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Abstract: The recycle fluidization roasting in alumina production was studied and a temperature forecast model was established 
based on wavelet neural network that had a momentum item and an adjustable learning rate. By analyzing the roasting process, coal 
gas flux, aluminium hydroxide feeding and oxygen content were ascertained as the main parameters for the forecast model. The order 
and delay time of each parameter in the model were deduced by F test method. With 400 groups of sample data (sampled with the 
period of 1.5 min) for its training, a wavelet neural network model was acquired that had a structure of },1127{  i.e., seven nodes in 
the input layer, twenty-one nodes in the hidden layer and one node in the output layer. Testing on the prediction accuracy of the 
model shows that as the absolute error ±5.0 ℃ is adopted, the single-step prediction accuracy can achieve 90% and within 6 steps the 
multi-step forecast result of model for temperature is receivable. 
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1 Introduction 
 

In alumina production, roasting is the last process, 
in which the attached water is dried, crystal water is 
removed, and γ-Al2O3 is partly transformed into α-Al2O3. 
The energy consumption in the roasting process occupies 
about 10% of the whole energy used up in the alumina 
production[1] and the productivity of the roasting 
process directly influences the yield of alumina. As the 
roasting temperature is the primary factor affecting yield, 
quality and energy consumption, its control is very 
important to alumina production. If some suitable 
forecast model is obtained, temperature can be forecasted 
precisely and then measures for operation optimization 
can be adopted. 

At present, the following three kinds of fluidized 
roasting technology are widely used in the industry: 
American flash calcinations, German recycle 
calcinations and Danish gas suspension calcinations. For 
all these roasting technologies, most existing roasting 
temperature models are static models, such as simple 

material and energy computation models based on 
reaction mechanism[2]; relational equations between 
process parameters and the yield and the energy 
consumption based on regression analysis[3]; static 
models based on mass and energy balance and used for 
calculation and analysis of the process variables and the 
structure of every unit in the whole flow and system[4]. 
However, all the static models have shortages in 
application because they cannot fully describe the 
characteristics of the multi-variable, non-linear and 
complex coupling system caused by the solid-gas 
roasting reactions. In the system, the flow field, the heat 
field, and the density field are interdependent and 
inter-restricted. Therefore, a temperature forecast model 
must have very strong dynamic construction, self-study 
function and adaptive ability. 

In this study, a roasting temperature forecast model 
was established based on artificial neural networks and 
wavelet analysis. With characteristics of strong fault 
tolerance, self-study ability, and non-linear mapping 
ability, neural network models have advantages to solve 
complex problems concerning inference, recognition,  
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classification and so on. But the forecast accuracy of a 
neural network relies on the validity of model parameters 
and the reasonable choice of network architecture. At 
present, artificial neural networks are widely applied in 
metallurgy field[5−6]. Wavelet analysis, a time- 
frequency analysis method for signal, is named as 
mathematical microscope. It has multi-resolution 
analysis ability, especially has the ability to analyze local 
characteristics of a signal in both time and frequency 
territories. As a time and frequency localization analysis 
method, wavelet analysis can fix the size of analysis 
window, but allow the change of the shape of the 
analysis window. By integrating small wavelet analysis 
packet, the neural network structure becomes 
hierarchical and multiresolutional. And with the time 
frequency localization of wavelet analysis, the network 
model forecast accuracy can be improved[7−10]. 
 
2 Wavelet neural network algorithms 
 

In 1980’s, GROSSMANN and MORLET[11−13] 
proposed the definition of wavelet of any function 
f(x)∈L2(R) in aix+bi affine group as Eqn.(1). In Eqn.(1) 
and Eqn.(2), the function ψ(x), which has the volatility 
characteristic [14], is named as Mother-wavelet. The 
parameters a and b mean the scaling coefficient and the 
shift coefficient respectively. Wavelet function can be 
obtained from the affine transformation of 
Mother-wavelet by scaling a and translating b. The 
parameter 1/|a|1/2 is the normalized coefficient, as 
xpressed in Eqn.(3): e

 

{ }, ]/)[()(/1),( 2/1
∫ −= abxxfabawf ψ  

a∈R+, b∈R  (x=−∞−+∞)                     (1) 

∫ = 0d)( xxψ  (x=−∞−+∞)                      (2) 

{ ]/)[(/1)( 2/1
, abxaxba −= ψψ }                  (3) 

For a dynamic system, the observation inputs x(t) 
nd outputs y(t) are defined as a

 
xt=[x(1), x(2), …, x(t)] 
y
 

t=[y(1), y(2), …, y(t)]                         (4) 

By setting parameter t as the observation time point, 
the serial observation sample before t is [xt, yt] and 
function y(t), and the forecast output after t, is defined     
s a

 
y
 
(t)=g(xt−1, yt−1)+v(t)                          (5) 

If the v(t) value is tiny , function g(xt−1, yt−1) may be 
regarded as a forecast for function y(t). 

The relation between input (influence factors) and 
output (evaluation index) can be described by a BP 

neural network whose hidden function is Sigmoid type 
defined as Eqn.(6): 

∑= )()( xSwxg i  (i=0, ···, N)                   (6) 

where  g(x) is the fitting function; wi is the weight 
coefficient; S is the Sigmoid function; N is the node 
number. 

The wavelet neural network integrates wavelet 
transformation with neural network. By substituting 
wavelet function for Sigmoid function, the wavelet 
neural network has a stronger non-linearity 
approximation ability than BP neural network. The 
function expressed by wavelet neural network is realized 
by combining a series of wavelet. The value of y(x) is 
approximated with the sum of a set of ψ(x), as expressed 
in Eqn.(7): 

∑ −= ]/)[()( iiii abxwxg ψ  (i=0, ···, N)         (7) 

where  g(x) is the fitting function; wi is the weight 
coefficient; ai is the scaling coefficient; bi is the shift 
coefficient; N is the node number. 

The process of wavelet neural network 
identification is the calculation of parameters wi, ai and  
bi. With the smallest mean-square deviation energy 
function for the error evaluation, the optimization rule 
for computation is that the error approaches the 
minimum. By making ψ0=1, the smallest mean-square 
deviation energy function is shown in Eqn.(8). In this 
formula, K means the number of sample: 

∑ −= 2)]()([
2
1 xfxgE jj  (j=1, ···, K)           (8) 

At present, the following wavelet functions are 
widely used: Haar wavelet, Shannon wavelet, 
Mexican-hat wavelet and Morlet wavelet and so on[15]. 
These functions can constitute standard orthogonal basis 
in L2(R) by scaling and translating. 

In this study, a satisfactory result was obtained by 
applying the wavelet function expressed as Eqns.(9) and 
10), which were discussed in Ref.[16]. (

 
ψ(x)=s(x+2)−2s(x)+s(x−2)                      (9) 
s(x)=1/(1+e−2x)                              (10) 
 
3 Roasting temperature forecasting model 
 
3.1 Selection of model parameters 

The roasting process includes feeding, dehydration, 
preheating decomposition, roasting and cooling, among 
which roasting temperature is the crucial operation 
parameter. When quality is good, low temperature is 
advantageous to increasing yield and decreasing 
consumption. The practice indicated that when 
temperature decreased by 100 ,℃  about 3% energy could 
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be saved[17]. There are many factors influencing on 
roasting, such as humidity, gas fuel quality, the ratio of 
air to gas fuel, feeding and furnace structure. All these 
factors are interdependent and inter-restricted. 

By analyzing the roasting process, coal gas flux, 
feeding and oxygen content were ascertained as the main 
parameters of the forecast model. The model structure is 
shown in Fig.1. As the actual production is a continuous 
process, a previous operation directly influences the 
present conditions of the furnace, therefore, when 
ascertaining the input parameters, the time succession 
must be taken into consideration. The parameters whose 
time series model orders must be determined including: 
temperature, coal gas flux, feeding, and oxygen content. 
All these parameters except temperature must have their 
delay time determined. 
 

  
Fig.1 Logic model of aluminium hydroxide roasting 
 

The model orders of the parameters were 
determined by the F test method[18], which is a general 
statistical method and is able to compute the remarkable 
degree of the variance of the loss function when the 
model orders of the parameters are changed. While an 
order increases from n1 to n2 (n1＜n2＝, the loss function 
E(n) decreases from E(n1) to E(n2), as shown in the 
ollowing equation: f

 
t
 
=[(E(n1)−E(n2))/E(n2)][(L−2n2)/2(n2−n1)]         (11) 

where  t is in accord with F distribution named as 
t−F[2(n2−n1), L−2n2]. 

Assigning a confidence value to a, if t≤ta, namely 
E(n) does not decrease obviously, the order parameter n1 
is accepted; if t＞ta, namely E(n) decreases obviously, n1 
may not be accepted, the order must be increased and t 
must be recomputed until n1 is accepted. 

400 groups of sample data with a sampling period 
of 1.5 min were used to determine the orders of the 
model parameters. Through computation, the orders of 
temperature, coal gas flux, feeding and oxygen content 
were 3, 2, 1 and 1 respectively, and the delay time of 
coal gas flux, feeding and oxygen content were 3, 5, 1 
respectively. The structure of the wavelet neural network 
model is shown in Fig.2, and its equation is defined as 
ollows: f

 
y(t)=WNN[y(t−1), y(t−2), y(t−3), u1(t−3), u1(t−4),  

u2(t−5), u3(t−1)]                         (12) 
 
where  y is the temperature; u1 is the coal gas flux; u2 is 

 
Fig.2 Structure of wavelet neural network model 
 
the feeding; u3 is the oxygen content; t is the sample 
time. 

Then we can deduce the neural network single-step 
rediction model: p

 
ym(t+1)=WNN1[y(t), y(t−1), y(t−2), u1(t−2),  

u1(t−3), u2(t−4), u3(t)]                 (13) 
 

And the multi-step prediction model is 
 
ym(t+d)=WNNd[y(t+d−1), y(t+d−2), y(t+d−3), 

u1(t+d−3), u1(t+d−4), u2(t+d−5), u3(t+d−1)] 
                                 (14) 

 
where  ym(t+1) is the prediction result for time t+1 with 
the sample data of time t; d is the prediction step; WNN1 

is the single-step prediction model; WNNd  is the d-step 
multi-step prediction model. For the input variable in the 
right of Eqn.(14) [y, u1, u2, u3] whose sample time is 
remarked as t+d−i(i=1,2,3,4,5), if t+d−i≤t, their input 
values are real sample values. Whereas, if t+d−i＞t, their 
input values as following y(t+d−i), u1(t+d−i), u2(t+d−i) 
and u3(t+d−i) are substituted with ym(t+d−i), u1(t), u2(t) 
and u3(t), respectively. Consequently, the multi-step 
prediction model for time t can be constructed based on 
one-step prediction and multi-step recurrent computation. 
 
3.2 Set-up of neural network model 

At the end of the 20th century, the approximate 
representation capability of neural networks had been 
developed greatly[19−21]. It had been proved that 
single-hidden-layer forward-feed neural network had the 
characteristics of arbitrary approximation to any 
non-linear mapping function. Therefore, a single- 
hidden-layer neural network was adopted as the 
temperature forecast model in this work. As the training 
measure, the gradient decline rule was used, in which 
weightiness of neural network was modified according to 
the δ rule. The modeling process included forward 
computation and error back propagation. In forward 
computing, the information (neuron) was transmitted 
from the input layer neural nodes to the output nodes 
through the hidden neural nodes, with each neuron only 
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influencing the next one. If the expected error in output 
layer could not be obtained, error back propagation 
would be adopted and the weightiness of every node of 
the neural network would be modified. This process was 
repeated until the given precision was acquired. 
3.2.1 Network learning algorithm 

The number of hidden nodes was determined with 
the pruning method[22]. At first, a network with its 
number of hidden nodes much larger than the practical 
requirement was used; then, according to a performance 
criterion equation for network, the nodes and their 
weightiness that had no or little contribution to the 
performance of the network were trimmed off; finally a 
suitable network structure could be obtained. In view of 
existing shortcomings in BP algorithm, such as easily 
dropping into a local minimum, slow convergence rate, 
and inferior anti-disturbance ability, the following 
improved measures were adopted. 

1) Attached momentum item 
The application of an attached momentum item, 

whose function equals to a low-frequency filter, 
considers not only error gradient, but also the change 
tendency on error curved surface, which allows the 
change existing in network. Without momentum function, 
the network may fall into a local minimum. With the use 
of this method in the error back propagation process, a 
change value in direct proportion to previous weightiness 
change is added to present weightiness change, which is 
used in the calculation of a new weightiness. The 
weightiness modification rule is described in Eqn.(15), 

here β (0＜β＜1＝ is the momentum coefficient: w
 
∆
 

wij(t+1)=wij(t)−η∂E(t)/∂wij+β[wij(t) −wij(t−1)]    (15) 

2) Adaptive adjustment of learning rate 
In order to improve convergence performance in 

training process, a method of adaptive adjustment of 
learning rate was applied. The adjustment criterion was 
defined as follows: when the new error value becomes 
bigger than the old one by certain times, the learning rate 
will be reduced, otherwise, it may be remained invariable. 
When the new error value becomes smaller than the old 
one, the learning rate will be increased. This method can 
keep network learning at proper speed. This strategy is 
shown in Eqn.(16), in which SSE is the sum of output 
quared error in the output layer: s

 
η(t+1)=1.05η(t) [SSE(t+1)＜SSE(t)] 
η(t+1)=0.70η(t) [SSE(t+1)＞SSE(t)]             (16) 
η(t+1)=1.00η(t) [SSE(t+1)=SSE(t)]  
 
3.2.2 Results of network prediction 

To set up the neural network model, 450 groups of 
sample data were used, in which 400 groups for training 
and 50 groups for prediction. When the training loop 

times reached 22 375, the step-length-alterable training 
process was finished, with the network learning error 
E=0.01 and the finally determined structure of the 
network },1127{  i.e., seven nodes in the input layer, 
twenty-one nodes in the hidden layer and one node in the 
output layer. The trained network could accurately 
express the roasting process and would be applied for 
forecasting. The prediction results of the wavelet neural 
network are shown in Figs.3 and 4. Fig.3 indicates the 
change tendency of prediction error with the change of 
forecast step, from which it can be seen that with the 
forecast step increasing, the prediction error becomes 
bigger. And when the prediction step is lower than 6, 
namely, within 9 min after the last sample time, the 
average multi-step forecast error is less than 10 ℃. There 
is a satisfactory result shown in Fig.4: as an absolute 
error ±5.0 ℃ is adopted, the single-step prediction 
accuracy of wavelet neural network can achieve 90%. 
Furthermore, from Fig.4 it can be seen that the prediction 
accuracy of 6 steps is worse, but the result of 5 steps is 
receivable. With the model prediction, the change 
tendency of the roasting temperature can be forecasted.  
If the prediction results showing the temperature may 
 

 
Fig.3 Change tendency of multi-step prediction error 
 

 

Fig.4 Result of wavelet neural network prediction 



LI Jie, et al/Trans. Nonferrous Met. Soc. China 17(2007) 1056 

become high or low, the roasting operation parameters 
can be adjusted in advance, by which the roasting energy 
can be saved. 
 
4 Conclusions 
 

1) By analyzing the sample data, coal gas flux, 
feeding and oxygen content are ascertained as the main 
parameters for the temperature forecast model. The 
model parameter order and delay time are deduced from 
F test method. Then the wavelet neural network is used 
to identify the roasting process. The practice application 
indicates this model is good in roasting temperature 
forecast. 

2) According to the process parameters analysis, the 
model has certain forecast ability. With forecast ability, 
the model provides a method for system analysis and 
optimization, which means that when influence factors 
are suitably altered, the change tendency of the roasting 
temperature can be analyzed. The forecast and the 
analysis based on the model have guiding significance 
for production operation. 
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