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Abstract: Numerical simulation based on phase field method was performed to describe the solidification of silicon. The effect of 
anisotropy, undercooling and coupling parameter on dendrite growth shape was investigated. It is indicated that the entire facet 
dendrite shapes are obtained by using regularized phase field model. Steady state tip velocity of dendrite drives to a fixed value when 
γ≤0.13. With further increasing the anisotropy value, steady state tip velocity decreases and the size is smaller. With the increase in 
the undercooling and coupling parameter, crystal grows from facet to facet dendrite. In addition, with increasing coupling parameter, 
the facet part of facet dendrite decreases gradually, which is in good agreement with Wulff theory. 
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1 Introduction 
 

Phase field method has been used to simulate the 
complicated pattern formation during crystal growth, and 
different dendrite patterns are obtained successfully[1−4]. 
The main problem in modeling crystal growth is how to 
solve moving boundary problem, which requires a 
specific treatment at the discontinuous solid/liquid 
interface. The merits of phase field method are that 
interface curvature, anisotropy and kinetics effects are 
implicitly incorporated in the phase field equation, and 
that the explicit tracking of the interface is 
unnecessary[5−6]. In the early application many 
problems occur, and the significant problem is that 
interface thickness must be much smaller than that of 
thermal boundary to meet with sharp interface limit, 
which makes it difficult to simulate dendrite shape. The 
interface kinetics coefficient in Karma and Rappel model 
can be eliminated by selecting and using appropriate 
parameters, and interface thickness can be released to an 
order of microstructures, then phase field method makes 
great progress[5,7−9]. The equilibrium condition at the 
interface is given by the Gibbs-Thomson equation: 

  
(W+Wφφ)/R(φ)=fL−fS=1−15γcos(4φ)               (1) 

where  W is solid/liquid interface energy, γ is anisotropy 
parameter, φ is the angle of the direction normal to the 
interface and the horizontal axis, R(φ) is the curvature 
radius of interface, fS and fL are free energy densities of 
the solid and liquid phases, respectively. When γ＜1/15, 
namely, weak anisotropy, both sides of the equation are 
always positive and a smooth and convex non-faceted 
crystal is stable. Conversely, when γ＞1/15, namely, 
strong anisotropy, the left hand side of the equation 
appears negative within the interface missing 
orientations, as a result, it is difficult to model dendrite 
growth. Since 2001, the problem has been solved 
through regularizing phase field model[10−14]. 

In this work, a new regularizing phase field model 
is presented based on EGGLESTON and KIM’s model. 
The entire dendrite growth shape of silicon is calculated, 
and the effect of anisotropy parameter, undercooling and 
coupling parameter is examined in detail. 
 
2 Phase field model 
 

These Wulff equilibrium crystal shapes[15−16] at 
various anisotropy values are given in Fig.1. When γ＜
1/15, crystal shape is smooth and continuous; on the 
contrary, when γ＞ 1/15, it occurs in discontinuous 
concave similar to “ears”, and these “ear” parts increase 
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Fig.1 Equilibrium crystal shapes at various anisotropy values: (a) γ=0.05; (b) γ=0.15; (c) γ=0.35 
 
with increasing anisotropy value. In order to simulate 
dendrite growth in strong anisotropy, these “ears” must 
be removed. The interface energy within the missing 
orientations has been regularized by EGGLESTON and 

IM, as follows: K
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an anisotropic interface energy function; φ  represents 
the phase field parameter, whereφ =1 in the bulk solid 
phase, φ =−1 in the bulk liquid phase, and the phase 
field varies smoothly between these two values within 
the diffusion interface region; n=−∇φ /|∇φ |, is the unit 
vector normal to the interface;  is a coupling 
parameter between phase field and thermal field; and t is 
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Dimensionless thermal field equation[5] is 
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where  α is thermal diffusion parameter. 

The dimensionless thermal variable is given by 

pcL
TT

/
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where  Tm is the melting point, L and cp are the latent 
and specific heat, respectively. 

Using asymptotic expansion, the capillary length d0 
and kinetic coefficient expression β are related to the 

hase field parameters[7], that is, p
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where  a1 and a2 both are constants, which depend on 
the double-well potential and other function choice of 
phase field equation. For the present choices, they are the 
same as those in Ref.[5], a1=0.883 9 and a2=0.626 7. 
 
3 Numerical simulation 
 
3.1 Initial conditions and boundary conditions 

Initial crystal radius is assumed to be r, 
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where  (100) is x direction and (010) is y direction[18]. 
Zero-Neumann boundary conditions are used: 

0=
∂
∂

n
φ ; 0=

∂
∂

n
θ  

 
3.2 Simulation method 

For the numerical calculation, Eqns.(4)−(7) are 
discretized on the uniform grids by using explicit finite 
difference methods; time stepping is discretized by 
explicit Euler scheme, and ∇2φ  is discretized by a 
nine-point formula with nearest and next nearest 
neighbors, which reduces the grid anisotropy[5]. The 
grid area is 500×500. For convenience, the following 
parameters are chosen: time step ∆t=0.008, space step 
∆x=∆y=0.4, τ0=1, d0=0.139, W0=1, α=4, ∆=−0.45, 
λ=6.383. Unless otherwise state, these phase field 
parameters are not varied. 
 
4 Results and discussion 
 
4.1 Dendrite growth shape of silicon 

In this work, silicon was selected as model material. 
Table 1 lists the physical properties of silicon[11]. Fig.2 
shows the silicon dendrite growth shape without noise at 
t=25 000 ∆t. Notice that crystal grows to facet dendrite, 
and this is similar to that shown in Ref.[11]. By 
comparing Fig.2(a) with Fig.2(c), these thermal and 

Table 1 Physical properties of silicon 
Property Value 

Liquid thermal diffusivity, α/(m2·s−1) 2.8×10−5

Anisotropy, γ 0.15 
Melting temperature of pure melt, Tm/K 1 685 

Latent heat of fusion, L/(J·m−3) 4.15×109

Interface energy, σ/(J·m−2) 0.438 
 
phase field shapes are very close, and they both can 
reflect characteristics of dendrite. 

It is important to study the effect of secondary 
dendrite on material properties. In order to obtain facet 
dendrite with secondary dendrite, random noise is added 
to phase field equation during the simulation. 

Dendrite shape with noise at t=25 000 ∆t is shown 
in Fig.3. By comparing Fig.3 with Fig.2, facet dendrite 
shape with noise is similar to that without noise, but 
noise promotes the growth of side dendrite branches. 
 
4.2 Effect of anisotropy parameter 

Anisotropy should be the physical value of material, 
but anisotropy in the range of 0.07−0.35 was studied to 
obtain some law in phase field simulation. The interface 
shapes of dendrite growth for various γ at ∆=−0.25, t=  
20 000 ∆t are given in Fig.4. It is noticed that crystal 
grows to facet and forms arc between two arms when γ is 
0.07. When increasing the anisotropy value to 0.13, sizes 

 

 
Fig.2 Dendritic growth shape of silicon without noise: (a) Phase field; (b) Interface evolution of phase field; (c) Thermal field 
 

 
Fig.3 Dendritic growth shape of silicon with noise: (a) Phase field; (b) Interface evolution of phase field 
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Fig.4 Interface shape of 

dendritic growth at ∆=−0.25, 

t=20 000 ∆t: (a) γ=0.07; (b) γ= 

0.11; (c) γ=0.13; (d) γ=0.25;

(e) γ=0.35 

 
of facet are very close, and the only noticeable 
discrepancy between arms turn into cusps. With further 
increasing the anisotropy value, facet grows smaller and 
the part of cusp becomes plane. The steady state tip 
velocity as the function of anisotropy is summarized in 
Fig.5. When γ≤0.13, the steady state velocity is a fixed 
value. With increasing the anisotropy value, the steady 
state velocity decreases gradually when γ≤0.25, and the 
decreasing of the steady state velocity becomes slow. 
The reason is that the range of missing orientation and 
the limit of initial crystal radius are increased[14], and 
the relation between the steady state velocity and 
nisotropy value meets with the following equation: a

 
VSteadyd0/α=−15.136 5 γ5+15.267 2 γ4−5.605 94 γ3+ 

0.907 263 γ2−0.066 024 4 γ+0.006 960 47 (12) 
 
4.3 Effect of undercooling 

Fig.6 show the evolution of phase field for various 
 

 
Fig.5 Steady state tip velocity vs anisotropy 

 
Fig.6 Evolution of phase field for various undercooling at t=  
10 000 ∆t: (a) ∆=−0.05; (b) ∆=−0.25; (c) ∆=−0.45; (d) ∆=−0.55 
 
undercooling at every 2500 time steps, t=10 000 ∆t. It is 
seen that crystal grows from facet to facet dendrite, and 
dendrite shape becomes large gradually with time 
prolonging. A further analysis can be shown in Fig.7. 
When ∆=−0.05, dendrite tip velocity tends to zero. With 
increasing undercooling, dendrite tip velocity increases. 
 
4.4 Effect of coupling parameter 

Coupling parameter is an important parameter 
between phase field and thermal field, which is known to 
play an important role in dendrite growth interface. 

Fig.8 shows the isotherms around dendrite phase 
field shape at various coupling parameters, t=18 000 ∆t. 
It is noticed that crystal grows from facet to facet 
dendrite; isotherms around dendrite change from circle to 
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Fig.7 Relation of dendritic tip velocity vs time at various 
undercooling 

 

 

Fig.8 Isotherms around dendritic phase field shape at various 
coupling parameter (t=18 000 ∆t): (a) λ=1.596; (b) λ=3.192;  
(c) λ=4.787; (d) λ=6.383; (e) λ=7.979; (f) λ=9.575 
 
concave and size of corresponding faceted part decreases 
gradually with increasing coupling parameter, as shown 
in Figs.8(a) and (f), which agrees with Wulff theory. 

The dendrite tip velocities at various coupling 
parameters are shown in Fig.9. Dendrite tip velocity falls 

 

 
Fig.9 Calculated dendritic tip velocity at various coupling 
parameter 
 
to a steady state value after an initial fast growth. With 
increasing coupling parameter, dendrite tip velocity 
increases monotonically. When λ≥7.979, dendrite tip 
velocity occurs an increased trend and the interface 
becomes unstable. 
 
5 Conclusions 
 

1) The entire facet dendrite shape of silicon is 
successfully obtained by a new regularization phase field 
model, and noise can promote side branch growth of 
dendrite. 

2) When γ≤0.13, the steady state tip velocity of 
dendrite is a fixed value and shapes are very similar. 
With further increasing anisotropy, facet grows smaller 
and cusp becomes plane.  

3) With increasing the undercooling and coupling 
parameter, crystal grows from facet to facet dendrite.  

4) The size of the facet part decreases gradually 
with increasing coupling parameter, which is in 
agreement with Wulff theory. 
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