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Abstract：Aimed at the modeling issues in design and quick processing of extruding die for special-shaped products, with the help of 
Conformal Mapping theory, Conformal Mapping function is determined by the given method of numerical trigonometric 
interpolation. Three-dimensional forming problems are transformed into two-dimensional problems, and mathematical model of die 
cavity surface is established based on different kinds of vertical curve, as well as the mathematical model of plastic flow in extruding 
deformation of special-shaped products gets completed. By upper bound method, both vertical curves of die cavity and its parameters 
are optimized. Combining the optimized model with the latest NC technology, NC Program of die cavity and its CAM can be 
realized. Taking the similar extrusion of square-shaped products with arc radius as instance, both metal plastic similar extrusion and 
die cavity optimization are carried out. 
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1 Introduction 
 

For special-shaped products, similar extrusion is 
defined as the extruding deformation process which can 
make geometrical profile of metal arbitrary cross-section 
in deforming region be mutually similar to that of its 
original billet. During the metal forming, similar 
extrusion becomes non-axis-symmetrical three- 
dimensional problem due to the existence of tangent 
plastic flow, can not be simply described by two- 
dimensional theorem[1, 2]. In addition, on account of the 
difficulties in mathematics, related analysis was rarely 
reported, and no generalized expression of three- 
dimensional analysis exists[3, 4]. Consequently, not only 
similar extruding analysis but also its quick die 
processing was rarely achieved. 

At present, with the help of Conformal Mapping 
theory, only using given mapping function to convert 
typical region into simple region[5, 6], some engineering 
problems can be solved. Conformal Mapping theory has 
been applied in mechanical vibration[7], electro- 
magnetics[8], hydromechanics[9] and plastic processing 
fields[10]. Analyzing the vibration of simple-supported 
plates with concentrated mass, the complicated plates 
region and its vibrating function can be described by unit 

dish region, then, its fundamental frequency can be 
determined[11]. 

In this paper, with the help of Conformal Mapping 
theory, applying numerical trigonometric interpolation 
approach, the mapping analysis function transforming 
irregular non-axis-symmetry cross-section into unit dish 
region is built up. Thus, the plastic flow of similar 
extrusion is translated into two-dimensional problem, 
then three-dimensional plastic flow gets analyzed. After 
the comparison among three popular vertical curves of 
die cavity, namely straight linetype, cubic-streamline 
linetype and convex linetype, both mathematical models 
of similar extrusion and optimal die cavity are generated. 
Consequently, the technical target of precise as well as 
quick CAD/CAM of die cavity surface can be achieved. 
Furthermore, taking the similar extrusion of 
square-shaped products with arc radius r as instance, its 
plastic flow field, die cavity modeling and parameters 
optimization are analyzed respectively.  
 
2 Comformal Mapping of complicated region 

 
By Conformal Mapping theory[12, 13], complicated 

region in Fig.1(b) can be mapped into unit dish region in 
Fig.1(a), mapping function of complex polynomial on 
complicated geometrical region can be described as 
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In Eqn.(1), polynomial cn=an+ibn is complex 
coefficient, mapping function W should satisfy the 
ollowing boundary conditions: f
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By Eqn.(2), Eqn.(1) can be described by complex 
rigonometric function as follows: t 
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where  ρ, θ are module and phase of arbitrary vector in 
Fig.1(a). 
 

 
Fig.1 Conformal Mapping between complicated region and 
unit dish 
 

As shown in Fig.1, suppose boundary points 
Wk=xk+iyk of complicated region W are interpolation 
points k∈N (positive integer), and xk and yk are real part 
value and imaginary value of Wk separately. By 
Conformal Mapping function W, mapping points of 
complex vector W1,W2, …,Wm are 1, 2, …, m respectively 
as shown in Fig.1(a). Assuming that the phasesθk∈[0, 
2π] of complex vectors 1, 2, …, m are arithmetical 
progression, putting them into Eqn.(3), coordinate points 
value of interpolation points W1, W2, …, Wm can be 

btained: o 
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When m is large enough, the infinite interpolation 

points in Eqn.(3) can be replaced by finite interpolation 
points. From the orthogonal character of trigonometric 
function, the values of real part an and imaginary part bn 

of complex coefficients cn in progression function of 
tem m∈N can be expressed as i
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In Eqn.(4), interpolation points W1,W2,…,Wm are 

unknown value satisfying boundary mapping conditions. 
They can be defined as odd interpolation points when not 
satisfying precision requirements. Adding new 
interpolation points between odd interpolation points, 
namely even points, then doing mutual iterative 
calculation between odd and even points, the 
interpolation points value and cn can be calculated under 
the condition of satisfying precision requirements. The 
above process determining Conformal Mapping function 
is named as trigonometric interpolation method. 
 
3 Similar extrusion modeling 
 

By Conformal Mapping theory, as shown in Fig.2(a), 
the geometrical profile on the cross-section of square- 
shaped billet(z=0 in Fig.3) can be described by Eqn.(3), 

e can get w
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It can map the cross-section region into unit dish 

region. 
 

 
Fig.2 Conformal Mapping between square-shaped section and 
unit dish region 
 

Fig.3(a) is the deforming body sketch of similar 
extrusion, which can be mapped into axis-symmetrical 
model (Fig.3(b)). As shown in Fig.3(a), taking the center 
of billet as origin to set up Cartesian coordinate system 
(x, y, z), the three-dimension analysis of deforming 
region function can be written as 
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As shown in Fig.3, Si is the cross-section area of 
square-shaped billet at die cavity inlet, and its profile arc 
radius is r. 
 

 
Fig.3 Mapping of square-shaped deforming region 
 

Over plastic forming, the square-shaped products 
whose cross-section area So and arc radius ro are similar 
to the billet can be obtained. Suppose that the length of 
deforming region is L, and the linear ratio between Si and 
So isλ ,  in Eqn.(6) is the vertical interpolation 
function of die cavity. By the similar relationship 
between billet and product, arc radius r

)(zg

o can be gotten: 
 

rr λ=o                                    (7) 

 
When ρ=1, Eqn.(6) becomes the parameter function 

of die cavity surface S(θ, ρ, z). Hence, die cavity 
modeling of similar extrusion can be carried out by the 
application of Conformal Mapping theory. 
 
4 Vertical curve function g(z) of die cavity 
 

Vertical function g(z) of die cavity is important in 
determining metal plastic flow field, die cavity modeling, 
and optimizing the length L of deforming region. In Fig.3, 
the geometrical boundary condition, which g(z) selects to 
satisfy the die cavity, is that the cross-section profiles at 
the inlet and the outlet should be the billet outer profiles 
and product outer profiles separately, namely 
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When die cavity belongs to linear linetype, the 

vertical curve function is 
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L
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If the die cavity belongs to convex linetype, the 
vertical curve function becomes 
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When the die cavity belongs to cubic-streamline 
inetype, the vertical curve function should be l

 
g(z)=Az3+Bz2+Cz+D 
 
and this function should satisfy not only geometrical 
boundary conditions in Eqn.(8), but also the plastic flow 
conditions at the inlet and outlet of die cavity below: 
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If  is obtained and united with Eqn.(6), the 
parameter function of three-dimensional die cavity 
surface can be described. Combining W with 
proportional mapping, the die cavity modeling of large 
compressing ratio extrusion can be achieved. 

)(zg

 

5 Plastic flow field of similar extrusion 
 

It is assumed that the similar extrusion belongs to 
three-dimensional stable plastic flow field, in addition, as 
shown in Fig.3, we suppose that flow velocity vz along 
z-axis direction is even distribution on the arbitrary 
cross-section perpendicular to z-axis, thus, vz can be 
obtained from the character of flow pipe as follows: 
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where  Sz is arbitrary cross-section area in deforming 
region; vi is axial direction velocity at the inlet of die. 

Known from the stream function theory of metal 
plastic deformation, two three-dimensional plastic stream 
surface functions can be set up when ρ and θ in Eqn.(6) 
are constant. By total differential to both functions, 
velocity field of similar extrusion can be calculated: 
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Then, strain velocity field can be given from 

Eqn.(13) and Eqn.(14)[14] as follows: 
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6 Power and die cavity optimization 
 

Both die cavity surface and plastic body function 
Eqn.(6) are defined by cn and L. The optimized die 
parameter L can be calculated from the upper bound 
method of plastic deformation, the general power 
issipation function is d

 
J*=Wi+W+Wf                               (16) 
 

Metal deforming power dissipation Wi in deforming 
egion is r
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where  ) , ,( zθρε&  is equivalent strain ratio; σs is metal 
plastic yield stress; and V is metal’s volume in deforming 
egion. r 
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Power dissipation on the metal shearing section Si 

nd Sa o can be written as 
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where  oi  are discontinuity velocity on sections 
S

, vv ∆∆
i and So respectively. Jacobi’s transformations of area 
ifferential unit on Sd
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Assuming m is the friction factor between metal and 

die, then power dissipation due to friction on the surface 
 is S
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where  ∆vS is tangent velocity between metal and die 
cavity surface S, then the transformations of area 
differential unit on the surface S is 
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Now bringing velocity field of similar extrusion 
Eqn.(13), Eqn.(14) and strain velocity field Eqn.(15) into 
Eqn.(16), the general power dissipation can be described 
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where  P is relative pressure ratio. 
By the upper bound method, asking P for extremum 

to optimize parameter L, metal deforming velocity field, 
strain field and optimized parameter L can be obtained 
respectively. 
 
7 Example 
 

In Fig.2, square-shaped cross-section area is 2H×
2H, geometrical center is (0, 0), arc radius is r, arc center 
is (a, b), then, geometrical boundary condition in the first 
quadrant can be given by 
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By numerical trigonometric interpolation method of 
Conformal Mapping, (accuracy of cn can be computed by 
normal convergence method[15], in this case, 32 
interpolating points represent the infinite points of 
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Eqn.(1) in the first quadrant), cn can be calculated as 
follows:

 

 
c2v+1=0.0, 1.076 649, 0.000 001, −0.102 780, −0.000 001, 
0.038 262, 0.000 001, −0.018 425, −0.000 000, 0.009 608, 
0.000 000, −0.005 148, −0.000 000, 0.002 991, −0.000 000, 
−0.002 930, 0.000 001 
c2v=0 (v=1, 2, 3, ···, 16) 
 

Both the similar extruding region function of 
square-shaped products and the function of die cavity 
can be given by bringing cn into Eqn.(6). General power 
function can be obtained from Eqns.(9)−(15) and (17), 
thus, under the same m and λ conditions, the optimized 
parameter L of die cavity with different arc radius r can 
be obtained. 

Fig.4 Optimized parameter L vs r 
 
L/H=1.42 corresponding to curves r=0.4 and r=0.5 
separately. By analyzing general power dissipation, it can 
be concluded that, when arc radius becomes smaller, 
relative pressure ratio P will increase, and the die 
parameter L also tends to increase. 

As shown in Fig.4, the vertical curve function g(z) 
can be expressed by Eqn.(12) , when λ=0.85 and friction 
factor m=0.5, the optimized parameter L/H of die can be 
obtained by visual C++ program. Here, the optimized 
point L/H on each curve corresponds to the minimum 
point of curve P. Such as r=0.3 is corresponding to die 
optimized parameter L/H =1.52. 

Over optimizing the die cavity of square-shaped 
similar extrusion, as shown in Figs.5(a) and (b), CAD 
drawing of cavity can be depicted separately when r=0.3 
and r=0.5 under the conditions of m=0.5 and λ=0.85 by 
Eqn.(6). Combining die cavity surface function with the 

Under the same m and λ conditions, die optimized 
parameter L/H will change since arc radius r of billet is 
different. The optimized parameters are L/H=1.47 and 
 

 

Fig.5 Optimized die cavities: (a) r=0.5; (b) r=0.3 
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latest NC technology, both NC program of die cavity and 
its CAM[15] can be realized. 

Under the conditions λ=0.56 and m=0.30, three 
types of vertical curve of die cavity, namely straight 
linetype, cubic-streamline and convex, are compared. As 
shown in Fig.6, vertical curve is convex corresponding to 
the die parameters L/H=13.1, straight linetype 
corresponding to L/H=14.2, and cubic-streamline 
corresponding to L/H =17.2. The power dissipation 
shows decrease tendency, and optimized parameter L 
tends to increase due to the vertical curves changing 
from convex to linear and to cubic-streamline. It is 
demonstrated that material plastic flow is the flattest in 
cubic-streamline die. Thus, cubic-streamline die should 
be the first choice in ensuring the quality of extruding 
products under the available die cavity processing 
technology. By power analysis, it can be concluded that 
die cavity whose vertical curve is straight linetype is 
more optimal than that of convex. 
 

 
Fig.6 Optimized curve of die’s parameter L varying with 
vertical curve linetypes 
 
8 Conclusions 

 
1) By Conformal Mapping theory and numerical 

trigonometric interpolation methods, both the similar 

extrusion and mathematical model of die cavity surface 
are generated for special-shaped products. 

2) Die cavity with three kinds of vertical curves are 
optimized by the upper bound method. 
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