
 

 

 

 Trans. Nonferrous Met. Soc. China 26(2016) 1995−2002 

 
Prediction of rock burst classification using cloud model with entropy weight 

 

Ke-ping ZHOU, Yun LIN, Hong-wei DENG, Jie-lin LI, Chuan-ju LIU 
 

School of Resources and Safety Engineering, Central South University, Changsha 410083, China 
 

Received 14 January 2016; accepted 6 June 2016 

                                                                                                  
 

Abstract: The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main 

factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock 

brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index 

system. The entropy−cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. 

The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results 

of the entropy−cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of 

those factors from high to low is  /c, , Wet, c/t, t, c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest 

Neighbor algorithm (KNN) and Random Forest (RF) methods. 
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1 Introduction 
 

Rock burst is one common kind of dynamic, 

spontaneous, uncontrolled geological hazard in deep rock 

mass engineering excavation. Due to the stress field 

redistribution in rock engineering with the excavation of 

surrounding rock under high geostress conditions, rock 

burst leads to a series of unfavorable influences such as 

bursting, stripping and ejecting, resulting from the 

sudden release of the stored elastic strain energy from the 

hard brittle surrounding rock [1]. Since rock burst occurs 

suddenly and intensely, the rock particles can be ejected 

with a velocity of 8–50 m/s [2], which threatens the 

safety of operating personnel and equipment directly, and 

affects the construction schedule, even destroys the 

whole project. With the increase of buried depth and the 

level of stress, rock burst shows a trend of high 

frequency in underground engineering [3]. With the 

increase of global mining activities, the problem of rock 

burst is increasingly prominent. Therefore, it is of great 

significance to predict and control the hazard of rock 

burst. 

Many experts have studied the mechanism of rock 

burst from different angles and proposed the prediction 

methods of corresponding intensity of rock burst. Early 

experts studied the prediction of rock burst mainly from 

single factor. RUSSENES [4], TURCHANINOV et al [5], 

HOEK and BROWN [6] and TAO [7] believed that rock 

strength was closely related to the occurrence of rock 

burst and surrounding rock stress and put forward the 

strength criterion. GUO [8] believed that lithology 

especially the uniaxial compressive strength and the 

tensile strength affected the occurrence of rock burst and 

proposed the relevant criteria. KIDYBINSKI [9] and 

SINGH [10] found that energy was an important factor 

affecting the occurrence of rock burst and put forward 

the criterion of elastic strain energy. 

Along with the further research, people gradually 

realized that rock burst affected by many factors is a 

complex nonlinear dynamic phenomenon. As a result, 

many research scholars carried out intelligent integrated 

prediction research of rock burst with various factors by 

intelligent methods. ZHOU and GU [11] established a 

rock burst orientation of the fuzzy self-organization 

neural network model based on the GIS space data 

analysis technology and fuzzy self-organization neural 

network. WANG et al [12] carried out a prediction study 

of the occurrence and the size of intensity of rock   

burst with three main influence factors using the fuzzy  
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mathematics comprehensive evaluation method. GONG 

and LI [13] developed a distance discriminant analysis 

model for rock burst prediction and forecasted the 

occurrence of rock burst and the size of intensity based 

on the theory of distance discriminant analysis.   

ZHAO [14] and ZHU et al [15] built support vector 

machines and classification prediction model, and 

effectively forecast the rock burst. ZHOU et al [16] 

established a RS-TOPSIS model for rock burst prediction 

with some related indicators based on the method of 

technique for order preference by similarity to ideal 

solution and the theory of rough set and then applied the 

model to practical engineering. HU et al [17] applied the 

improved matter-element extension model which was 

established by the theory of matter-element extension to 

practical engineering. SHI et al [18] used the 

unascertained measure theory to establish the 

unascertained measure model of intensity of rock burst 

prediction and the model acquired a good effect of rock 

burst prediction. DONG  et al [19] used the method of 

random forest (RF) classification to predict rock burst 

and established the random forest model for rock burst 

forecast. ZHOU et al [20] applied the k-nearest neighbor 

(KNN) algorithm to predict rock burst of underground 

engineering. GONG et al [21] built the Bayes 

discriminant analysis model for rock burst prediction and 

then applied the model to the practical engineering and 

achieved good results. The above theories to predict rock 

burst are from different angles to forecast the rock burst, 

leading to certain prediction result. However, the 

classification of rock burst prediction with the influence 

of the model and parameters uncertainties is a very 

complicated nonlinear process and classification of rock 

burst is still a huge challenge. Therefore, the introduction 

of a new intelligent method for the research of rock burst 

and intensity classification prediction is still very 

necessary. 

In this work, the prediction and classification of 

rock burst are focused on using the cloud model with the 

entropy weight which is based on the uncertainty 

artificial intelligence [22]. The entropy-cloud model for 

rock burst prediction is established using the entropy 

weight method [23] to determine the weight of every 

index with the forward and backward cloud utilized to 

calculate numerical descriptors. Then, the model is 

applied to practical engineering and receives good results. 

Thus, the model provides a new approach for rock burst 

prediction research. 
 

2 Methodology of cloud model 
 

2.1 Cloud model 

Cloud model is a mathematical model proposed by 

LI et al [24] to deal with the transformation of 

uncertainty knowledge between qualitative and 

quantitive on the basis of random mathematics and fuzzy 

mathematics. 

Definition of cloud: set U as a quantitative set 

which is expressed by precise values, U={x}, called 

domain. C is a qualitative concept of U. For any element 

x of U, there is a stable tendency random number     

μ(x) [0,1], which is called the certainty degree of x to  

U, the distribution of certainty degree on U is called the 

cloud [25]. There are three numerical descriptors used to 

express the transformation of cloud including 

expectation Ex, entropy En, hyper entropy He. Ex 

represents the mean value of the domain; entropy En 

represents the range of cloud droplets which may be 

accepted by qualitative concept in domain space; hyper 

entropy He is entropy of entropy En, reflecting the degree 

of dispersion of the cloud droplets [26]. 

Based on the principles of cloud model and concept 

of cloud numerical descriptors, the numerical descriptors 

of cloud model [27] can be calculated according to    

Eq. (1): 
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where Xi=[x1, x2, … , xn] serves as the value of an 

indicator belonging to a certain class of rock burst, k is a 

constant. Then, the certainty degree of x to C [28] can be 

calculated by Eq. (2): 
 

2 2
( ) exp[ ( ) ]/(2 )x nx x E E                      (2) 

 

where En~N(En, He
2 ). 

Cloud models are executed by cloud generators. 

There are generally two kinds of cloud generators: the 

forward and the backward cloud generators. The forward 

cloud generator which is the transformation between the 

qualitative knowledge and the quantitative representation 

is used to generate the cloud drops through the three 

given cloud numerical descriptors and denoted with CG. 

Given the three numerical descriptors of cloud and the 

specified x=x0, the combination to generate the cloud 

drops drop(x, μ(x)) is called the X-condition cloud, which 

is denoted by XCG. The backward generator is a 

transferring process to derive the qualitative concept 

represented by three descriptors from cloud drops and 

denoted with CG−1. The cloud generators are shown in 

Fig. 1. The combination of the two kinds of generators 

can be used interchangeably to derive various kinds of 

clouds to bridge the gap between the qualitative concept 

and the quantitative knowledge [29]. 
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Fig. 1 Process of forward cloud generators, backward cloud generators and X-condition cloud gererators 

 

2.2 Indicator analyses 

The principles of establishing evaluation index 

system of rock burst are that evaluation indexes should 

be able to reflect the main characteristics of rock burst 

and properties of surrounding rock and also should be 

easy to obtain the data [16]. The uniaxial compressive 

strength (σc), the tensile strength (σt), the tangential stress 

(σθ), the rock brittleness coefficient (σc/σt), the stress 

coefficient (σθ/σc) and the elastic energy index (Wet) are 

common indicators and can fully reflect the 

characteristics of rock burst, thus, the above six indices 

are chosen as the indicators of rock burst in deep to 

establish evaluation index system. The uniaxial 

compressive strength (σc), the tensile strength (σt) and the 

tangential stress (σθ) can better reflect lithology 

conditions of engineering surrounding rock. The 

occurrence of rock burst and the intensity are affected by 

lithology conditions and the ground stress field as well as 

rock elastic strain energy. Therefore, σc, σt, σθ, σc/σt, σθ/σc 

and Wet are chosen as the evaluation indicators. 

 

2.3 Entropy weight 

Entropy method is an objective method to calculate 

the weight of evaluation factors and it acquires the 

effective and available information by measuring the 

data [30]. The basic steps of entropy method to calculate 

weight of each indicator are as follows: 1) structuring 

matrix X=(xij)m×n of the original evaluation data 

according to the evaluation objects and indicators;     

2) normalizing matrix X; 3) calculating the entropy  

value Ej and deviation degree dj of each indicator;          

4) calculating the weight of each indicator based on 

entropy value and deviation degree. 

The original data can be normalized by 
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where the benefit type indicators are normalized by   

Eq. (3) and the economical indicators are standardized by 

Eq. (4). 

The entropy value, deviation degree and weight can 

be calculated by Eqs. (5)−(7), respectively. 
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2.4 Implementation of approach 

Rock burst is usually divided into four grades [31]: 

Class I (no rock burst activity), Class II (light rock burst 

activity), Class III (medium rock burst activity), Class IV 

(violent rock burst activity). The procedure of the 

strategy can be processed as follows: 

1) Establishing the backward cloud model. Collect 

data and calculate the numerical descriptors of the cloud 

model for each index corresponding to each class of rock 

burst intensity according to Eq.(1). 

2) Calculating the weight of each index by entropy 

method. Firstly, the data are normalized according to  

Eqs. (3) and (4). Based on Eqs. (5)−(7), the weight of 

each indicator of evaluation index system of rock burst 

will be calculated. 

3) Establishing the forward cloud model. According 

to the measured data collected from underground 

engineering projects combined with Eq.(2), calculate 

certainty degree of each index corresponding to each 

rock burst intensity. Then, calculate integrated certainty 

degree as follows: 
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where μ(x) represents the certainty degree of each index, 

and ωj is the weight of every index. 

4) Outputting discrimination result. Discriminate 

the class of rock burst according to the maximum 

certainty degree principle, and the class of the maximum 

certainly degree corresponds to the grade of rock burst 

indensity. Then, output the grade of rock burst indensity. 

 

3 Results and discussion 
 

3.1 Data collection and analysis 

In order to measure the performance of the model, 

this study acquired data from 209 cases of rock burst 

instances collected from the original database built by 

ZHOU et al [20]. The data are reliable which contain 
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more than 15 underground engineering projects and 209 

rock burst events in the general database obtained from 

the references published from 1991 to 2013. 

The original data set is divided into two sub-sets to 

implement the entropy-cloud model: 

1) Training set (TS). This is required to train the 

model. 167 out of a total of 209 data sets (approximately 

70% of the available data) are considered for training. 

2) Testing (prediction) set (PS). This is required to 

estimate the performance of the model. The reserved 42 

data sets are used for predicting. 

These rock burst events are of a wide range of 

engineering types (the hydropower station tunnels, 

nuclear cooling tunnels, coal mines and metal mines) and 

locations (China, Norway, Sweden, Italy, etc.). The 

distribution of the data is shown in Fig. 2(a) as a pie 

chart illustrating the proportion of the four types of rock 

burst in underground engineering: none (no rock burst 

activity, 43 cases), light (light rock burst activity, 56 

cases), medium (medium rock burst activity, 66 cases), 

and violent (violent rock burst activity, 44 cases). The 

scatter plot matrix of the original data set is given in  

Fig. 2(b). No obvious correlation among the variables is 

observed. The box plot of the original data set is given in 

Fig. 2(c). The indicators  and c are separately divided 

by 10, and /c times 10 in Fig. 2(c) in order to well 

display all the indicators in one figure. For most of the 

data groups, the median is not in the center of the box, 

which indicates that the distribution of most of the data 

groups is not symmetric. In addition, dependent variables 

of Wet,  /c, c/t, c and t do not have any outlier 

whereas  has outliers. It is obvious that 209 cases 

collected in this work are reasonable according to Fig. 2. 

 

3.2 Numerical descriptors of cloud 

The steps of calculating numerical descriptors of 

cloud using forward cloud and backward cloud theory 

are as follows. Firstly, the collected data cases are 

grouped according to the principle of taking the data with 

the same class of rock burst into one group. Secondly, 

calculate the numerical characteristics of cloud model 

according to analysis of each set of data by Eq. (1). Then, 

run forward cloud generator to generate cloud droplets. 

Finally, the final cloud numerical descriptors are 

obtained through analyzing the cloud droplets with 

backward cloud models. The results are shown in   

Table 1. 

It can be found from Table 1 that each indicator has 

large values of mean square deviation. The parameter 

value ranges intersect each other and do not have very 

obvious boundaries. This will make it difficult to 

obviously classify those rock burst events with a 

satisfactory accuracy. So, the combination of multiple 

indicators is required to gain a better discriminant result. 

 

3.3 Entropy weight and sensitivity of indicators 

According to entropy method, entropy value and 

weight of each indicator are calculated, as shown in 

Table 2. It can be found that the entropy values of every 

indicator are close and relatively large. The results show 

that it is not reliable to classify the rock burst intensity 

with sole indicator, because all indicators are important. 

Fortunately, these indicators can work synthetically so as 

to obtain significantly better results. 

Analyzing the sensitivity of evaluation indexes is 

conducive to analyzing the importance of indicators and 

taking measures to prevent rock burst by engineers. The 

entropy weights shown in Table 2 turn out that the 

indicator /c has the largest weight for the rock burst 

prediction. It shows that the indicator plays a more 

important role than other factors to account for the 

occurrence of rock burst events. The tangential stress  

takes the second place in entropy weights with value of 

0.24, which is followed by the elastic strain energy 

storage index Wet with weight value of 0.18. Then, c/t, 

t, c rank in a successive way. So,  /c is the most 

 

 

Fig. 2 Data visualization: (a) Pie chart showing distribution of observed rock burst cases; (b) Scatter plot matrix of rock burst cases; 

(c) Box plot of each variable for rock burst cases 
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Table 1 Statistical features of rock burst case data 

Activity 
Rock burst 

intensity 

Indicator 

 c t /c c/t Wet 

No rock 

burst 

activity 

Mean (Ex) 22.4 91.2 5.99 0.29 18.4 2.6 

En 12.6 41.7 3.15 0.2 11.7 1.7 

Mean square 

deviation 
11.82 40.6 3.2 0.21 11.2 1.84 

Light 

rock burst 

activity 

Mean (Ex) 43.1 115 7 0.38 20.6 3.2 

En 11 30 2.34 0.14 7.4 0.7 

Mean square 

deviation 
11.98 29.45 3 0.14 9.36 0.76 

Medium 

rock burst 

activity 

Mean (Ex) 51.4 118 6 0.51 26.6 5.6 

En 14.8 37.6 3.2 0.12 12.6 1.7 

Mean square 

deviation 
16.75 39.2 3.5 0.14 15.9 2.39 

Violent 

rock burst 

activity 

Mean (Ex) 132.6 117.6 10.62 1.4 12.6 9.8 

En 93 46 4.6 1.3 4.2 5.6 

Mean square 

deviation 
89.45 48.8 4.5 1.26 4.7 6.49 

         

Table 2 Entropy coefficients of evaluation indicators 

Coefficient  c t /c c/t Wet 

Entropy 

value 
0.9427 0.9877 0.9741 0.9292 0.9732 0.9567 

Entropy 

weight 
0.24 0.05 0.11 0.30 0.12 0.18 

 

sensitive parameter for rock burst classification, and the 

tangential stress  is the second most sensitive one and 

then Wet, c /t, t, c, successively. From the perspective 

of the sensitivity of indicators, Wet,  /c and  serve as 

the major factors, c/t, c, t are secondary factors. 

The graphs of rock burst classes with respect to 

each distinct indicator are shown in Fig. 3. Ideally, in 

order to be easily and obviously classified, the values of 

all indicators should only have one class label value. It is 

apparent that the values of some indicators have more 

than one corresponding value of the rock burst class label 

in some events. This is because the indicator values do 

not have apparent limits among the four classes of rock 

burst at all. Thus, it is impossible to classify the rock 

burst cases correctly if merely using one of the indicators. 

Fortunately, the combination of the six indicators may 

work well. It is obvious that Figs. 3(a), (d) and (f) are 

better mannered for classification than Figs. 3(b), (c) and 

(e), which illustrates that  /c,  and Wet are more 

sensitive than c/t, c and t. 

 

3.4 Predicted results 

The entropy−cloud model (CM) and the models of 

K-Nearest Neighbor algorithm (KNN), Bayes and 

Radom Forest (RF) are obtained through training dataset, 

and the training and testing datasets are predicted with 

the models. In estimating the prediction performance of 

cloud model, the results of rock burst samples collected 

are discriminated by the entropy−cloud model, and 

compared with those calculated by the methods of KNN, 

Bayes and RF [32]. The results and accuracy of each 

method are shown in Table 3. Where, k is 5 in KNN 

method, NTree is 500 in RF method. The accuracy (A) is 

calculated as follows: 
 

A=(Ncorrect/Ntotal)×100%                        (9) 
 

where Ncorrect is the number of samples truly predicted 

and Ntotal is the number of total samples. 

The numbers of the predicted cases are given for 

each class of rock burst intensity in Table 3. The numbers 

in correct columns are the truly predicted samples, and 

the numbers in missed columns are incorrectly predicted 

sample numbers. These values give out the performance 

of the entropy−cloud model and KNN, Bayes and RF 

methods in the prediction of rock burst classification. It 

can be concluded according to the numbers in Table 3 

that the cloud model with entropy weight can generate 

satisfactory results for the classification of these cases. 

The accuracy rate of training set (TS) calculated by the 

cloud model (82%) is a little higher than those of Bayes 

(78%) and KNN (60%) in Table 3, but a little lower than 

that of RF (86%). The accuracy of prediction set (PS) is 

76.2% for the cloud model which is higher than those of 

the methods of Bayes, KNN and RF. That is to say, RF 

model has superior ability of training samples, while the 

entropy−cloud model has the superior generalization 

ability over the samples. Hence, the cloud model with 

entropy weight is feasible and applicable for the 

prediction of rock burst classification. 

 

4 Conclusions 
 

1) According to the unascertained factors of 

classification prediction of rock burst, six quantitative 

indices including Wet,  /c, , c/t, c and t are 

chosen to build evaluation index system of rock burst. 

On the basis of the statistical analysis of data of a large 

amount of practical engineering, the backward cloud 

model is used to calculate the three numerical descriptors 

of each evaluation indicator and the forward cloud model 

for predicating the rock burst is established. 

2)  The entropy weights of each indicator and the 

graphs of rock burst classes with respect to each distinct 

indicator show that Wet,  /c and  are the major 

factors, c/t, c and t are secondary factors. The 

sensitivity order of those indicators from high to low is 

successive as  /c, , Wet, c/t, t, c, according to 

the factor priority for rock burst classification. 

3) The accuracies of testing samples using the 

http://dict.cnki.net/dict_source.aspx?searchword=illustrate
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Fig. 3 Rock burst class with respect to each indicator 

 

Table 3 Predictive results of four classification across four models with six indicators 

Class label Data set 
Bayes  KNN  RF  CM 

Correct Missed  Correct Missed  Correct Missed  Correct Missed 

I TS (33) 26 7  18 15  29 4  27 6 

 PS (10) 7 3  5 5  8 2  8 2 

II TS (45) 34 11  27 18  40 5  37 8 

 PS (11) 8 3  6 5  9 2  9 2 

III TS (55) 43 12  35 20  47 8  46 9 

 PS (11) 7 4  5 6  7 4  7 4 

IV TS (34) 27 7  20 14  28 6  27 7 

 PS (10) 6 4  6 4  7 3  8 2 

Accuracy/% 
TS (167) 78  60  86  82 

PS (42) 67  52  73.8  76.2 
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entropy−cloud model, KNN, Bayes and RF are 76.2%, 

52%, 67%, 73.8%, respectively. The accuracies of 

training samples using the entropy−cloud model,   

KNN, Bayes and RF are 82%, 78%, 60% and 86%, 

respectively. The results demonstrate that the entropy− 

cloud model performs considerably better than KNN, 

Bayes and RF. The entropy−cloud model has the 

potential ability for rock burst classification. 
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熵权−云模型对岩爆等级的预测 
 

周科平，林 允，邓红卫，李杰林，刘传举 

 

中南大学 资源与安全工程学院，长沙 410083 

 

摘  要：采用熵权法和云模型判定岩爆等级。选用岩石的单轴抗压强度 σc、单轴抗拉强度 σt、切向应力 σθ、岩石

的压拉比 σc/σt、岩石的应力系数 σθ/σc和岩石的弹性变形指数 Wet作为岩爆等级判定的因素建立岩爆评价指标体系。

以收集到 209 组工程中的实际岩爆情况及数据作为样本进行分析计算，建立岩爆等级判定的熵权−云模型。运用

该分析模型分析岩爆评价指标体系中评价指标的敏感性，并对收集到的工程实例岩爆情况进行判定，将结果    

与 Bayes、KNN 和随机森林方法的判定结果进行比较。研究表明：评价指标体系中指标敏感性由大到小的顺序   

为： /c、、Wet、c/t、t、c；熵权−云模型的判别准确率比 Bayes、K 最邻近结点算法(KNN)和随机森林(RF)

方法高。 

关键词：岩爆；预测；云模型；熵权；敏感性 
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