosciences, 2010. (in Chinese)

[2] JIN B X, FANG Y M, SONG W W. 3D visualization model and key

techniques for digital mine [J]. Transactions of Nonferrous Metals

Society of China, 2011, 21(S3): s748−s752.

[3] WU Jiang-bin, ZHU He-hua. 3D ten model of strata and its

realization based on delaunay triangulation [J]. Chinese Journal of

Rock Mechanics and Engineering, 2005, 24(24): 4581−4587.

[4] BI Lin, WANG Li-guan, CHEN Jian-hong. Study of octree-based

block model of complex geological bodies [J]. China University of

Mining and Technology Journal, 2008, 37(4): 532−537.

[5] CHERNYSHENKO A Y, OLSHANSKII M A. An adaptive octree

finite element method for PDEs posed on surfaces [J]. Computer

Methods in Applied Mechanics and Engineering, 2015,

291:146−172.

[6] HAN Guo-jian, GUO Da-zhi, JIN Xue-lin. Storage and indexing of

orebody information using octrees [J]. Acta Geodaetica et

Cartographica Sinica, 1992, 21(1):13−17.

[7] MORTON G M. A computer oriented geodetic data base and a new

technique in file sequencing [M]. New York: International Business

Machines Company, 1966.

[8] GARGANTINI I. An effective way to represent quadtrees [J].

Communications of the ACM, 1982, 25(12): 905−910.

[9] GARGANTINI I. Linear octrees for fast processing of three-

dimensional objects [J]. Computer Graphics and Image Processing.

1982, 20(4): 365−374.

[10] HAN J, HAIHONG E, LE G. Survey on NoSQL database

[C]//Proceedings of 6th International Conference on Pervasive

Computing and Applications (ICPCA), 2011. Albuquerque: IEEE,

2011: 363−366.

[11] TU T, O’HALLARON D R, LÓPEZ J C. Etree: A database-oriented

method for generating large octree meshes [J]. Engineering with

Computers, 2004, 20(2): 117−28.

[12] CHU H. Mdb: A memory-mapped database and backend for

openldap [J]. LDAP’11. 2011.

[13] KIM E, BIELAK J, GHATTAS O. Large-scale northridge earthquake

simulation using octree-based multiresolution mesh method

[C]//Proceedings of the 16th ASCE Engineering Mechanics

Conference. Seattle: ASCE, 2003: 1−6.

[14] TU T. A scalable database approach to computing delaunay

triangulations [D]. Pittsburgh: Carnegie Mellon University, 2008.

[15] GILL D, MAECHLING P J, JORDAN T H. UCVM: An open source

framework for 3D velocity model research [C]//AGU Fall Meeting

Abstracts, San Fracisco: AGU, 2013: 1612.

[16] COMER D. Ubiquitous B-tree [J]. ACM Computing Surveys

(CSUR), 1979, 11(2): 121−37.

[17] CHU H. LIFE. After berkeley DB: OpenLDAP's memory-mapped

database [EB/OL]. [2012]. http://symas. com/mdb/20120829-

LinuxCon-MDB-txt. pdf.

[18] YADAVA H. The berkeley DB book [M]. New York: Apress, 2007.

[19] GU X W, WANG Q, SHU G E. Dynamic phase-mining optimization

in open-pit metal mines [J]. Transactions of Nonferrous Metals

Society of China, 2010, 20(10): 1974−1980.

[20] JING Yong-bin, WANG Li-guan, BI Lin. Robust creation of block

model from complex orebody model [J]. Journal of Huazhong

University of Science and Technology (Natural Science Edition),

2010, 38(2): 97−100.

[21] LI Nan, WU Xin-cai, XIAO Ke-yan. A fast method for constructing

complex orebody block model of the algorithm [J]. Journal of

Huazhong University of Science and Technology (Natural Science

Edition), 2013, 41(3): 34−37.

[22] TAYLOR G. Point in polygon test [J]. Survey Review, 1994, 32(254):

479−84.

[23] ORENSTEIN J A, MERRETT T H. A class of data structures for

associative searching [C]//Proceedings of the 3rd ACM

SIGACT-SIGMOD symposium on Principles of Database Systems.

Waterloo: ACM, 1984: 181−190.

[24] ORENSTEIN J A. Spatial query processing in an object-oriented

database system [J]. ACM Sigmod Record, 1986, 15(2): 326−336.

[25] FALOUTSOS C, ROSEMAN S. Fractals for secondary key retrieval

[C]//Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems. ACM, 1989:

247−252.

面向数据库特征的基于 LMDB 与线性八叉树

海量块段模型存储技术

毕 林，赵 辉，贾明涛

中南大学 资源与安全工程学院，长沙 410083

摘 要：为满足数字矿山系统应用中对海量数据高效存取的技术要求，提出一种块段模型海量数据存储新方法。

该存储技术满足数据库的特点：ACID 兼容、并发支持、数据共享及高效访问；采用线性八叉树的方法组织块段

模型，并存将其储于 LMDB(快速内存映射数据库)中；通过定位码比较算法及从几何空间地址码到存储空间定位

码的转换算法，可高效地对三维空间任意点的地质属性进行查询；采用三维到二维的转换及内外点二维网格扫描

筛选法，使地质属性查询的三维问题转化为二维问题，其性能和鲁棒性得到显著提高。实验结果表明，这种方法

能够高效存取块段模型海量数据，并满足数据库的特点；相比于采用 etree 方法，采用 LMDB 方法至少快 3 倍，

特别是在读取数据时效率更高，且数据量越大，效果越明显。

关键词：块段模型；线性八叉树；快速内存映射数据库(LMDB)；海量数据访问；数字矿山；etree
 (Edited by Yun-bin HE)

http://symas/

