

Available online at www.sciencedirect.com

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

Trans. Nonferrous Met. Soc. China 26(2016) 2390-2396

Photoelectrocatalytic reduction of CO₂ into formic acid using WO_{3-x}/TiO₂ film as novel photoanode

Ya-hui YANG¹, Ren-rui XIE¹, Hang LI¹, Can-jun LIU², Wen-hua LIU², Fa-qi ZHAN²

1. College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China;

2. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

Received 11 June 2016; accepted 1 September 2016

Abstract: A novel WO_{3-x}/TiO_2 film as photoanode was synthesized for photoelectrocatalytic (PEC) reduction of CO_2 into formic acid (HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The existence of oxygen vacancies in the WO_{3-x} was confirmed with an X-ray photoelectron spectroscopy (XPS), and the accurate oxygen index was determined by a modified potentiometric titrimetry method. After 3 h of photoelectrocatalytic reduction, the formic acid yield of the WO_{3-x}/TiO_2 film is 872 nmol/cm², which is 1.83 times that of the WO_3/TiO_2 film. The results of PEC performance demonstrate that the introduction of WO_{3-x} nanoparticles can improve the charge transfer performance so as to enhance the performance of PEC reduction of CO_2 into formic acid. **Key words:** photoelectrocatalytic reduction; CO_2 ; formic acid; WO_{3-x} , TiO₂; film photoanode

1 Introduction

The global warming and depletion of fossil fuels are two major problems that mankind is facing today [1–3]. Photoelectrocatalytic (PEC) or photocatalytic (PC) reduction of CO_2 to fuel is considered an ideal and practical solution to the problems, as it utilizes solar energy and H₂O for the reduction of CO_2 in a similar way to natural photosynthesis without pollutants [4–6]. And the fuel as product can be used in the internal combustion engine or as chemical feedstock.

An ideal photocatalyst for CO_2 reduction should be environmentally friendly. More importantly, it should have a suitable band structure for reducing CO_2 and oxidizing water simultaneously [7,8]. However, the efficiency of reducing CO_2 has been limited by the recombination of the photogenerated charge carriers. Recently, a photoanode-driven PEC system for conversion of CO_2 to fuels has attracted much attention because it can supply the additional energy to reduce CO_2 and oxidize H₂O with decreased charge recombination [1,9]. Among various photoanode materials, TiO₂ is widely used for CO_2 photoreduction due to its low toxicity, inexpensive and photocorrosion resistance [5, 10]. To improve the photocatalytic activity of TiO_2 based photoanode, many research efforts have been done such as doping with metals and mixing with other metal oxides [11–16].

Tungsten oxide (WO_3) with a band gap of about 2.7 eV has been widely utilized to couple with $TiO_2[17,18]$. This is mainly because WO₃ can serve as a coupling agent with TiO₂ to facilitate charge separation and mobility. Similar strategy can be applied in the TiO₂ based dye-sensitized solar cells (DSSCs) [19]. More interestingly, non-stoichiometric tungsten oxide with oxygen deficiency (WO3-x) has a higher electron mobility $(10-20 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1})$ [20,21] and can be widely used as electron-selective materials in solar cells [22,23]. Considering the unsatisfactory efficiency of photoelectrocatalytic CO_2 reduction by the TiO_2 photoanode, combining TiO₂ with WO_{3-x} may provide a strategy to improve the seperation of photo-generated electrons and holes. To the best of our knowledge, no such constructed photoanode has been used to photoelectrocatalytic reduction of CO₂.

In this work, we fabricated a novel WO_{3-x}/TiO_2 film photoanode by the doctor blading method at low temperature. The introduction of WO_{3-x} improved the rate of electron transfer and suppressed recombination synergistically, resulting in an improvement in the performance of PEC reducing CO_2 into formic acid. In

Foundation item: Project (21471054) supported by the National Natural Science Foundation of China

Corresponding author: Ya-hui YANG; Tel: +86-731-84617670; E-mail: yangyahui2002@sina.com

DOI: 10.1016/S1003-6326(16)64376-5

order to better understand the improved reason, the PEC performance has been investigated by photocurrent and electrochemical impedance measurements.

2 Experimental

2.1 Materials

TiO₂ nanoparticles (Degussa P25, Germany), ammonium metatungstate ($(NH_4)_6H_2W_{12}O_4 \cdot xH_2O$, 99.99%, Aladdin), polyvinylpyrrolidone (PVP, 99.99%, Aladdin), polyethylene glycol (PEG1000, 99.99%, Aladdin) were used as-received. The fluorine-doped SnO₂ glass (FTO) as the substrate of film was purchased from NSG Corporation.

2.2 Synthesis of WO_{3-x} nanoparticles

The WO₃ nanoparticles were prepared by a solution method according to our previous work [24]. 2 g of PVP was dissolved in 15 mL of deionized (DI) water. $(NH_4)_6H_2W_{12}O_4 \cdot xH_2O$ (1.478 g) was suspended in 10 mL of DI water and then dropped into the above PVP solution with continual stirring. After 30 min of ultrasonic treating and 2 h of stirring, 2.000 g of PEG1000 was added in it with continual stirring for additional 4 h. The as-prepared precursor was completely dried at 80 °C, followed by sintering at 600 °C for 1 h.

The WO_{3-x} nanoparticles were prepared by a hydrogen reduction method. In a typical experiment, 1 g of WO₃ nanoparticles was calcined in reducing gas ($V(Ar):V(H_2)=95:5$) at the flow rate of 0.2 L/min and 400 °C for 2 h.

2.3 Preparation of TiO₂/WO_{3-x} films

The TiO₂/WO_{3-x} film was prepared by using a doctor-blade technique. In detail, 0.285 g P25, 0.015 g WO_{3-x} nanoparticles, 1.585 mL ethyl alcohol and 0.415 mL dilute HCl solution (pH \approx 4) were added to an agate jar. The TiO₂/WO_{3-x} paste can be obtained by ball milling for 2 h. The prepared paste was coated on the FTO substrate by a doctor-blade coater and then dried at 60 °C for 60 min. Finally, the as-prepared film was baked at 120 °C for 15 min.

2.4 Characterization

The crystalline phase of the samples was characterized with an X-ray diffractometer (XRD, D/Max2250, Rigaku Corporation, Japan) at a scanning speed of 8 (°)/min. The surface morphology and microstructure of the sample were investigated with a field emission scanning electron microscope (FESEM, NanoSEM 230) coupled with energy dispersive X-ray spectroscopy (EDS) and a transmission electron microscope (TEM, TECNAI G2 F20, FEI). EDS was used to analyse the elements of as-prepared sample. The

chemical composition of the sample was analyzed with an X-ray photoelectron spectroscope (XPS, K-Alpha 1063, Thermo Fisher Scientific). The absorbance of photoanodes were performed through a diffuse reflectance ultraviolet and visible spectrophotometer (UV-Vis Pgeneral TU-1901).

2.5 Determination of oxygen index

The oxygen index was determinated by a modified method of potentiometric titrimetry [25-27]. In details, 0.200 g WO_{3-x} powder was put in a 250 mL conical flask. 5 mL of 0.2 mol/L K₃[Fe(CN)₆] and 15 mL of 1 g/L KOH solution were added. The mixture was heated in an oven at 70 °C for 15 min to dissolve WO_{3-x} powder, and then naturally cooled to room temperature. After that, 10 mL of concentrated hydrochloric acid, 10 mL of DI water and 20 mL of 10 g/L KI solution were injected. The potentiometric titrimetry was carried out in a two electrode configuration in which Pt plate and Ag/AgCl/satd. KCl were used as work electrode and counter/reference electrodes, respectively, and the above solution was used as electrolyte. Under continuous stirring, it was titrated with a standard solution of $Na_2S_2O_3$ (0.05 mol/L). The titration was terminated when an obvious potential change happens, and the consumption of Na₂S₂O₃ is V_1 . In addition, a coefficient $K=G_2/G_1$ was also gained, where G_1 is the mass of sample before annealing, and G_2 is the mass of sample after annealing at 400 °C for 30 min in air. Finally, the oxygen index (3-x) of non-stoichiometric tungsten oxides was calculated based on the following equation:

$$(3-x) = 3 - \frac{0.1159 \times (0.2 \times 5 - 0.05 \times V_1)}{0.200 \times K}$$
(1)

and the oxygen index in this experiment is 2.65.

2.6 Photoelectrochemical measurements

The photoelectrochemical experiments were carried out using an electrochemical analyzer (Zennium, Zahner, Germany) with a three electrode quartz cell that includes a work electrode, a platinum or copper electrode and an Ag/AgCl/satd. KCl reference electrode. A 500 W Xe lamp adjusted to 100 mW/cm² (CHF-XM35, Beijing Trusttech Co. Ltd.) was used as the light source. For photoelectrochemical measurements, the electrodes were immersed in 0.2 mol/L Na₂SO₄ solution and the scanning rate of cyclic voltammetry is 20 mV/s. The electrochemical impedance spectra were measured at the potential of 0.8 V (vs Ag/AgCl) with a 10 mV AC voltage perturbation and the range of frequency is 10000 to 0.1 Hz. For the experiment of reducing CO₂, the reactor with a Nafion membrane has two compartments for water oxidation (anodic) and CO₂ reduction (cathodic), respectively. In the cell for water oxidation,

the as-prepared film, Ag/AgCl and 0.2 mol/L Na₂SO₄ solution were used as photoanode, reference electrode and electrolyte, respectively. In the compartment for CO₂ reduction, the copper electrode and 0.5 mol/L KHCO₃ solution were used as cathode and electrolyte, respectively. A constant potential of 1.2 V (vs Ag/AgCl) was applied for CO₂ reduction. The CO₂ gas was injected during the whole test process. The formic acid in the electrolyte was analyzed by headspace method using a gas chromatograph-mass spectrometer (ICS 2000, Dionex, USA).

3 Result and discussion

3.1 Morphology and structure

The morphology of WO_{3-x} nanoparticle was

investigated using FESEM. Figure 1(a) shows the morphology of WO_{3-x} nanoparticles. As shown in Fig. 1(a), all the WO_{3-x} nanoparticles exhibit the morphology of spherical particles with a diameter of 30–80 nm. The XRD pattern of WO_{3-x} nanoparticles is shown in Fig. 1(b). The diffraction peaks of WO_{3-x} nanoparticles at 23.0°, 23.5°, 24.3°, 26.5°, 28.7°, 33.1°, 33.8°, 35.4°, 41.6°, 47.0°, 48.1°, 49.9° and 55.7° are in accordance with (002), (020), (200), (120), (112), (022), (202), (122), (222), (004), (040), (232) and (402) planes of tungsten oxide, which can be indexed to WO₃ (JCPDS No. 89-7796).

In order to better observe the particle size and crystal structure of WO₃ and WO_{3-x} nanoparticles, the TEM images of WO₃ and WO_{3-x} nanoparticles are shown in Fig. 2. Figures 2(a) and (b) show the low resolution

Fig. 1 SEM image (a) and XRD pattern (b) of WO_{3-x} nanoparticles

Fig. 2 TEM images of WO_3 (a, b) and WO_{3-x} (c, d) nanoparticles

and high resolution TEM images of WO₃ nanoparticles, respectively. As shown in Fig. 2(a), the size of WO₃ nanoparticles is 30–80 nm. The observed lattice fringes of 0.36 nm in Fig. 2(b) corresponds to the (002) plane of monoclinic WO₃ (JCPDS No. 89-7796). The TEM images of WO_{3-x} nanoparticles are shown in Figs. 2(c) and (d). It can be seen from Fig. 2(c) that the particle size of WO_{3-x} nanoparticle is similar to that of WO₃ nanoparticle. The interplanar spacing is 0.36 nm, which is consistent with the (200) plane of monoclinic WO₃ (JCPDS No. 89-7796). The TEM results indicate that there is almost no change in the particle size and crystal structure of WO₃ nanoparticles after H₂-treatment.

Figure 3(a) shows the FESEM image of WO_{3-x}/TiO_2 films. As shown in Fig. 3(a), the WO_{3-x}/TiO_2 film is composed of uniform nanoparticles with a thickness of 1 µm. The local composition of WO_{3-x}/TiO_2 film was analyzed with an EDS spectrometer. The EDS result (Fig. 3(b)) indicates the existence of O, W and Ti.

Fig. 3 FESEM image (a) and EDS pattern (b) of WO_{3-x}/TiO_2 film

The crystallographic structure and phase purity of TiO_2 , WO_3/TiO_2 , and WO_{3-x}/TiO_2 films were examined by XRD analysis and the results are shown in Fig. 4. The XRD patterns of the three films present the same peaks, corresponding to rutile TiO_2 (JCPDS No. 73-2224) and FTO substrate (SnO₂, JCPDS No. 71-0652), and no other

obvious peaks can be observed in all patterns, which are likely due to low WO_3 and WO_{3-x} content.

Fig. 4 XRD patterns of TiO_2 , WO_3/TiO_2 , and WO_{3-x}/TiO_2 films

3.2 Chemical composition of WO_{3-x}

To confirm the existence of oxygen vacancies, the chemical states of O and W in the WO_{3-x} nanoparticles were studied by XPS. The XPS spectra have been fitted by the Gaussian-Lorentzian function. The O 1s and W 4f XPS spectra of WO_{3-x} are shown in Fig. 5. In Fig. 5, the characteristic peaks at 530.5 and 531.2 eV are attributed to O^{2-} and O^{-} , respectively [28,29]. For the W 4f XPS

spectrum, the separated peaks centered at the binding energies of 34.8 and 36.9 eV correspond to the typical binding energies of W^{5+} [30]. This confirms that oxygen vacancies and W^{5+} are created after H₂-treatment.

3.3 Optical properties

The light absorption spectra of all films are presented in Fig. 6. The pure TiO_2 film exhibits an absorption edge of ~400 nm. With the introduction of WO₃ and oxygen vacancies (WO_{3-x}), a high absorbance in the visible region is obtained.

Fig. 6 UV-Vis spectra of TiO₂, WO₃/TiO₂, and WO_{3-x}/TiO₂ films

3.4 Photoelectrochemical performance

The PEC CO₂ reduction experiments were carried out under irradiation of a 500 W Xe lamp with a power density of 100 mW/cm², and the formic acid in solution was analyzed with a gas chromatograph-mass spectrometer (GC-MS). After 3 h of photoelectrocatalytic reduction, the production yields of HCOOH for TiO₂, WO₃/TiO₂ and WO_{3-x}/TiO₂ films were recorded as shown in Fig. 7. Compared with the pure TiO₂ film (335 nmol/cm²), the WO₃/TiO₂ film exhibits an enhanced production yield of HCOOH (475 nmol/cm²), which is

Fig. 7 Formic acid yields for TiO_2 , WO_3/TiO_2 and WO_{3-x}/TiO_2 film after 3 h of photoelectrocatalytic reduction

because the improved separation of photon-generated carrier by the introduction of WO₃ [19,31]. Particularly, the production yield of WO_{3-x}/TiO₂ film is 872 nmol/cm², which is 1.83 times that of WO₃/TiO₂ film. This indicates that the WO_{3-x}/TiO₂ film has a good ability for the PEC CO₂ reduction.

To better understand the enhanced performance of PEC CO₂ reduction for WO_{3-x}/TiO_2 film, TiO_2 , WO₃/TiO₂ and WO_{3-x}/TiO₂ films were used as photoanodes in a typical PEC cell, and their PEC performance was investigated in 0.2 mol/L Na₂SO₄ and 0.5 mol/L NaHCO₃ solution. Figure 8(a) shows the photocurrent density plots of TiO2, WO3/TiO2 and WO_{3-r}/TiO_2 films. The WO_3/TiO_2 film exhibits a higher photocurrent density than the pure TiO_2 electrode. Importantly, the photocurrent density of WO_{3-x}/TiO_2 film is larger than that of the WO₃/TiO₂ film. It agrees with the performance of PEC CO₂ reduction for the three films. Figure 8(b) shows the electrochemical impedance spectroscopy (EIS) of TiO₂, WO₃/TiO₂ and WO_{3-x}/TiO₂ films at the applied potential of 0.8 V (vs Ag/AgCl) under illumination conditions. The EIS analysis is a very useful tool to study the electron transport property of film photoelectrode. In EIS Nyquist plot, a smaller circular radius means lower charge transfer resistance in the electrode [32-34]. As shown in Fig. 8(b), the EIS Nyquist plot of WO_{3-x}/TiO₂ film exhibits the smallest circular radius among the three films, suggesting the

Fig. 8 Photocurrent density (a) and EIS (b) plots of TiO_2 , WO_3/TiO_2 and WO_{3-x}/TiO_2 films

lowest charge transfer resistance in WO_{3-x}/TiO_2 film. This may be a probable explanation why the WO_{3-x}/TiO_2 film exhibits a better performance of PEC CO₂ reduction.

4 Conclusions

1) A novel WO_{3-x}/TiO_2 photoanode was fabricated by a hydrogen reduction method and low temperature doctor blade technique.

2) After 3 h of photoelectrocatalytic reduction, the formic acid yield of the WO_{3-x}/TiO_2 film is 872 nmol/cm², which is 1.83 times that of the WO_3/TiO_2 film.

3) The introduction of WO_{3-x} nanoparticles reduces the charge transfer resistance, resulting in an improved performance of PEC CO₂ reduction for the WO_{3-x}/TiO_2 film.

References

- [1] MAGESH G, KIM E S, KANG H J, BANU M, KIM J Y, KIM J H, LEE J S. A versatile photoanode-driven photoelectrochemical system for conversion of CO₂ to fuels with high faradaic efficiencies at low bias potentials [J]. Journal of Materials Chemistry A, 2014, 2(7): 2044–2049.
- [2] IBRAHIM N, KAMARUDIN S K, MINGGU L. Biofuel from biomass via photo-electrochemical reactions: An overview [J]. Journal of Power Sources, 2014, 259: 33–42.
- [3] TURNER J A. Sustainable hydrogen production [J]. Science, 2004, 305(5686): 972–974.
- [4] HSU H C, SHOWN I, WEI H Y, CHANG Y C, DU H Y, LIN Y G, TSENG C A, WANG C H, CHEN L C, LIN Y C. Graphene oxide as a promising photocatalyst for CO₂ to methanol conversion [J]. Nanoscale, 2013, 5(1): 262–268.
- [5] CHENG J, ZHANG M, WU G, WANG X, ZHOU J H, CEN K F. Photoelectrocatalytic reduction of CO₂ into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO₂ nanotubes [J]. Environmental Science & Technology, 2014, 48(12): 7076–7084.
- [6] GARC A M, AGUIRRE M J, CANZI G, KUBIAK C P, OHLBAUM M, ISAACS M. Electro and photoelectrochemical reduction of carbon dioxide on multimetallic porphyrins/polyoxotungstate modified electrodes [J]. Electrochimica Acta, 2014, 115: 146–154.
- [7] SONG J T, IWASAKI T, HATANO M. Photoelectrochemical CO₂ reduction on 3C-SiC photoanode in aqueous solution [J]. Japanese Journal of Applied Physics, 2015, 54(4S): 04DR05.
- [8] CHAUDHARY Y S, WOOLERTON T W, ALLEN C S, WARNER J H, PIERCE E, RAGSDALE S W, ARMSTRONG F A. Visible light-driven CO₂ reduction by enzyme coupled CdS nanocrystals [J]. Chemical Communications, 2012, 48(1): 58–60.
- [9] HASAN M R, HAMID S B A, BASIRUN W J. Charge transfer behavior of graphene-titania photoanode in CO₂ photoelectrocatalysis process [J]. Applied Surface Science, 2015, 339: 22–27.
- [10] LEI Z, LIAN J S. Effect of substrate temperature on structural properties and photocatalytic activity of TiO₂ thin films [J]. Transactions of Nonferrous Metals Society of China, 2007, 17(4): 772–776.
- [11] CHEN W, HUA D, TIAN J Y, ZHANG J M. Photocatalytic activity enhancing for TiO₂ photocatalyst by doping with La [J]. Transactions

of Nonferrous Metals Society of China, 2006, 16: s728-s731.

- [12] ZHANG K J, WEI X, LI X J, ZHENG S J, GANG X, WANG J H. Photocatalytic oxidation activity of titanium dioxide film enhanced by Mn non-uniform doping [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(5): 1069–1075.
- [13] JUN D, XIN G, QI W, JIAO L, GUO H Z, ZOU J G. Hydrophilic and photocatalytic activities of Nd-doped titanium dioxide thin films [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8): 2601–2607.
- [14] LIANG J S, MENG J P, LIANG G C, FENG Y W, YAN D. Preparation and photocatalytic activity of composite films containing clustered TiO₂ particles and mineral tournaline powders [J]. Transactions of Nonferrous Metals Society of China, 2006, 16: s542-s546.
- [15] LI Y Y, HAO H S, WANG L J, GUO W H, QING S, LEI Q, GAO W Y, LIU G S, HU Z Q. Preparation and photoelectric properties of Ho³⁺-doped titanium dioxide nanowire downconversion photoanode [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 3974–3979.
- [16] LIU C J, YANG Y H, LI W Z, LI J, LI Y M, CHEN Q Y. A novel Bi₂S₃ nanowire@TiO₂ nanorod heterogeneous nanostructure for photoelectrochemical hydrogen generation [J]. Chemical Engineering Journal, 2016, 302: 717–724.
- [17] TONG H X, CHEN Q Y, YIN Z L, HU H P, LI J, LI Z. Preparation of TiO₂ photocatalyst coated with WO₃ for O₂ evolution [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 682–687.
- [18] TONG H X, CHEN Q Y, ZHAO L, WU D X, YANG D W. Photocatalytic behavior of WO₃-TiO₂ catalysts with oxygen evolution [J]. Integrated Ferroelectrics, 2011, 127(1): 63-70.
- [19] LI W Z, JIN G H, HU H S, LI J, YANG Y H, CHEN Q Y. Phosphotungstic acid and WO₃ incorporated TiO₂ thin films as novel photoanodes in dye-sensitized solar cells [J]. Electrochimica Acta, 2015, 153: 499–507.
- [20] GEROSA M, DI VALENTIN C, ONIDA G, BOTTANI C E, PACCHIONI G. Anisotropic effects of oxygen vacancies on electrochromic properties and conductivity of γ-monoclinic WO₃ [J]. The Journal of Physical Chemistry C, 2016, 120(21): 11716–11726.
- [21] DUNNILL C W, NOIMARK S, PARKIN I P. Silver loaded WO_{3-x}/TiO₂ composite multifunctional thin films [J]. Thin Solid Films, 2012, 520(17): 5516–5520.
- [22] WANG K, SHI Y T, DONG Q S, LI Y, WANG S F, YU X F, WU M Y, MA T L. Low-temperature and solution-processed amorphous WO_x as electron-selective layer for perovskite solar cells [J]. The Journal of Physical Chemistry Letters, 2015, 6(5): 755–759.
- [23] VASILOPOULOU M, SOULTATI A, GEORGIADOU D, STERGIOPOULOS T, PALILIS L, KENNOU S, STATHOPOULOS N, DAVAZOGLOU D, ARGITIS P. Hydrogenated understoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics [J]. Journal of Materials Chemistry A, 2014, 2(6): 1738–1749.
- [24] LIU Y, LI J, LI W Z, LIU Q, YANG Y H, LI Y M, CHEN Q Y. Enhanced photoelectrochemical performance of WO₃ film with HfO₂ passivation layer [J]. International Journal of Hydrogen Energy, 2015, 40(29): 8856–8863.
- [25] JIONG L D. A determination on the index of oxygen in blue tungsten oxide [J]. China Tungsten Industry, 2000, 15(2): 32–33. (in Chinese)
- [26] CHUN T A, XI W E, QIANG Z Z. Accurate measurement of oxygen index of tungsten oxides and tungsten bronzes [J]. Powder Metallurgy Technology, 1984(2): 43–47. (in Chinese)
- [27] PENG L Z. On determination of non-stoichiometic ratio between tungsten and oxygen in blue tungsten oxide [J]. Chinese Journal of Analysis Laboratory, 1986, 5(10): 1–5. (in Chinese)
- [28] LIU Y, LI J, LI W Z, YANG Y H, LI Y M, CHEN Q Y. Enhancement

2396

Ya-hui YANG, et al/Trans. Nonferrous Met. Soc. China 26(2016) 2390-2396

of the photoelectrochemical performance of WO₃ vertical arrays film for solar water splitting by gadolinium doping [J]. The Journal of Physical Chemistry C, 2015, 119(27): 14834–14842.

- [29] SHPAK A P, KORDUBAN A M, MEDVEDSKIJ M M, KANDYBA V O. XPS studies of active elements surface of gas sensors based on WO_{3-x} nanoparticles [J]. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156–158: 172–175.
- [30] LIU Y, LI J, TANG H, LI W Z, YANG Y H, LI Y M, CHEN Q Y. Enhanced photoelectrochemical performance of plate-like WO₃ induced by surface oxygen vacancies [J]. Electrochemistry Communications, 2016, 68: 81–85.
- [31] KHARE C, SLIOZBERG K, MEYER R, SAVAN A, SCHUHMANN W, LUDWIG A. Layered WO₃/TiO₂ nanostructures with enhanced photocurrent densities [J]. International Journal of Hydrogen Energy,

2013, 38(36): 15954-15964.

- [32] ZHU J, LI W Z, LI J, LI Y M, HU H S, YANG Y H. Photoelectrochemical activity of NiWO₄/WO₃ heterojunction photoanode under visible light irradiation [J]. Electrochimica Acta, 2013, 112: 191–198.
- [33] YANG J, LI W Z, LI J, SUN D B, CHEN Q Y. Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates [J]. Journal of Materials Chemistry, 2012, 22(34): 17744–17752.
- [34] LIU C J, YANG Y H, LI W Z, LI J, LI Y M, SHI Q L, CHEN Q Y. Highly efficient photoelectrochemical hydrogen generation using Zn_xBi₂S_{3+x} sensitized platelike WO₃ photoelectrodes [J]. ACS Applied Materials & Interfaces, 2015, 7(20): 10763–10770.

新型 WO_{3-x}/TiO₂ 薄膜光阳极 光电催化还原 CO₂制备甲酸

杨亚辉¹,解人瑞¹,黎 航¹,刘灿军²,刘文华²,占发琦²

湖南农业大学 资源与环境学院,长沙 410128;
2. 中南大学 化学化工学院,长沙 410083

摘 要:采用刮涂法制备一种新型光阳极 WO_{3-x}/TiO₂薄膜,并对其进行光电催化还原 CO₂制备甲酸。运用 X 射 线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对光阳极薄膜进行表征。通过 XPS 确认 WO_{3-x}中存在氧空位, 并通过电位滴定法精确测定 WO_{3-x}中的氧指数。光电催化还原 CO₂ 3 h 后,WO_{3-x}/TiO₂薄膜光阳极的甲酸产量为 872 nmol/cm²,是 WO₃/TiO₂薄膜光阳极的 1.83 倍。光电化学测试表明,由于氧空位的存在提高材料电荷传输性 能,从而提高光电催化还原 CO₂ 活性,故 WO_{3-x}/TiO₂薄膜光阳极相对 WO₃/TiO₂ 具有更好的光电催化还原活性。 关键词:光电催化还原; CO₂;甲酸;WO_{3-x};TiO₂;薄膜光阳极

(Edited by Sai-qian YUAN)