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Abstract: Distribution of localized damage in shear band can’ t be predicted theoretically based on classical elastoplastic theory. The 
average damage variable in shear band was considered to be a non-local variable. Based on non-local theory, an analytical expression for 
the localized damage in strain-softening region of shear band in the process of shear band propagation was presented using boundary 
condition and symmetry of local damage variable, etc. The results show that dynamic shear softening modulus, dynamic shear strength 
and shear elastic modulus influence the distribution of the localized damage in shear band. Internal length of ductile metal only governs 
the thickness of shear band. In the strain-softening region of shear band, the local damage variable along shear band’s tangential and 
normal directions is non-linear and highly non-uniform. The non-uniformities in the normal and tangential directions of shear band stem 
from the interactions and interplaying among microstructures and the non-uniform distribution of shear stress, respectively. At the tail of 
the strain-softening region, the maximum value of local damage variable reaches 1. This means that material at this position fractures 
completely. At the tip of shear band and upper as well as lower boundaries, no damage occurs. Local damage variable increases as 
dynamic shear softening modulus decreases or shear elastic modulus increases, leading to difficulty in identification or detection of 
damage for less ductile metal material at higher strain rates. 
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1 Introduction 
 

Shear localization is an important and often 
dominating deformation and failure mechanism for Ti 
and Ti alloy in dynamic loadings[1—10]. The eventual 
outcome of localized deformation is ductile rupture and 
material separation. Shear localization occurs and plays 
an important role in engineering applications.  

To predict the distribution of plastic shear strain in 
shear band and the thickness of the band, some 
modifications and generalization from the standard 
continuum description must be carried out. One of the 
most promising approaches is the second order gradient 
continuum that incorporates the second order spatial 
gradients of plastic strain in the yield function. In 
gradient-dependent plasticity, the characteristic length 
describes the interactions and interplaying among 
microstructures. For Ti and Ti alloy the texture is 
heterogeneous to some extent and a certain 
microstructure will be influenced significantly by its 
neighborhoods. Interactions and interplaying among 
microstructures are of great importance for Ti and Ti 

alloy and have been studied extensively[7, 11, 12]. 
WANG et al[13, 14] adopted gradient-dependent 

plasticity to investigate shear strain localization of 
ductile metals, such as Ti and Ti alloy, in static[13] and 
dynamic loadings[14]. WANG[15] proposed a method 
for calculation of temperature distribution in adiabatic 
shear band in terms of the same theory. Beside shear 
strain localization of ductile metal materials, 
gradient-dependent plasticity has been applied into 
investigation of tensile strain localization for Ti and Ti 
alloy[16]. 

Some experimental observations[1—3, 10] showed 
that for ductile metal materials, at the initial loading 
stage, microcracks and induced damage appear 
randomly and the distributions of deformation and 
damage variable are relatively uniform. With the 
increase of strain at loading direction, damage and strain 
within the specimen progressively accumulate or 
concentrate into a certain narrow zones and localization 
of damage or strain occurs. The narrow zone is usually 
referred to shear band or localized band. Afterwards, in 
the process of progressive failure of material, the length 
of the band is increased and considerable damages and 
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deformations are absorbed continuously by the band 
until ductile rupture and material separation take place. 
Distributions of damage and strain have hitherto been 
modeled numerically based on many kinds of modified 
and generalized elastoplastic theories[17—23]. However, 
analytical solution of localized damage in shear band in 
the process of shear band propagation has not been 
presented yet so far.  

In the paper, the average damage variable in shear 
band was considered to be a non-local variable. Based 
on the non-local theory, an analytical expression for 
localized damage in strain-softening region of shear 
band in the process of shear band propagation was 
presented using boundary condition and symmetry of 
local damage variable, etc. Influences of related 
parameters on the distribution of the local damage 
variable were investigated through a few examples.  

2 Analysis 

2.1 Mechanical model for shear band propagation 
and basic assumptions 
A mechanical model for shear band propagation[14] 

is shown in Fig.1. A Ti block with a certain height and 
length is loaded in horizontal shear stress )x(τ  and in 
vertical compressive stress σ . y-axis and x-axis are 
vertical and horizontal, respectively. 

 

 
Fig.1 Shear stress acting on shear band and mechanical model for 
shear band propagation[14] 
 

An important outcome of shear localization is the 
decrease of the stress-carrying capability of the block. 
Therefore, when shear stress at point O reaches the 
shear strength, shear localization is initiated at the point 
and a horizontal shear band is formed. Then, it 
propagates towards the right and the shear stress at point 
O begins to decrease. Point O is called the tail of shear 

band. At the tip of shear band, shear stress is maximum 
and attains the shear strength cτ . The tip moves 
towards the right in the process of shear band 
propagation. When a certain length of shear band is 
reached, the shear stress at point O decreases to residual 
shear strength τ f . At the moment, strain-softening 
zone is well formed. Afterwards, residual zone appears 
and its length increases. Strain-softening zone moves 
towards the right continually. For the sake of calculation, 
it is assumed that the shear deformation only occurs in 
the horizontal direction. The total length of shear band is 
L1+L2. The thickness of shear band is d. L1 is the length 
of the residual zone. L2 is the length of strain-softening 
zone. In front of the tip of shear band, shear stress is 
lower than the shear strength and material still remains 
elastic. 

Some experimental results show that the post-peak 
stress-strain curve of Ti or Ti alloy under dynamic 
loadings exhibits approximately linear strain-softening 
behavior[6, 24]. Dynamic and static post-peak constitu- 
tive relations are shown in Fig.2. 
 

 
Fig.2 Dynamic and static post-peak constitutive relations[14] 
 
2.2 Analysis of elastic, plastic and total strains in 

strain-softening zone of shear band 
According to shear Hooke’s law, the elastic shear 

strain γe(x) in strain-softening zone can be expressed 
as 
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where  G is the shear elastic modulus; τ(x) is the 
shear stress, and x∈[L1, L1+L2]. 

According to WANG et al[13, 14], the plastic shear 
strain γp(x, y) is non-uniform in the normal direction of 
shear band and it is written as 

⎟
⎠

⎞
⎜
⎝

⎛ +
−

=
l
y

c
x

yx c cos1
)(

),(
'

'

p
ττ

γ                   (2) 

where  y∈[－d/2; d/2];  and '
cτ cτ  are the dynamic 

and static shear strengths, respectively, ;  cc fττ =' f

 



WANG Xue-bin/Trans. Nonferrous Met. Soc. China 16(2006) 153-158 155

is a coefficient considering strain rate effect and 
)ln(1 0γγ /Cf += , where  is a material constant, 

0

C
γ  and γ  are the strain rates in static and dynamic 
loading conditions, respectively; c′ and  are the 
dynamic and static shear softening moduli, respectively, 
and c′=fc; and l is the internal length parameter of 
ductile metal material describing the extent of 
heterogeneity. According to gradient-dependent 
plasticity[13, 14], the relation between l  and the 
thickness of shear band is . 

c

lπd 2=
If Eqn.(2) is integrated with respect to the 

coordinate y and then divided by d, then the average 
plastic shear strain )(xpγ  in shear band can be 
obtained: 
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The total shear strain )(xγ  in shear band is the 

sum of elastic )(e xγ  and plastic )(p xγ  parts, namely 
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2.3 Average damage variable in shear band 

According to classical damage mechanics, the 
relation among the shear stress, the total shear strain γ, 
the shear elastic modulus G and the damage variable D 
is 

γτ )D−1(G=                                (5) 
Herein, to establish the expression for the average 

damage variable )(xD  in shear band, we generalized 
and modified Eqn.(5) as 

[ ] )( )(2)( xxDGx γτ = 1−                        (6) 

The differences between Eqn.(6) and Eqn.(5) are 
obvious: )(xD  is concerned with coordinate x; the 
coefficient in front of )x(D  is 2, not 1. Advantages of 
the present special definition will be discussed below. 

Using Eqn.(6), )(xD  is expressed as 
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Substitution of Eqn.(4) into Eqn.(7) leads to 
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2.4 Non-local theory and local damage variable in 
shear band 

Herein, the average damage variable )(xD  is 
considered to be a non-local variable. On the basis of 
the non-local elasticity model[25], the relation among 
the non-local damage variable )(xD , the local damage 
variable  and its second spatial derivative 

 can be derived as follows: 
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It is noted that the derivation of Eqn.(9) is similar 
to that of the local plastic shear strain γp(y) in Ref. [13]. 

The following equation can be obtained by using 
Eqn.(9) 
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Obviously, this is a second order homogeneous 
ordinary differential equation. As mentioned above, the 
thickness of shear band is determined by the internal 
length parameter, i.e., d=2πl. Consequently, the fol- 
lowing two conditions are needed to solve the 
differential equation above: 

0)2/,( =±= dyxD                           (11) 
),(),( yxDyxD −=                            (12) 

In fact, Eqn.(11) is a boundary condition. It 
requires that no any damage occur at upper and lower 
boundaries of shear band. Eqn.(12) requires that the 
local damage variable is symmetrical with respect to the 
coordinate y and it is a even function due to the 
assumption of isotropic metal materials. 

The solution of Eqn.(10) can be obtained using 
Eqn.(11) and Eqn.(12): 
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Substitution of Eqn.(8) into Eqn.(13) results in the 
following expression: 
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See Fig.1, if we use the following coordinate 

transformation 

1' Lxx +=                                  (15) 

2
' dyy −=                                  (16) 

where  x′∈[0, L2] and y′∈[0, d], then Eqn.(14) can be 
written as 
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The length L2 of strain-softening zone is assumed to be 
20 times the thickness of shear band. For simplicity, we 
let τf  =0.  
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See Fig.1, τ (x′) in the coordinate system of    
x′O′′can be expressed as 

 

Due to the non-uniform deformation of specimen 
beyond the onset of shear band or strain localization, the 
measured stress-strain curve is not a purely mechanical 
property or constitutive relation. The measured 
stress-strain curve also includes the contribution of 
geometrical size of specimen unless the size of the 
specimen is small enough. Consequently, usually, 
dynamic and static shear softening moduli cannot be 
determined through experimental tests. The pheno- 
menon is similar to “size effect” in rock and soil 
mechanics. As a result, firstly, the influence of static 
softening modulus c is studied and the distributions of 
the local damage variable for different static softening 
moduli are shown in Figs.3 and 4 with f =1, respec- 
tively. 
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3 Examples 
 

The thicknesses of Ti and Ti-6Al-4V are about 10
－55 μm[1, 24]. Herein, we let d=35 μm. We can obtain 
the internal length parameter describing the 
heterogeneity is about l=5.57 μm using d=2πl. Experi- 
mental measurements show that the shear elastic moduli 
for Ti and many kinds of Ti alloy are about 45 GPa. 
Accordingly, we let G=45 GPa. Static shear strength of 
Ti (τc=σc/2, where σc is the yield stress in uniaxial 
tension) is about 280 MPa. Herein, we letτc=280 MPa. 

Secondly, the influence of strain rate on the 
distribution of the local damage variable is shown in 
Fig.5 with  f=2.5 and cc fττ =′ =700 MPa. Finally, the 
influence of shear elastic modulus on the distribution of 
the local damage variable is shown in Fig.6 with f=1 and 

 

 
Fig.3 Three-dimensional curved surface and contour map with c=30 GPa 
 

 

Fig.4 Three-dimensional curved surface and contour map with c=3 GPa 
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F ig.5 Three-dimensional curved surface and contour map with f=2.5 

 
Fig.6 Three-dimensional curved surface and contour map with G=80 GPa 
 
G=80 GPa. 

At the tip of shear band (x′=7×10－4 m) and at two 
boundaries (y′=0 and y′=3.5×10－ 5 m), the local 
damage variable is always zero and no any damage 
exists. At the tail of shear band (x′=0), the maximum 
local damage variable is 1, which suggests that metal 
material at this site has fractured completely, as is in 
agreement with our common knowledge, reflecting the 
advantage of the special expression Eqn.(6). If the 
coefficient in front of )(xD  in Eqn.(6) is 1, then the 
maximum value of the calculated local damage variable 
will be 2, not 1, as is difficult to understand and not 
consistent with usual viewpoints. 

In shear band, the local damage variable in x′and 
y′directions is highly non-uniform. In y′direction, 
the reason for the non-uniformity is due to the 
interactions and interplaying among microstructures. 
However, in x′direction, the non-uniformity is caused 
by the non-uniform distribution of shear stress τ(x′). 
In the strain-softening zone of shear band, it is assumed 
that τ(x′) is linear distribution in calculation. However, 
the obtained distribution of the local damage variable 
exhibits non-linear characteristic. Qualitatively, the 

present analytical prediction for the local damage 
variable in localized band is consistent with the related 
numerical results[17－23]. 

  Three-dimensional curved surface near the tip of 
shear band becomes more steep as dynamic shear 
softening modulus decreases or shear elastic modulus 
increases, while it exhibits less steep at the tail of shear 
band, see Figs.3(a), 4(a), 5(a), 6(a). That is to say, the 
local damage variable in shear band is increased. Area 
with higher local damage variable is enlarged in 
two-dimensional contour maps as the local damage 
variable increases, as can be seen from Figs.3(b), 4(b), 
5(b), 6(b). 

The result that increasing dynamic softening 
modulus leads to a decrease of the local damage 
variable in shear band means that less ductile metal 
material at higher loading rates possesses a lower local 
damage variable, which brings a certain difficulty in 
identification or detection of damage. 
 
4 Conclusions 
 

 1) The average damage variable in shear band is 
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considered to be a non-local variable. Based on the 
non-local theory, an analytical expression for the 
localized damage in strain-softening region of shear 
band in the process of shear band propagation is 
presented using boundary condition and symmetry of 
local damage variable, etc. 

2) The resulting theoretical expression for localized 
damage in shear band shows that dynamic shear 
softening modulus, dynamic shear strength and shear 
elastic modulus influence the distribution of the 
localized damage in shear band. However, internal 
length parameter of ductile metal only governs the 
thickness of shear band. 

3) In the strain-softening region of shear band, the 
local damage variable along shear band’s tangential and 
normal directions is non-linear and highly non-uniform. 
Non-uniformities of the local damage variable in the 
normal and tangential directions of shear band stem 
from the interactions or interplaying among 
microstructures and the non-uniform distribution of 
shear stress acting on the band, respectively. 

4) At the tail of the strain-softening region, the 
maximum value of the local damage variable reaches 1. 
This means that material at this position fails completely. 
At the tip of shear band and upper as well as lower 
boundaries, the local damage variable is always zero 
and no any damage occurs. 

5) Except for the tip and the tail of shear band and 
its two boundaries, the local damage variable within 
shear band is increased as dynamic shear softening 
modulus decrease or shear elastic modulus increases, 
leading to difficulty in identification or detection of 
damage for less ductile metal material at higher strain 
rates. 
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