
 

 
Influence of Nb and Mo contents on phase stability and elastic property of 

β-type Ti-X alloys 
 

YAO Qiang(姚 强), SUN Jian(孙 坚), XI G Hui(邢 辉), GUO Wen-yuan(郭文渊) N
 

School of Materials Science and Engineering, Shan hai Jiao Tong University, Shanghai 200240, China g
 

Received 15 July 2007; accepted 10 September 2007 
                                                                                                  

 
Abstract: The energetic, electronic structure and elastic property of β-type Ti1−xXx (X=Nb and Mo, x=0.041 7, 0.062 5, 0.125 0,  
0.187 5, 0.250 0, 0.312 5 and 0.375) binary alloys were calculated by the method of supercell and augmented plane waves plus local 
orbitals within generalized gradient approximation. The elastic moduli of the polycrystals for these Ti1−xXx alloys were calculated 
from the elastic constants of the single crystal by the Voigt-Reuss-Hill averaging method. Based on the calculated results, the 
influence of X content on the phase stability and elastic property of β-type Ti1−xXx alloys was investigated. The results show that the 
phase stability, tetragonal shear constant C′, bulk modulus, elastic modulus and shear modulus of β-type Ti1−xXx alloys increase with 
an increase of X content monotonously. When the valence electron number of β-type Ti1−xXx alloys is around 4.10, i.e. the content of 
Nb is 9.87% (molar fraction) in the Ti-Nb alloy and Mo is 4.77% (molar fraction) in Ti-Mo alloy, the tetragonal shear constant is 
nearly zero. The Ti1−xXx alloys achieve low phase stability and low elastic modulus when the tetragonal shear constant reaches nearly 
zero. In addition, the phase stability of β-type Ti1−xXx alloys was discussed together with the calculated electronic structure. 
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1 Introduction 
 

Ti alloys have been used in various engineering 
fields, such as automobile, chemical and aerospace 
industries, because they exhibit excellent physical and 
chemical properties[1−2]. It is well known that titanium 
metal exhibits a hexagonal close packed structure (α) 
with spacegroup P63/mmc at room temperature but 
transforms to a body centered cubic phase (β) with 
spacegroup mIm3  at high temperature. Recently, the 
β-type and metastable β-type Ti-base alloys containing 
Nb and Mo transition elements have been investigated as 
load-bearing orthopaedic implants due to their low 
elastic modulus, good biocompatibility and long lifetime 
in the human body[3]. However, the relationship among 
mechanical property, phase stability and electronic 
structure in the low elasticity Ti alloys has not been clear. 
Recently, the computer-aided material design becomes a 
research hotspot. KURODA et al[4] designed a series of 
new β-type Ti-base alloys using the d-electron alloy 
design method and investigated their mechanical 

properties systematically. They found that the phase 
constituent and mechanical property of Ti alloys are 
correlated with two electronic parameters, i.e. bond order 
and d-orbital energy level. A correlation between the 
phase stability and the elastic properties in β-type Ti-base 
alloys was investigated with the aid of above two 
electronic parameters by ABDEL-HADY et al[5]. But 
this method doesn’t clearly describe the physical basis of 
the relationship between the mechanical property and 
electronic parameter. In addition, IKEHATA et al[6] 
studied the elastic properties of the Ti1−xXx (X=Nb, V, Ta, 
Mo and W, x= 0, 0.25, 0.50, 0.75 and 1.00) binary alloys 
by the ultrasoft pseudopotential method within 
generalized gradient approximation. Their results showed 
that the rigid band model can be applied to investigate 
elastic properties of Ti1−xXx alloys and the valence 
electron number per atom is an important parameter to 
describe the elastic characteristics of the alloys. 

In this study, the method of supercell and 
augmented plane-wave plus local orbitals within the 
generalized gradient approximation was used to calculate 
the total energy of the Ti-X (X=Nb and Mo) binary 
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alloys with β structure. The cohesive energy, phase 
stability and elastic property of the β-type Ti-X binary 
alloys were investigated. The electronic structures of 
these β-type Ti-X binary alloys were also calculated and 
applied to discuss the phase stability of β-type Ti-X 
binary alloys. 
 
2 Computational details  
 

The Wien2k software package was utilized to 
calculate the total energies, elastic properties and 
electronic structures of the β-type Ti-X (X=Nb and Mo) 
binary alloys[7]. The method of augmented plane wave 
plus local orbitals (APW+LO) method was selected, 
where the core states are treated fully relativistically, and 
the semi-core and valance states are in a scalar 
relativistic approximation[8]. Inside the atomic spheres 
the potential and charge densities are expanded in lattice 
harmonics up to L=10. Exchange and correlation effects 
are treated within density functional theory, using the 
generalized gradient approximation(GGA)[9]. The 
muffin-tin radius of 2.2 a.u. was chosen for Mo, and 2.3 
a.u. for Ti and Nb, respectively. A plane-wave cutoff 
(RmtKmax) of 7.0 was used. The calculations were 
performed with 1000 k-point mesh in the Brillouin zone. 
The Brillouin zone integration was carried out using a 
modified tetrahedron method[10]. Convergence was 
assumed when the energy difference was less than 0.1 
mRy. The calculations were performed without spin 
polarization.  

In order to calculate the total energies, elastic 
properties and electronic structures of the β-type Ti-X 
binary alloys with different alloying contents, the 
supercell method was employed in the present 
calculation. A 16-atom supercell that contains eight BCC 
unit cells was constructed. When n (n=1−6) X atom 
substitutes the Ti atom in the supercell, the chemical 
formula is assumed as Ti1−xXx

 (x=0.062 5, 0.125 0,  
0.187 5, 0.250 0, 0.312 5 and 0.375). In addition, a 
24-atom 2×2×3 supercell containing one Mo atom was 
adopted to calculate the total energy and elastic property 
of the Ti1−xMox (x=0.0417) binary alloy.  
 
3 Results and discussion 
 

First of all, calculations of total energies as a 
function of cell volume were carried out to optimize the 
lattice constant of the Ti1−xXx binary alloys. The 
equilibrium lattice constant and bulk modulus were 
derived directly from these calculations. The calculated 
equilibrium lattice constants of Ti1−xNbx and Ti1−xMox 
alloys are plotted in Fig.1. It can be seen from Fig.1 that 
the lattice constants of Ti1−xNbx increase monotonously 
with increasing the content of Nb, while the lattice 

constants of Ti1−xMox decrease monotonously with an 
increase of Mo content. The reason for causing above 
phenomenon is that the diameter of Ti atom is larger than 
that of Mo atom and smaller than that of Nb atom. The 
cohesive energies for Ti1−xNbx and Ti1−xMox alloys are 
calculated, since the cohesive energy directly reflects the 
phase stability of Ti1−xNbx and Ti1−xMox alloys. Fig.2 
shows the cohesive energies for Ti1−xNbx and Ti1−xMox 
alloys. It can be seen from Fig.2 that the cohesive 
energies of Ti1−xNbx and Ti1−xMox alloys increase 
monotonously with increasing the contents of Nb and 
Mo, respectively. These imply that the phase stability of 
β-type Ti1−xNbx and Ti1−xMox alloys can be improved by 
increasing Nb and Mo contents, respectively. 
 

 
Fig.1 Relationship between lattice constant and X content 
 

 
Fig.2 Relationship between cohesive energy and X content 
   

The density of states(DOS) for the binary Ti1−xNbx 
and Ti1−xMox alloys was further calculated, which 
provided information on the physical basis of the phase 
stability. Fig.3 shows the total density of states of the 
binary Ti1−xNbx (x=0.125, 0.250 and 0.375) and Ti1−xMox 
(x=0.125, 0.250 and 0.375) alloys. The DOS curves of 
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the Ti1−xNbx and Ti1−xMox are almost the same as those 
reported by IKEHATA et al[6]. There is a pronounced 
pseudogap between the low-energy bonding and 
high-energy anti-bonding regions in each DOS spectrum 
for Ti1−xNbx and Ti1−xMox. Furthermore, the Fermi level 
is located in the bonding region of the DOS spectrum. 
This means that the phase stability of the β structure is 
relatively low in Ti1−xNbx and Ti1−xMox alloys. It can also 
be seen from Fig.3 that the low-energy bonding peaks 
shift towards the lower energy with increasing the 
contents of Nb and Mo in the DOS spectra of Ti1−xNbx 
and Ti1−xMox, respectively. This implies that the phase 
stability of β-type Ti1−xNbx and Ti1−xMox alloys can be 
enhanced by increasing the Nb and Mo contents, 
respectively. 

 

 

Fig.3 Density of states of Ti1−xXx (X=Mo and Nb, x=0.125, 
0.250, 0.375) 
 

To calculate the elastic constants of β-type Ti1−xNbx 
and Ti1−xMox alloys using the total energies, a new 
distorted cell is introduced by imposing deformations on 
he initial cell. The elastic strain energy is given by t
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where  ΔE is the total energy difference between the 
distorted and initial cells, V0 the equilibrium cell volume, 
Cij the elastic constant and ei, j the strain. For the cubic 
structure, only three elastic constants, namely C11, C12 
and C44 are independent. In order to calculate the C11 and 
C12, we take a volume-conserving orthorhombic 
distortion, where the strain tensor ε is written as 
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The strain energy U for an orthorhombic distortion 
s described by i

 
U=(C11−C12)e2+O(e4)          ( 3 ) 
 

There is another relation between C11 and C12, that 
is 

 

B=
3
2 1211 CC +

                 ( 4 ) 

 
where B is the bulk modulus. 

C44 can be calculated by putting a volume- 
conserving monoclinic distortion, where the strain tensor 
 is given by ε
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The strain energy U for a monoclinic distortion is 

efined by d
 

U=
2
1 C44e2 + O(e4)              (6) 

 
The calculated elastic constants of the Ti1−xNbx and 

Ti1−xMox alloys are listed in Table 1. The elastic moduli 
and shear moduli of the Ti1−xNbx and Ti1−xMox alloys can 
be calculated from the elastic constants in Table 1. Note 
that the elastic moduli in Table 1 are Hill’s averages. The 
Hill’s average is the arithmetic mean of the VOIGT 
average and REUSS average[11]. In the VOIGT average, 
he shear modulus is given by t

 

Gv= 5
3 441211 CCC +−

          (7) 

 
w
 

hile in the Reuss average it is given by 

GR=
441211 344

5
SSS +−

           (8) 

 
where  Sij is the inverse matrix of Cij with the relations 
C44=1/S44, C11−C12=(S11−S12)−1 and C11+2C12=(S11+2S12)−1. 

he elastic modulus is given by T
 

E=
BG
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3

9
+
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It can be seen from the Table 1 that C11, C12, B, G 
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Table 1 Elastic properties of Ti1−xNbx and Ti1−xMox 

Formula C11/GPa C12/GPa C44/GPa B/GPa G/GPa E/GPa 
Ti0.9375Nb0.0625 109.73 115.23 43.88 113.40 − − 
Ti0.875Nb0.125 120.08 116.09 40.61 117.42 14.90 42.89 

Ti0.8125Nb0.1875 130.88 120.43 38.13 123.91 17.91 51.26 
Ti0.75Nb0.25 137.61 121.93 32.19 127.16 18.41 52.69 

Ti0.6875Nb0.3125 144.80 125.91 31.59 132.21 19.52 55.81 
Ti0.625Nb0.375 147.36 126.86 32.42 133.69 20.47 58.43 

Ti0.9583Mo0.0417 110.35 112.44 42.45 111.75 − − 
Ti0.9375Mo0.0625 117.74 112.63 39.56 114.33 15.29 43.91 
Ti0.875Mo0.125 138.56 116.02 38.29 123.53 23.52 66.35 

Ti0.8125Mo0.1875 152.42 124.45 38.14 133.77 25.52 71.98 
Ti0.75Mo0.25 163.25 131.66 36.86 142.19 26.24 74.16 

Ti0.6875Mo0.3125 187.97 136.26 33.85 153.5 30.39 85.53 
Ti0.625Mo0.375 204.24 142.35 38.22 162.98 35.12 98.29 

 
and E of Ti1−xNbx and Ti1−xMox increase monotonously 
with increasing the Nb and Mo contents, respectively. 
However, the relationship between C44 and alloying 
content is not clear. In combination with Fig.1 and Table 
1, it can be deduced that lattice expansion or lattice 
shrinkage of Ti1−xXx alloys does not have correlation 
with the change trend of elastic moduli of Ti1−xXx. It is 
known that for cubic crystals, the elastic stability 
requires the elastic stiffness constants satisfying the 
ollowing conditions[12]: f

 
C44＞0, C11+2C12＞0, C11−|C12|＞0 
 

Therefore, the tetragonal elastic constant 
C′=(C11−C12)/2 can represent the elastic stability of cubic 
crystal. The tetragonal elastic constants of Ti1−xNbx and 
Ti1−xMox alloys are plotted in Fig.4. It can be seen from 
Fig.4 that tetragonal elastic constants of Ti1−xNbx and 
Ti1−xMox increase monotonously with increasing the 
contents of Nb and Mo, respectively. When the content 
of Nb is 9.87% (molar fraction) in the Ti-Nb alloy and 
Mo is 4.77%(molar fraction) in the Ti-Mo alloy, i.e. the 
valence electron number per atom of Ti1−xXx alloys is 
around 4.10, the tetragonal shear constants of Ti1−xXx are 
nearly zero. In other words, when the valence electron 
number per atom of Ti1−xXx alloys is 4.10 or more, the 
Ti1−xXx with β structure is stable. LI et al[13] investigated 
the elastic properties of Ti-V alloy by the First Principles 
calculation, and they found that the Ti-V alloy with BCC 
structure is unstable when the valence electron number 
per atom of Ti-V alloy is less than 4.10. Their results are 
in good agreement with the present calculated results. 
Generally speaking, if the content of β-phase stabilizing 
elements (e.g. Mo and Nb) doesn’t exceed a critical 
amount in the Ti-X binary alloys, three kinds of 
metastable phase transformation (β→α′, α″ and ω) can be 
conducted through different heating treatment processes. 
HO et al[14] studied the structure and properties of a 
series of cast binary Ti-Mo alloys. Their results showed 

that the alloy is dominated by the martensitic α″ phase 
when Mo content is 3.89% (molar fraction). When Mo 
content is increased to 4.7% (molar fraction), α″ phase 
and β phase are observed in the alloy. When Mo content 
is higher than 5.25% (molar fraction), β phase becomes 
the only dominant phase. The present calculated results 
for the Ti1−xMox alloy are the same as experimental 
results. In addition, LEE et al[15] investigated the 
microstructure of a series of cast binary Ti-Nb alloys. 
Their results indicated that when Nb content is 8.33% 
(molar fraction), the alloy is primarily composed of α″ 
phase. When Nb content is 16.35% (molar fraction), 
metastable β phase starts to be retained. When Nb 
content is 21.72% (molar fraction) or higher, β phase 
becomes the only dominant phase. However, the present 
calculated results show that when the content of Nb is 
9.87% (molar fraction), β phase is stable in Ti-Nb alloy. 
In fact, the occurrence of β phase in Ti1−xXx alloys would 
depend not only on the phase stability but also on the 
competition of phase stability of different phases. 
Therefore, in titanium alloy design for the low elastic 
modulus, the addition of several molar fraction of alloy- 
  

 
Fig.4 Relationship between tetragonal shear constant C′ and X 
content 
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ing elements is required to suppress the occurrence of the 
α″ and ω phases. 
 
4 Conclusions 
 

1) The phase stability, tetragonal shear constant C′, 
bulk modulus, elastic modulus and shear modulus of 
β-type Ti1−xXx alloys increase with increasing of X 
content monotonously. 

2) When the valence electron number of the Ti1−xXx 
alloys is around 4.10, i.e. the content of Nb is 9.87% 
(molar fraction) in the Ti-Nb alloy and Mo is 4.77% 
(molar fraction) in the Ti-Mo alloy, the tetragonal shear 
constant C′ is nearly zero. 

3) The Ti1−xXx alloys achieve low phase stability 
and low elastic modulus when the tetragonal shear 
constant C′ reaches nearly zero. 
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