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Abstract: AMD(Acid Mine Drainage)-type acidic groundwater (pH＜4) from oxidizing sulfide tailings in BS nickel mine (Western 
Australia) is of higher total rare earth element(REE) contents and Ce enrichment (PAAS normalization), different from setting 
groundwater (pH＞6.5, with lower total REE contents, Ce depletion). While the AMD contaminated groundwater (pH=4.0−6.5) 
around tailings pond is characterized by transition from acidic to setting groundwater in total REE content, and associated with Ce 
depletion (like setting groundwater). The light REE in all type groundwater shows up depletion, but its depleted extent in acidic 
groundwater is more remarkable. This work indicates that REE behavior in AMD-type acidic groundwater is controlled mainly by 
pH value and metal (Al, Mn and Fe) contents. And the critical pH value that affects REE behavior in ground acidic water would be 4, 
lower than the previous value (pH=5) that has been believed prevalently in surface acidic waters. The pH could affect REE behavior 
in groundwater by controlling the solubility of metal (Al, Mn and Fe) hydroxides and the valence of cerium. Finally, light REE 
depletion in acidic groundwater may due to element affinity. High content Al (affinity with heavy REE) and low content Fe (affinity 
with light REE) may lead to heavy REE enrichment while light REE relative depletion in water. 
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1 Introduction 
 

Rare earth element(REE) can record subtle 
geochemical processes in natural systems, and has been 
extensively applied to earth science field. However, REE 
geochemical behavior in aquatic systems is a relatively 
new field of study. In recent years, many studies have 
focused on REE concentration, differentiation and effect 
factors in surface acidic waters, e.g. river, lake and mine 
surface water[1−5], but few papers published have been 
involved in ground acidic waters[6−7], especially 
AMD(Acid mine drainage)-type acidic groundwater. 

There are a volume of solid wastes (including mill 
tailings, waste rock, etc.) produced during the period of 
metal sulfide mining activity. When the sulfide minerals 
remaining in the solid wastes expose to earth surface, 
they react with H2O and O2 in atmosphere, resulting in 
the generation of sulfuric acid. The acid drainage/AMD 

will happen only if the neutral/buffer capacities of the 
solid waste itself and environment were overwhelmed by 
its acid generation potentials. In contrast with the surface 
acidic water rich in oxygen, the ground acidic water 
which was formed by acid drainage infiltrating 
downward may be almost under anaerobic condition, 
meaning that biological and biochemical action may be 
of no consideration relatively in groundwater. Hence, 
there should be a difference in REE distribution patterns 
between surface and ground acidic water. In this study, 
REE behavior and effect factors in AMD-type acidic 
groundwater are studied through sampling and testing 
groundwater from drilling holes, which are placed 
nearby and beyond tailing bond in BS nickel sulfide 
mine, Western Australia. 
 
2 Setting 
 

BS nickel sulfide mine is near to Kalgoorlie, Western 
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Australia. In BS mine, milling wastes, massive sulfide 
tailings (approximately 58 000 t/a) and disseminated 
sulfide tailings (approximately 325 000 t/a) are stored in 
MST and DST pond, respectively (Fig.1). Acidified 
groundwater has been recognized around the tailings 
pond three years after its establishment. A recent 
assessment of the tailings disclosed that the massive 
sulfide tailings were totally classified as potentially acid 
forming, and approximately 16% by volume of the 
disseminated sulfide tailings held a potential to be acid 
generating[8]. 
 

 
Fig.1 Location map showing sampling sites: MST—Massive 
sulfide tailings pond; DST—Disseminated sulfide tailings pond; 
EP—Evaporation pond; T1−12—Site and number of monitoring 
bores; B2−5—Site and number of active pump bores 
 

In the vicinity of tailings pond, there is a clayey 
ferricrete cover (4−20 m deep), which is underlain by 
saprolitic clay with minor ferruginous bands (62−79 m 
deep). Weathered depth (approached to Archaean mafic 
and ultramafic rock base) is up to 62−126 m. Surface 
runoff is to Southwest then South into a poorly defined 
channel outside the mine site. Groundwater is also 
interpreted to flow to South under low hydraulic 
gradients, and natural water table was 25−29 m below 
ground level. 
 
3 Sampling and test results 
 
3.1 Sampling 

Groundwater samples were collected from 
monitoring bores (T1−12) nearby the pond and active 
pump bores (B2−5) beyond the pond (Fig.1). Groundwater 
pH (and electrical conductivity, static water level and 
temperature) was measured on site. A portion of each 
water sample (filtered through 0.45 µｍ nitrocellulose 
filter, then acidified with ultra pure nitric acid) was 

analyzed for REE and trace elements by ICP-MS and 
ICP-AES in department of Applied Chemistry, Curtin 
University of Technology (Western Australia). REE test 
values of groundwater samples were normalized using 
Post-Archaean Australian Shale (PAAS), and Cerium 
nomaly (Ce/Cea

 
*) was calculated using the formula: 

A
 

(Ce/Ce*)=N(Ce)/[N(La)×N(Pr)]0.5

where  N denotes PAAS-normalized value. 
 
3.2 Results 

Based on pH values, the groundwater samples can 
be divided into three types (Table 1): typeⅠ, pH＜4, 
acidic groundwater (including sample T2, T3, T5, T7, T10), 
collected in the vicinity of pond; type Ⅱ, pH=4.0—6.5, 
acid contaminated groundwater (including T4, T6, T8, 
T12), also collected in the vicinity of pond; type Ⅲ, pH＞
6.5, setting groundwater, no acid contamination. Type  Ⅲ
samples include B2, B3, B4, B5 (sampling sites away from 
the tailing pond), and T1, T9, T11 (sampling sites near to 
the pond, but their water samples are of pH＞6.5, hence 
these samples are classified as type ).Ⅲ  

Three-type groundwaters display different 
characteristics in solved REE distribution patterns 
(PAAS normalization) (Fig.2 and Table 1): 1) REE 
concentration in typeⅠ ((75.5−671)× 10−9, average 
301.3×10−9) is of 1−2 orders of magnitude higher than 
that in type  Ⅲ ((4.44−32.8)×10−9, average 9.51×10−9); 
while REE concentration in type Ⅱ  is of greater 
variation ((6.26−677)×10−9, average 202.49×10−9), and 
transition from typeⅠto type Ⅲ. 2) cerium anomaly in 
type Ⅰ has a vaster variation (Ce/Ce*=0.655−1.66, 
average 1.12), but most of the samples (except T2) show 
weak-middle Ce positive anomaly; while types Ⅱ and 
Ⅲ (except T1) display marked Ce negative anomaly 
(type Ⅱ: Ce/Ce*=0.257−0.425, average 0.342; type : Ⅲ
Ce/Ce*=0.337−1.09, average 0.511). 3) Light REE shows 
depletion in all three types, but light REE depleted extent 
in type Ⅰ is more remarkable than that in types Ⅱ and 
Ⅲ [typeⅠ: (Gd/La)N=2.71−6.38, average 4.34; type Ⅱ: 
(Gd/La)N=1.87−2.87, average 2.06; type :Ⅲ  (Gd/La)N= 
1.82−3.04, average 2.23]. 

Grossly speaking, the acidic groundwater (type Ⅰ) 
in the mine is characterized by REE high concentration, 
Ce enrichment, and light REE depletion. In addition, it 
has a weak-middle REE enrichment (Fig.2). 
 
4 Discussion 
 
4.1 REE contents 

Many previous studies indicated that REE 
concentration is higher in acidic water than in normal 
water, and that pH plays an important role in controlling 
the concentration of solved REE in water, and its critical 
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Table 1 Analysis results of groundwater in drill holes, BS mine site* 

Sample No. pH w(Al)/ 
10−6

w(Mn)/ 
10−6

w(Fe)/ 
10−6

w(La)/
10−9

w(Ce)/
10−9

w(Pr)/
10−9

w(Nd)/
10−9

w(Sm)/ 
10−9

w(Eu)/
10−9

w(Gd)/
10−9

T10 3 147.0 3.23 ＜0.2 78.7 327 38.4 176 45.7 16.1 54.8 

T2 3.3 49.9 66.2 ＜0.2 373 606 122 474 119 49.3 145 

T3 3.3 114.0 13.6 ＜0.2 96 499 50 234 65.3 22.5 74.7 

T7 3.19 72.6 2.03 0.289 50.8 129 18.1 64.9 14 5.64 16.8 

T5 3.91 10.1 11.1 0.398 60.2 178 30.7 132 33.5 11.4 35.9 

T12 4.8 1.69 14.3 0.294 416 288 121 498 123 47.3 159 

T8 5.28 0.857 1.59 ＜0.2 61.8 33.1 14.3 66.4 14.8 6.19 21.6 

T6 6.08 0.4 0.165 0.302 7.03 7.65 2.45 8.85 2.19 0.292 2.1 

T4 6.48 0.418 2.08 ＜0.2 34.2 28 8.07 35.9 6.28 2.25 7.82 

T1 6.7 0.51 7.58 ＜0.2 24.4 67.5 8.37 31 6.81 2.33 9.05 

T9 7.41 0.393 0.09 ＜0.2 5.98 6.33 1.97 8.34 1.48 0.919 1.4 

T11 6.96 0.262 0.042 ＜0.2 5.69 4.82 1.91 8.9 1.21 0.325 1.26 

B2 6.6 0.242 0.038 0.214 4.79 6.02 1.71 9.45 1.34 0.325 1.26 

B3 6.51 0.299 0.572 0.252 7.18 7.62 2.73 11.1 2.24 0.91 1.96 

B4 6.75 0.36 0.249 0.511 4.88 6.24 2.13 9.07 1.67 0.182 1.46 

B5 6.96 0.308 0.119 0.479 5.25 5.32 1.86 7.06 1.79 0.107 1.26 

Sample No. w(Tb)/ 
10−9

w(Dy)/
10−9

w(Ho)/ 
10−9

w(Er)/
10−9

w(Tm)/
10−9

w(Yb)/
10−9

w(Lu)/
10−9

w(∑REE)/
10−9

Cerium 
anomaly N(Gd/La) N(La/Lu)

T10 9.88 5.6 12.3 32.2 4.45 26.7 3.45 232 1.37 5.71 0.314 

T2 31.6 172 37.3 94 13.7 73.6 9.57 671 0.655 3.19 0.283 

T3 14.6 93.6 20.9 54.5 7.57 43.8 5.89 359 1.66 6.38 0.315 

T7 3.080 18.1 2.82 10.9 1.36 8.93 0.929 75.5 0.982 2.71 0.277 

T5 8.25 45.1 9.05 24.6 3.17 18 2.42 169 0.955 4.89 0.309 

T12 29.5 172 37 97.3 13 70 9.47 677 0.296 3.13 0.295 

T8 4.4 22.9 4.93 16.2 1.79 9.66 1.6 94.9 0.257 2.87 0.362 

T6 0.424 1.24 0.284 0.431 0.145 0.408 0.118 6.26 0.425 2.45 0.33 

T4 1.83 8.04 1.49 3.59 0.532 2.63 0.396 31.8 0.389 1.87 0.301 

T1 1.38 7.43 1.47 3.59 0.514 3.29 0.436 32.8 1.09 3.04 0.344 
T9 0.406 1.11 0.133 0.487 0.128 0.818 0.079 6.19 0.426 1.92 0.25 

T11 0.248 0.888 0.112 0.694 0.144 0.486 0.077 4.92 0.337 1.82 0.217 

B2 0.287 0.82 0.225 0.266 0.144 0.486 0.175 4.66 0.485 2.16 0.492 

B3 0.21 1.85 0.301 0.804 0.163 0.487 0.215 7.82 0.397 2.24 0.534 

B4 0.289 1.31 0.245 0.808 0.091 0.489 0.118 5.71 0.447 2.45 0.525 

B5 0.287 0.958 0.206 0.588 0.072 0.324 0.019 4.44 0.393 1.97 0.107 
T1−12—Drilling holes around tailing pond and sample number; B2−5—Drilling holes away from pond and sample number. 
 
value is pH=5. Below a pH of 5 in acidic water, REE 
concentrates in water facies. The reason is that REE 
behaves conservatively in acidic water, and the elements 
concentrate in water facies as liberal ion or complex with 
SO4

2− (F−). While at pH＞5, REE tends to deposit though 
completing with CO3

2+ or (CO2)−, and be adsorbed by the 
metal (e.g. Al, Fe, Mn) hydroxide colloid, leading REE 
contents in waters to reduce[9−17]. And there is a 
negative correlation between REE content and pH 

value[18−19]. 
This paper got similar results to the previous  

studies. As pH value is below 5, especially below 4, REE 
contents in groundwater increase greatly (Fig.3(a)). And 
Fig.4 displays a negative correlation between REE and 
pH in the groundwater (correlation coefficient r=−0.82), 
and a positive correlation between Al (Mn) and pH 
(r=0.92 and 0.87, respectively), with the exception of Fe 
(there is not remarkable correlation between Fe and pH). 
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Fig.2 PAAS normalization REE patterns in groundwater, BS mine: (a) pH＜4; (b) pH=4.0−6.5; (c) pH＞6.5 
 
This reveals that REE contents in groundwater are 
controlled not only by pH, but also by Al, Mn contents. 
pH may control REE concentration through regulating 
adsorption-desorption of colloids (Al, Mn-hydroxides), 
meaning that REE adsorbed on the colloids in water can 
be released into water with pH decreasing (which leads 
colloid electronegativity to decrease), and vice versa[16]. 
These imply that pH is a dominant factor in controlling 
REE contents in groundwater. 

In addition, the previous studies also revealed that 
REE contents in AMD-type acidic water, e.g. Odiel acid 
river (pH=3.25, REE 42.62×10−9), Osamu Utsmi mine 
groundwater (pH=4.43, REE 1.046×10−6), Metalliferous 

Hills Cu-Pb-Zn mine stream (pH=3.1, REE 929×10−9), 
and Chinese Sitai coal drainage (pH=3.52−3.75, REE 
(54.37−68.80)×10−9)) have 2−3 orders of magnitude 
higher than those in normal water[1−2, 5−6]. In BS mine, 
the acidic groundwater (Ⅰtype, pH=3−3.91) should be 
classified as AMD-type acidic water, because its REE 
contents ((75.5−671)× 10−9) are in the REE range 
((42.62−1 046)×10−9) above AMD-type water and much 
higher than that in the normal setting groundwater. 
 
4.2 Ce differentiation 

pH value is one of the factors controlling Ce 
behavior in water, and the critical value is pH=5. At pH  
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Fig.3 Plots of REE content, Ce/Ce* and (La/Gd)N

against pH 

 

 
Fig.4 Plots of correlation coefficient (r) of w(REE) with pH, w(Al), w(Mn) and w(Fe) 
 
＞5, Ce is oxidized and changes from solved Ce3+ to 
dissoluble Ce4+, then deposits as CeO2 from water 
(BROOKINGS had ever certified the capability of CeO2 
sediment in nature waters)[20], resulting in a negative Ce 
anomaly in waters[21−23]. While in the pH＜5 acid 
water, Ce negative anomaly disappears and even it may 
show a small positive anomaly instead[11, 21]. 

Moreover, Ce behavior in water may relate to redox 
condition. LEYBOURNE et al[7] discovered that when 
they studied the difference of solved REE contents 

between surface and ground water in a mine site in 
Canada, Ce negative anomaly can be lowered down to 
0.08 (NASC normalization) in surface water, while this 
Ce anomaly was not demonstrated in groundwater  
mostly. It may be due to the fact that, under surface 
aerobic condition, Ce is easier to be oxidized and 
deposited as CeO2, causing Ce depletion in surface  
water; however, Ce in anoxic groundwater occurs as 
reduced Ce3+ instead and concentrates in water. 

In BS mine site, Ce anomaly in groundwater is 
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controlled by pH, but the critical value is pH=4, 
relatively lower than the previous critical value (pH=5). 
In pH＜4 acidic groundwater, Ce shows weak-middle 
positive anomaly. In pH＞4, the positive anomaly tends 
to disappear(Fig.3(b)). 

 
4.3 REE differentiation 

Light REE is more active than heavy REE in water 
[22, 24], causing REE differentiation, but pH effect is 
more significant. Under high pH alkaline condition, light 
REE tends to be divorced from waters and concentrates 
into secondary minerals[13, 15]. And with pH increasing, 
the sequence of REE adsorption to particles (in lake) is: 
light REE＞middle REE＞heavy REE; contrary to pH 
decreasing, REE release has similar sequence[9]. 
Therefore, it is not surprising that the REE model with 
light REE depletion and heavy REE enrichment often 
appears in the alkaline water[10, 25], while light REE 
concentrates in the acid water relatively[4, 13]. 

In this study, all groundwater samples demonstrate 
light REE depletion (Fig.2), and in the pH＜4 acidic 
groundwater, the extent of light REE depletion is vaster 
((Gd/La)N values are higher in acidic water than in 
setting water, see Fig.3(c)). The unusual phenomenon of 
light REE depletion in acidic water may be due to the 
element affinity. MARMOLEJO-RODRIGUEZ et al[17] 
indicated that light REE tends to affiliate with Fe, while 
heavy REE prefers to do with Al in land water. In BS 
mine site, Al (and Mn) high content and Fe low content 
(Fe contents in many samples even are lower than test 
limitation, Table 1) in acidic groundwater may lead to 
heavy REE enrichment while light REE depletion 
relatively. Besides, WORRALL and PEARSON[26] had 
another explanation for light REE depletion in acidic 
water. It is due to the results of sulfide (e.g. pyrite) 
oxidizing, without involving in latter water-rock reaction. 
Therefore, the mechanism of light REE depletion in 
acidic water may be more complex, and it is necessary to 
do further study to get more persuasive explanation. 

Besides, the middle REE enrichment, which exists 
in the general acidic water[1, 5], is also shown up in the 
AMD-type acidic groundwater in BS mine site, although 
its enrichment extent is markedly small (Fig.2). 
 
5 Conclusions 
 

1) REE behavior in AMD-type acidic groundwater 
is controlled by pH and metal (Al, Mn and Fe) contents. 

2) The critical pH value that affects REE behavior 
in AMD-type acidic groundwater would be 4, lower than 
the critical value (pH=5) in general surface acidic water. 
The pH could affect REE behavior in groundwater by 

controlling the solubility of metal (Al, Mn and Fe) 
hydroxides and the valence of cerium. In pH＜4 acidic 
groundwater, metal hydroxides (with higher solubility), 
REE and Ce tend to concentrate in water, resulting in 
REE and Ce enrichment. However, in higher pH 
groundwater, the metal hydroxides deposit as colloid 
coagulation because of the solubility decreasing, leading 
to REE content decreasing. And Ce is easier to be 
oxidized and deposited as CeO2 (Ce separates from other 
lanthanide by this way) under this condition, causing Ce 
depletion in water. 

3) Light REE depletion can appear in AMD-type 
acid groundwater. One of the reasons may be due to the 
element affinity. High content Al (affiliated with heavy 
REE) and low content Fe (affiliated with light REE), like 
the studied acidic groundwater in BS mine, may cause 
heavy REE enrichment and light REE depletion 
relatively. 
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