
 

 
Simulation of polycrystalline aluminum tensile test with  

crystal plasticity finite element method  
 

SI Liang-ying(司良英)1, 2, LÜ Cheng(吕 程)2, K. Tieu2, LIU Xiang-hua(刘相华)1 
 

1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, China; 
2. School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, 

Northfields Avenue, Wollon ng NSW 2522, Australia go
 

Received 15 July 2007; accepted 10 September 2007 
                                                                                                  

 
Abstract: The crystal plasticity was implemented in the finite element method(FEM) software ABAQUS through the user subroutine 
UMAT. By means of discretizing the space at the grain level with the Voronoi diagram method, a polycrystal model was built and 
used in the FEM analysis. The initial orientation of each grain was generated based on the orientation distribution function(ODF). 
The developed model was successfully applied in simulation of polycrystalline aluminium samples deformed by the tensile tests. The 
theoretical strain—stress relation was in good agreement with the experimental result. The simulation results show that the grain size 
has significant effect on the deformation behavior. The initial plastic deformation usually occurs at grain boundaries, and multiple 
slip often results in an enhanced local hardening at grain boundaries. 
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1 Introduction 
 

In conventional forming processes, the deformation 
of metals is considered isotropy because the specimen is 
usually composed of a large number of grains and most 
grains are much small. In the development of the metal 
forming technology in thin strip rolling, miniaturization 
of the product and parts, where the size of some features 
may be similar to the grain size, and the heterogeneity of 
the deformation behavior attract more and more 
attentions. But the traditional elastoplastic or rigid-plastic 
finite element methods could not take these effects into 
account.  

In recent years, the crystal plasticity finite element 
method(CPFEM) model has been widely developed to 
investigate the plastic deformation behavior of the Al 
single crystal experimentally and theoretically[1−5]. It 
has been found that the crystal orientation mainly rotates 
along the transverse direction during plain strain 
compression. Cubic and rotated cubic orientations are 
unstable, while Goss and Brass orientations are stable. 
Compared with single crystals, fewer researches have 

been carried out on the simulation of polycrystalline. 
RABBE et al[6] investigated the influences of intrinsic 
and extrinsic origins on the formation of orientation 
gradients using a 3D crystal plasticity model with BCC 
and FCC binary-crystal structures. BORG[7] studied the 
influence of grain size on yield and flow stress with a 
simple crystal plasticity model of a three slip systems 
and a regular hexagon grain polycrystal. CHOI[8] 
calculated the stored energy of cold-rolled IF steel with a 
simple geometry polycrystal model. 

In this work, a crystal plasticity finite element 
model was developed. A Voronoi diagram was used to 
generate the virtual polycrystalline microstructure. 
The effect of grain size and necking during the tensile 
test has been analyzed. 
  
2 Theory of crystal plasticity 
 
2.1 Kinematics of crystalline deformation 

The crystalline material under load undergoes 
crystallographic slip due to dislocation motion on the 
active slip systems and elastic deformation including 
stretching and rotation of the crystal lattice[9−13]. 
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The total deformation gradient(F) can be 
decomposed into two components: 
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where  X is the position of material points in the 
reference configuration and x the position of material 
points in the deformed configuration. F* represents the 
elastic lattice deformation and F p describes the flow of 
material by slip. In this work, the twelve {111}<110> 
slip systems are adopted. 

A slip system α is specified by the slip direction 
vector s(α) and the normal vector to the slip plane m(α). 
They convert with the lattice when the lattice is stretched 
and rotated during the deformation. The slip direction 
vector s*(α) and the normal vector to the slip plane m*(α) 
in the deformed lattice are given by 
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The crystalline slip is assumed here to obey 

Schmid’s law, i.e. the slipping rate in any particular 
slip system α is assumed to depend on the current σ 
solely through the so-called resolved shear stress or 
Schmid stress τ(α). From the general expression for the 
rate of working, there is 
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2.2 Rate-dependent hardening model 
In this study, the rate-dependent hardening model 

with the power law is employed, which relates with the 
resolved shear stress τ(α) and the shear strain rate  
on a slip system α. The slip at a slip system also obeys 
the Schmid law, which states that slip begins when the 
resol ed shear stress reaches a critical value: 
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where  sgn(x) is the signum function,  is the 
reference value of the shear strain rate and n is the rate 
sensitive exponent. Both  and n are the material 
parameters.  is the critical resolved shear stress of 
the slip system α. 
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A linear hardening is assumed and the rate of 
change of the critical resolved shear stress is expressed 
as[9] 
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hαβ=qhαα  α≠β (no sum on α)                    (7) 
 
where  hαβ is the instantaneous hardening moduli 
including the self hardening of each system (α=β) and 
latent hardening (α≠β), hαα is the self hardening moduli, 
q is a latent hardening parameter, γ0 is the reference value 
of slip, γ is the shear strain, τ0 is the initial critical 
resolved shear stress, τ1 is the breakthrough stress where 
large plastic flow initiates, h0 is the hardening modulus 
just after initial yield, hs is the hardening modulus during 
easy glide and fαβ represents the magnitude of the 
strength of a particular slip interaction between two slip 
systems α and β. The factor fαβ depends on the geometric 
relation between two slip systems. There are five 
constants for fαβ, namely a1(no junction), a2(Hirth lock), 
a3(coplanar junction), a4(glissile junction) and a5(sessile 
junction). 
 
3 Two dimensional grains modeling 
 

To study the polycrystal deformation, it is necessary 
to build a method to generate a number of virtual grains. 
In this study a Voronoi diagram approach was used to 
generate a number of two dimensional cells in terms 
of the measured grain size distribution[14]. Each cell 
represents a virtual grain. Given n points in the plane, the 
Voronoi diagram partitions a plane into n convex 
polygons (cells). Each cell contains exactly one 
generating point and every point in a cell is closer to its 
generating point than to any other. 

Two groups of virtual grains with different average 
size have been generated by the Voronoi diagram method, 
as shown in Fig.1. There are 51 gains in a rectangle of 40 
mm×6.25 mm in Fig.1(a), while there are 165 grains in 
Fig.1(b). They are defined as model A and model B in 
the following context. The average diameters for two 
groups of grains are 2.50 mm and 1.39 mm, respectively. 
Model B has the same average size with the measured 
samples. It is assumed that the orientation distribution 
function(ODF) is uniformly distributed in Euler space 
since the annealed high-purity aluminum has been 
simulated. Random orientation is assigned to each grain 
and the misorientation between it and its neighbor grains 
is calculated to ensure the misorientation larger than 15˚. 
The mapped orientation is shown in Fig.1. In this figure, 
the orientation is displayed by different RGB color and 
the value of RGB is the location }3  ,2  ,1{ φφφ of the grain 
in Euler space. 

≥

＜ 

Due to the symmetry, one quarter of the sample was 
simulated. In the initial step, the symmetric boundary 
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Fig.1 Polycrystal with different grain sizes generated by 
Voronoi diagram method: (a) 51 grains; (b) 165 grains 
 
conditions were applied on the symmetric planes, and the 
sample was tensioned till necking. In the FEM model, 
the numbers of the nodes of the two tensile test cases 
were 14 070 and 18 196 for model A and model B 
respectively, which can guarantee enough nodes in each 
grain. 
 
4 Simulation results 

 
The grains will elongate and rotate during the 

tensile test process. Because of the orientation difference 
between the grains, the deformation of the sample is not 
isotropic. The necking will happen when the strain 
reaches a certain level. To validate the developed model, 
the stress—strain curves are compared with the 
experimental results of the high-purity aluminum 
(99.99%) tensile test. In the experiments, the sample 
were annealed at 400 ℃ for 4 h to obtain large grains. 
The simulated strain—stress curves and the experimental 
one are compared in Fig.2. Model B used the same 
average grain size as the experimental sample. It is clear 
that the predicted strain—stress curve for Model B has a 
good agreement with the experimental results. Increasing 
error beyond the true strain greater than 0.1 may be 
caused by the random initial orientation, which is slightly 
different from the measured results. 

Comparing the results of Model A and Model B in 
Fig.2 shows that as expected the grain size has a signifi- 

 

 
Fig.2 Strain—stress curves for different grain sizes 

cant effect on the strength. The strength increases with 
the refinement of the grains. The maximum strength is 
enhanced from 113.5 MPa to 156.5 MPa as the average 
grain diameter is reduced from 1.39 mm to 2.50 mm. 

Fig.3 shows the stress contour in the samples when 
the necking begins. It can be found that the stress 
concentrates at the grain boundary. That is because the 
deformation must be harmonious between the grains. 
Compared with the slip systems in the grain, the 
hardening of the slip systems around the boundary 
becomes larger because the dislocation slip here must 
overcome the grain boundary. The location of the 
necking does not occur at the middle of the sample, and 
actually it should be related to the texture of the sample. 

 

 
Fig.3 Necking of deformed samples: (a) Model A; (b) Model B 
 

Because of the initial orientation and the orientation 
difference between the grains, the samples have severe 
local stress concentration, which in turn causes the 
necking. The orientation evolution of the grains around 
the necking area was studied. In model B four grains in 
the necking area as shown in Fig.4 are picked up.  
 

 
Fig.4 Sketch of four grains picked up around necking area in 
model B 
 

The change of orientation for 4 points picked up 
from Fig.4 is displayed by the pole figure in Fig.5. The 
pole figure shows that textures of the grains around the 
necking area are profoundly changed during the 
deformation. The initial orientations are only points in 
the pole figure of Fig.5 for all the grains before 
deformation. After deformation, the orientation spreads 
in each grains as shown in Fig.6. This strongly 
demonstrates that the deformation is heterogeneous. It 
can been seen from Fig.5 and Fig.6 that the orientation 
rotates mainly along ND (thickness direction), which is 
different from the TD (transverse direction) rotation 
during rolling. 
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Fig.5 Pole figures of grains before deformation near necking area: (a) Grain A; (b) Grain B; (c) Grain C; (d) Grain D 
 

 
Fig.6 Pole figures of grains after deformation near necking area: (a) Grain A; (b) Grain B; (c) Grain C; (d) Grain D 
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5 Conclusions 

 
1) The crystal plasticity theory based on ASARO et 

al with BASSANI’s hardening model is implemented in 
the FEM software ABAQUS through the user subroutine 
UMAT. 

2) By means of discretizing the space at the grain 
size level with the Voronoi diagram method, a 
polycrystal model is built and used in the FEM analysis. 
The initial orientation of each grain is generated based on 
the orientation distribution function(ODF). 

3) The developed model is successfully applied in 
the simulation of polycrystalline aluminium samples 
deformed by the tensile tests. The developed model is 
validated by comparing the theoretical strain—stress 
relation with the experimental result. The simulation 
results show that the grain size has significant effect on 
the deformation behavior. The initial plastic deformation 
usually occurs at grain boundaries, and multiple slip 
results in an enhanced local hardening at grain 
boundaries. The orientation around the necking area 
predominantly rotates around the thickness direction. 
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