2016年7月 July 2016

文章编号: 1004-0609(2016)-07-1459-07

Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0}时效过程中的 微结构演变与磁性能

李丽娅,高 智,葛毅成,邓 辉,易健宏,彭元东 (中南大学 粉末冶金国家重点实验室,长沙 410083)

摘 要:采用透射电镜(TEM)、场发射扫描电镜(FESEM)、X射线衍射(XRD)等方法系统研究 Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0}在830℃时效处理10~30h过程中的微结构演变及磁性能。结果表明:合金时效处 理后形成由菱方Sm₂Co₁₇R主相和六方Sm(Co,Cu)₅胞壁相构成的胞状结构、叠加在胞状结构之上的六方富Zr片 状结构和少量富Zr的Sm(CoCuFeZr)_x析出相。随830℃时效处理时间由10h延长到30h,Sm₂Co₁₇R主相的尺 寸由80~110 nm长大到150 nm,富Zr片状相的密度增大,富Zr的Sm(CoCuFeZr)_x析出相的体积分数增多。富 Cu的SmCo₅胞壁相和富Zr的Sm(CoCuFeZr)_x析出相通过钉扎畴壁为合金提供高的室温和高温矫顽力。磁性能 测试结果表明:剩磁B_r随830℃时效时间的延长而单调增大,内禀矫顽力H_{ci}在830℃处理20h时达最大值2417.9 kA/m,在测试温度为500℃时仍具有高的H_{ci},为693.5 kA/m。

关键词: Sm₂Co₁₇型稀土永磁材料; 时效处理; 析出物; 胞状结构

中图分类号: TM273 文献标志码: A

Sm₂Co₁₇型稀土永磁材料具有高的磁能积 (160~272 kJ/m³)、高的居里温度(820~980 ℃)和低的温 度系数,已被广泛用作航空航天领域的高温磁性零部 件[1-3]。该合金的优异磁性能来源于其纳米级的胞状 和片状结构^[4-6]: 胞内是具有高饱和磁化强度的富 Fe 菱方 Sm₂Co₁₇R 相,尺寸约为 100~150 nm; 胞壁为六 方结构富 Cu 的 SmCo5 相,尺寸约为 5~10 nm;富 Zr 的片状相叠加于胞状结构之上,尺寸为 3~5 nm。 Sm₂Co₁₇型永磁体的矫顽力机理为畴壁钉扎^[7],与 $Sm_2Co_{17}R$ 、 $SmCo_5$ 两相的磁晶各向异性常数 K 与交换 积分常数 A 的差 $\Delta(AK)$, 或畴壁能的差 Δy 成正比。 LECTARD 等^[8]研究了 Sm(Co_{1-v}Cu_v)5 合金中 Cu 含量 对合金磁晶各向异性常数 K 的影响, 当 v 由 0 增加到 0.56 时, 合金的 K 由 18 J/cm³ 降低到 1 J/cm³。由于 Cu 在时效处理时富集在胞壁相中,所以 Sm₂Co₁₇R 相的畴 壁能不随 Cu 含量的改变而变化, 而 SmCo₅相的畴壁能 随 Cu 的增加而减小, 使 Sm₂Co₁₇R 相的畴壁能远高于 SmCo5相的。因此,在磁化过程中畴壁将钉扎在畴壁能 较低的 SmCo₅ 胞壁相,使合金获得较高的矫顽力^[9-10]。 合金中 Cu 原子的扩散行为与片状相有关^[11-12]。片 状相为长的薄层状,与普通金属中的孪晶类似,具有

高的能量;同时该相与胞状组织的晶格常数相差较大, 在相界处原子排列不规则,具有高的位错密度。上述 两个原因导致片状相的扩散系数大,成为原子的高扩 散通道。Fe和Cu通过该扩散通道在时效处理时分别 富集在Sm₂Co₁₇R相和SmCo₅相中,使合金具有优异 的磁性能。Cu和Zr含量的增加有利于促进片状相的 形成和提高Cu在SmCo₅中的含量,从而提高畴壁钉 扎强度^[13]。本文作者探索了高Cu、Zr含量的Sm₂Co₁₇ 型稀土永磁材料在830℃时效处理不同时间后的磁性 能及显微结构的变化,发现高Cu、Zr含量有利于促 进片状结构的形成,使合金具有高的矫顽力和良好的 高温磁性能。

1 实验

本研究中用中频感应炉,在氩气保护下熔炼 Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0}合金。合金锭经粗破碎、 球磨制成平均粒度为 5~8 µm 的合金粉。粉末在 2T 的 磁场中取向成形后再于 300 MPa 的等静压中压制。压 坯在 1180~1190 ℃的温度范围内进行真空预烧,然后

基金项目: 国家自然科学基金资助项目(51574293); 云南省新材料制备与加工重点实验室创新课题资助项目(2016cx04)

收稿日期: 2015-04-02; 修订日期: 2016-05-03

通信作者: 李丽娅, 教授, 博士; 电话: 0731-88877328; E-mail: liliya@csu.edu.cn

通入高纯氩并升温至烧结温度 1200~1220 ℃。烧结后的样品经固溶处理后水淬出炉。合金的时效处理在高 纯 Ar 中进行,首先在 830 ℃分别保温 3、10、20 和 30 h,然后以 0.5 ℃/min 的速度降温到 400 ℃并保温 15 h 后出炉。样品的室温和高温磁性能由 NIM-2000 型自动磁滞回线仪测量。材料的相结构和显微组织采 用 X 射线衍射仪、荷兰公司生产的 Sirion200 型场发 射扫描电子显微镜(FESEM)和 H800 型透射电子显微 镜(TEM)进行分析,采用 X 射线能谱仪(EDAX)分析材 料的局部成分。

2 结果与分析

Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0} 时效处理后的相 结构、胞状组织和片状组织

图 1 所示为 Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0} 固溶态 和时效处理后的 XRD 谱。由图 1(a)可见,烧结后合金 主要由六方结构的 TbCu₇型 SmCo₇相构成,在 830 ℃ 时效 10 h 后形成菱方 Sm₂Co₁₇R 主相和六方 Sm(Co,Cu)₅相(见图 1(b)),延长 830 ℃时效处理时间 合金的相结构没有显著变化,仍然主要由 Sm₂Co₁₇R 相、SmCo₅ 相构成。片状相由于含量较少,在 XRD 谱上并未显示出来。 同时,与普通 Cu、Zr 含量的 Sm₂Co₁₇型稀土永磁材料相比^[1-2, 14-15],在 XRD 谱上 还可以发现少量的第二相。

图 2 所示为合金在 830 ℃分别时效 10、20 和

图 1 Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0} 烧结态和时效处理后的 XRD 谱

Fig. 1 XRD patterns of $Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0}$ annealed at 830 °C for different aging time: (a) 0; (b) 10 h; (c) 30 h 30 h 后的 TEM 像。由图 2 可见,合金由胞状结构和 片状结构构成。时效 10 和 20 h 后试样的胞状结构大 小相近, Sm₂Co₁₇R 相的尺寸约为 80~110 nm, SmCo₅ 相的尺寸约为 5~10 nm。时效时间达 30 h 后, Sm2Co17R 相长大到约150 nm, 胞壁相很薄, 与 Sm₂Co₁₇R 相的 界面结构不清晰。同时片状相叠加于胞状结构之上, 随着时效时间的延长而逐渐清晰,达30h时其厚度增 加到约 5~6 nm。另一方面随着时效时间从 10 h 延长 到 30 h,在合金内可观察到细小第二相质点的析出量 逐渐增多长大,当时间达到 30 h 时,纳米级析出物的 尺寸约为 5~10 nm,同时在局部区域可发现富 Zr 的 Sm(Co,Cu,Fe,Zr),相的大颗粒存在。这些现象在普通 Cu、Zr 含量的 Sm₂Co₁₇ 型稀土永磁材料中并未出 现^[1-6,9,14]。纳米级析出物的形成与磁体中较高的Cu、 Zr含量有关。在 Sm₂Co₁₇型合金中大概有 3%(摩尔分 数)的 Zr 固溶于合金相中,其余的 Zr 与 Co 形成富 Zr 的第二相,其尺寸可以从大约100 nm 到几个微米^[16]。 通过 X 射线能谱(EDAX)分析发现,合金中的析出物 中含有大量的 Zr 和少量 Cu、Fe、Sm、Co,为一种 富 Zr 的 Sm(Co,Cu,Fe,Zr),第二相。该富 Zr 第二相的 形成原因主要与合金中 Zr 的固溶度和 830 ℃时效处 理时间的延长有关。首先单质 Zr 的熔点达 1852 ℃, 在熔炼过程中 Zr 通过先与 Cu 形成 CuZr 合金后进入 基体相中并在烧结和固溶处理过程中进一步固溶于 SmCo7相中,此时合金中 Cu、Zr 的含量处于过饱和 固溶状态。在时效处理过程中,胞状结构首先从SmCo7 基体相中析出。此时 Cu 进入 SmCo₅ 胞壁相, Zr 则促 使片状相的形成并进入片状相中。但是由于合金中 Zr的含量为3.6%,高于饱和的3%饱和固溶度,所以 过量的 Zr 将随时效时间的延长而逐渐析出。

2.2 时效处理后胞状组织及析出相的演变

TEM 结构测试中,由于磁性材料在透射电镜的高 能电子束下易于磁化,而磁化后的合金所产生的磁场 又易于干扰磁透镜成像,所以采用透射电镜、特别是 高分辨透射电镜对磁性材料进行研究时,清晰成像较 为困难。当时效时间少于 30 h 时,片状相的厚度较小 (<5~6 nm),通过 TEM 很难清楚观察到该相的形貌。 所以采用场发射电子显微镜(FESEM)对合金的显微结 构进行了进一步的分析。

图 3 所示为 Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0} 时效处 理后的 SEM 显微结构和 EDAX 能谱分析。由图 3(a) 可见,时效处理 3 h 后,磁体表面析出物较少,析出 物的粒径较小。830 ℃时效处理 10 h(见图 1(b))后表面 析出物增多、粒径增大。当时效处理时间延长至 20 h

Zr

15

18

21

Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0} annealed at 830 °C for different periods of time: (a) 10 h; (b) 20 h; (c), (d) 30 h; (e) EDAX analysis corresponding to region 1 marked in Fig. 2(d)

(见图 3(c))时,在磁体的表面可以见到析出的大量细小 第二相粒子,而且第二相粒子的尺寸较前两者大。进 一步延长时效处理时间至 30 h(见图 3(d)),第二相粒 子尺寸发生富集长大。EDAX 分析表明,第二相主要 含有 Zr 以及少量的 Cu,与透射电镜分析结构相同。

Co

Cu

12

Energy/keV

Sm^{Fe}

3

6

Co

图 4 所示为试样在 830 ℃时效处理 10、20 和 30 h 后磁体的 FESEM 显微结构。由图 4(a)、(c)和(e)可见, 合金由基体相和第二相组成。第二相分布于晶界和晶 内,但在晶界析出的第二相更密集。随着时效时间的 延长,析出物增多、长大。这与 TEM 观察到的结果 是一致的。图 4(b)、(d)和(f)表明基体相由细小的纳米 晶组织构成,对照图 2 的 TEM 结构分析可知该纳米 晶为合金的胞状结构。胞状组织的尺寸随时效时间的 延长而长大:当时效时间为 20 h 时,胞状组织细小均 匀,约为 50~100 nm;当时效时间延长到 30 h 时,胞 状组织发生了不均匀长大,尺寸分布宽,约为 80~200 nm。这一结果与 TEM 分析结果也是基本一致的。更 重要的是,在 830 ℃时效处理不同时间后合金基体上 均观察到间距不等的平直的或弧形的条纹结构。本文 作者认为该条纹结构的形成与相和相之间的结合力有 关。在 Sm₂Co₁₇ 型永磁材料中存在 3 种相结构: Sm₂Co₁₇R 主相、SmCo₅ 胞壁相和富 Zr 的片状相。 Sm₂Co₁₇R 和 SmCo₅ 相在 830℃短时间时效处理后同时 由 SmCo₇相的共析分解形成。从结构上来说两相是共 格的,它们之间的结合力强。但是富 Zr 的片状相是在 胞状组织的基础上析出的,并随着 830℃时效时间延

图 3 Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0}在 830 ℃时效处理后的 SEM 表面形貌及能谱分析 **Fig. 3** SEM images and EDAX analysis of Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0} annealed at 830 ℃ for different time: (a) 3 h; (b) 10 h; (c) 20 h; (d) 30 h (Liner EDAX analysis of elements Sm, Co, Fe, Cu, and Zr is superimposed in Fig. 3(b))

图 4 Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0}在 830 ℃时效处理后的 FESEM 像

Fig. 4 FESEM images of $Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0}$ annealed at 830 °C for different time: (a), (b)10 h; (c), (d) 20 h; (e), (f) 30 h

第26卷第7期

长而增多。与前两者相比,片状相与 Sm₂Co₁₇R 相和 SmCo₅相之间的结合力较弱。同时由于片状相的尺寸 只有约 3~5 nm,所以在试样的腐蚀过程中,与晶界表 现出相同的特性,即首先从基体剥离形成条纹结构。 该条纹结构的密度和厚度与文献报道中^[4-6,17]和本研 究中观察到的片状相一致。因此,通过条纹结构探讨 合金时效处理后片状相的析出情况。由图 4(b)可见, 时效处理 10 h 后合金的基体相上有条纹结构的出现, 但条纹间的间距较大,密度较小。由图 4(d)可见,随 着时效时间延长到 20 h,晶粒上的条纹结构密度增大, 条纹间距变小,约为 10~150 nm。当时效时间延长至 30 h 时(见图 4(f)),条纹间距并无明显变化,依然约为 10~150 nm。由此可见,合金内片状相的数量随着时 效时间的延长而增多,但在时间超过 20 h 时,变化 较少。

2.3 时效处理后合金的磁性能及磁性机理分析

Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0} 在 830 ℃保温不同 时间*t*后的磁性能如表1所列。由表1可见, B_r 随 830 ℃ 时效时间的延长而大幅增大,由最初的0.625T 增加到 0.846T,增加幅度约为26%。 H_{ci} 在 830 ℃短时间内等 温时效时较小,当时间达到10h时有较大的提高。时 效时间延长至20h时, H_{ci} 达到峰值2417.9 kA/m,此 时(*BH*)_{max}为95.0 kJ/m³。但是随着时效时间进一步延 长到30h, H_{ci} 大幅降低。表2所列为830 ℃保温20h 的试样在室温到500 ℃的磁性能。由表2 可见, H_{ci} 在400 ℃时为1045.4 kA/m,在温度达到500 ℃时为 693.5 kA/m,内禀矫顽力温度系数 β_{18-500} °C为-1.5× 10⁻³ ℃⁻¹,具有优良的高温磁性能。

由图 1~4 可知,在 Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0}的时效处理过程中有胞状结构的形成及长大、片状结构的形成及密度增加、以及第二相的析出与长大等 3 种组织结构的变化。Cu 和 Zr 在固溶处理后均固溶于

表 1 Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0}在 830 ℃保温不同时间 后的磁性能

Table 1Magnetic properties of $Sm(Co_{bal}Fe_{0.108}Cu_{0.131}-Zr_{0.042})_{7.0}$ annealing at 830 °C for different time

Sample No.	<i>t</i> /h	$B_{\rm r}/{\rm T}$	$H_{\rm ci}/({\rm kA}{\cdot}{\rm m}^{-1})$	$(BH)_{\rm max}/({\rm kJ}\cdot{\rm m}^{-3})$
0	0	—	19.2	_
1	3	0.625	829.1	60.3
2	10	0.701	1409.3	84.2
3	20	0.735	2417.9	95.0
4	30	0.846	1181.0	109.3

表 2 Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0} 在 830 ℃保温 20 h 的 18~500 ℃磁性能

Table	2	Magnetic	properties	of	Sm(Co _{bal} Fe _{0.108} Cu _{0.131} -
Zro 042)	7 0 ar	nealed at 83	0 °C for 20	h me	easured at 18–500 °C

Tammaratura/°C	$B_{\rm r}/{\rm T}$	H_{ci}	(BH) _{max} /	β /
Temperature/ C		$(kA \cdot m^{-1})$	$(kJ \cdot m^{-3})$	10^{-3} °C ⁻¹
18	0.735	2417.9	95.0	-
100	0.720	2146.6	87.1	-1.4
200	0.686	1747.6	79.2	-1.5
300	0.643	1396.5	68.0	-1.5
400	0.595	1045.4	55.6	-1.5
500	0.539	693.5	45.0	-1.5

SmCo₇相中,在830 ℃短时间热处理时均匀地分布于 共晶析出的 Sm₂Co₁₇R 主相和 SmCo₅ 胞壁相中,此时 Sm₂Co₁₇R 相由于含有较多的非磁性元素而具有较低 的剩磁。随着时效时间的延长,Sm₂Co₁₇R 相中的 Cu 逐渐进入 SmCo₅相,而 Zr 则富集在片状相中,同时 合金中还伴随形成了富含大量 Zr 和少量 Cu 的 Sm(Co,Cu,Fe,Zr)_x第二相。此时 Sm₂Co₁₇R 相中的 Cu、 Zr 等非磁性元素逐渐减少,使合金的剩磁随着时效时 间的延长而显著增大,如表 1 所列。这与普通 Cu、Zr 含量的 Sm₂Co₁₇型稀土永磁材料时效行为不同,后者 在时效处理过程中,剩磁几乎不随时效时间的变化而 变化。

另一方面, Sm₂Co₁₇ 型稀土永磁材料的矫顽力机 制为畴壁钉扎, 其反磁化过程一般认为矫顽力与 Sm₂Co₁₇R 相和 SmCo₅ 相之间的畴壁能差成正比^[18], 即:

$$H_{c}\infty\Delta\gamma = |\gamma^{2:17R} - \gamma^{1:5}|$$
(1)

式中: $\gamma^{2:17R}$ 和 $\gamma^{1:5}$ 分别是 Sm₂Co₁₇R 晶胞相和 SmCo₅ 胞壁相的畴壁能。Sm₂Co₁₇R 晶胞相由于只富含磁性元 素 Fe,其畴壁能随 Fe 元素含量变化不大;而 SmCo₅ 相的畴壁能与非磁性元素 Cu 含量有较大关系,Cu 含 量的增加大幅降低了该相的畴壁能,从而增大了 Sm₂Co₁₇R 与 SmCo₅两相之间的畴壁能差,使矫顽力 增大。Cu 在 Sm₂Co₁₇型稀土永磁材料时效处理过程中 的原子迁移行为为上坡扩散,即从低 Cu 含量的 Sm₂Co₁₇R 相中扩散进入高 Cu 含量的 SmCo₅相中。如 果通过体扩散的形式直接从 Sm₂Co₁₇R 相进入 SmCo₅ 相所需的能量较大,原子迁移较难进行。片状相是在 Sm₂Co₁₇R 相和 SmCo₅相的基体上形成的,而且合金 中 Zr 含量的提高有利于促进片状相的生成。新生成的 片状相不但厚度只有 3~5 nm,而且晶格常数与 Sm₂Co₁₇R 相和 SmCo₅相的晶格常数相差较大,导致 在相界处存在高位错密度;同时该相内部成分的偏析 也导致大量缺陷的产生。因此,Sm₂Co₁₇H 相具有高的 扩散系数,成为 Cu、Fe 等原子的高扩散通道。所以 片状相的浓度与胞壁相中 Cu 含量的高低直接相关。 合金在 830℃短时间时效处理时,形成的片状相较少, 不利于 Cu 原子的迁移,两相之间的畴壁能差较小, 矫顽力小。延长 830 ℃时效时间时,片状相含量增多, Cu 原子进入 SmCo₅相的通道增多,使 SmCo₅相的畴 壁 能降低,提高了合金的矫顽力。另一方面, Sm(Co,Cu,Fe,Zr)_x 析出相由于含有大量的 Zr 和少量 Cu、Fe,具有较低的畴壁能,亦可通过钉扎畴壁而使 磁体的矫顽力增大。

3 结论

1) 随着 Sm(Co_{bal}Fe_{0.1}Cu_{0.16}Zr_{0.04})_{7.0}在 830 ℃时效 时间由 10 h 延长到 30 h, *B*_r 由 0.625T 增加到 0.846T, *H*_{ci} 在 830 ℃处理 20 h 时达最大值 2417.9 kA/m,在测 试温度为 500 ℃时仍具有较高的 *H*_{ci},为 693.5 kA/m, 合金具有优良的高温磁性能。

2) Sm(Co_{bal}Fe_{0.1}Cu_{0.16}Zr_{0.04})_{7.0} 合金时效处理后形 成了由菱方 Sm₂Co₁₇R 主相和六方 Sm(Co,Cu)₅ 胞壁相 构成的胞状结构、叠加在胞状结构之上的六方富 Zr 片状结构、和少量富 Zr 的 Sm(CoCuFeZr)_x析出相。

3) 合金时效处理过程中伴随有胞状结构的形成 及长大、片状结构的形成及密度增加、以及第二相的 析出与长大等三种组织结构的变化。发现随 830 ℃时 效处理时间由 10 h 延长到 30 h, Sm₂Co₁₇R 主相的尺 寸由 80~110 nm 长大到 150 nm,富 Zr 片状相的密度 增大,富 Zr 的 Sm(CoCuFeZr)_x析出相的体积分数增多。 富 Cu 的 SmCo₅ 胞壁相和富 Zr 的 Sm(CoCuFeZr)_x析出 相通过钉扎畴壁为合金提供高的室温和高温矫顽力。

REFERENCES

- [1] SCHOBINGER D, GUTFEISCH O, HINZ D, MULLER K H, SCHULTZ L, MARTINEK G. High temperature magnetic properties of 2:17 Sm-Co magnets [J]. Journal of Magnetism and Magnetic Materials, 2002, 242–245: 1347–1349.
- [2] HORIUCHI Y, HAGIWARA M, ENDO M, SANADA N, SAKURADA S. Influence of intermediate-heat treatment on the structure and magnetic properties of iron-rich Sm(CoFeCuZr)_z sintered magnets[J]. Journal of Applied Physics, 2015, 117(17): 17C704.

- [3] 李 卫,朱明刚. 高性能稀土永磁材料及其关键制备技术[J]. 中国有色金属学报, 2004, 14(1): 332-336.
 LI Wei, ZHU Ming-gang. High property rare-earth permanent magnetic materials and its pivotal preparation technique[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(1): 332-336.
- [4] GOPALAN R, MURALEEDHARAN K, SASTRYT S R K. Studies on structural transformation and magnetic properties in Sm₂Co₁₇ type alloys[J]. Journal of Material Science, 2001, 36(8): 4117–4123.
- [5] LILEEV A S, ARINICHEVA O A, REISSNER M, KUBEL F, SEIN V A, Effect of cyclic heat treatment in the temperature range of 800–400 °C on the properties of sintered magnets based on Sm(Co, Fe, Cu, Zr)_z[J]. Metal Science and Heat Treatment, 2015, 56(11/12): 591–594.
- [6] SUN W, ZHU M, GUO Z, FANG Y, LI W, The coercivity mechanism of sintered Sm(Co_{bal}Fe_{0.245}Cu_{0.07}Zr_{0.02})_{7.8} permanent magnets with different isothermal annealing time[J]. Physica B: Condensed Matter, 2015, 476: 154–157.
- [7] KRONMULLER H, GOLL D. Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm₂Co₁₇ based alloys[J]. Scripta Materialia, 2002, 47: 545–550.
- [8] LECTARD E, ALLIBERT C H, BALLOA R, Saturation magnetization and anisotropy fields in the Sm(Co_{1-x}Cu_x)₅ phases[J]. Journal of Applied Physics, 1994, 75(8): 6277–6280.
- [9] ZHANG Y, CORTE-RWAL M, HADJIPANAYIS G C, LIU J, WALMER M S, KRISHNAN K M. Magnetic hardening studies in sintered Sm(Co,Cux,Fe,Zr)₂ 2:17 high temperature magnets[J]. Journal of Applied Physics, 2000, 87(9): 6722–6724.
- [10] 汤志伟, 郭海军, 王光建. Sm(Co_{bal}Fe_{0.1}Cu_xZr_{0.033})_{7.4} (x=0.06, 0.08, 0.10)永磁体的磁性能[J]. 河北大学学报(自然科学版), 2015, 35(4): 354-357.
 TANG Zhi-wei, GUO Hai-jun, WANG Guang-jian, Magnetic properties of Sm(Co_{bal}Fe_{0.1}Cu_xZr_{0.033})_{7.4} (x=0.06, 0.08, 0.10) permanent magnets[J]. Journal of Hebei University (Natural Science Edition), 2015, 35(4): 354-357.
- ZHANG Y, GABAY A M, HADJIPANAYIS G C. Observation of the lamellar phase in a Zr-free Sm(Co_{0.45}Fe_{0.15}Cu_{0.4})₅ alloy[J]. Applied Physics Letters, 2005, 87(14): 141910.
- [12] CAMPOS M F, RIOS P R. Kinetical analysis of the heat treatment procedure in SmCo₅ and other rare-earth transition-metal sintered magnets[J]. Journal of Alloys and Compounds, 2004, 377(1): 121–126.
- [13] GONG W M, GAO R S, FENG H B, YU R H, ZHANG Y, HADJIPANAYIS G C. Effect of Zr on the microstructure, magnetic domain structure, microchemistry and magnetic properties in Sm(Co_{bal}Cu_{0.08}Fe_{0.10}Zr_x)_{8.5} magnets[J]. Journal of Physics D: Applied Physics, 2007, 40(24): 7620–7624.
- [14] GJOKA M, NINARCHOS D, GIANNAKOPOULOS K, SARAFIDIS C, KALOGIROU O, GRIGORAS M, LUPU N, CHIRIAC H. Structure and magnetic properties of

Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})₈ melt-spun nanostructured alloys[J]. Materials Science and Engineering B, 2008, 152: 81–85.

[15] 张哲旭, 宋晓艳, 李定朋, 刘雪梅. 纳米晶 SmCo₇ 合金的相失 稳及伴随的晶粒长大[J]. 中国有色金属学报, 2012, 22(9): 2559-2564.

ZHANG Zhe-xu, SONG Xiao-yan, LI Ding-peng, LIU Xue-mei. Phase destabilization and concomitant grain growth in nanocrystalline SmCo₇ alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(9): 2559–2564.

[16] MATTHIAS T, ZEHETNER G, FIDLER J, SCHOLZ W, SCHREFL T, SCHOBINGER D, MARTINEK G. TEM-analysis of $Sm(Co,Fe,Cu,Zr)_z$ magnets for high-temperature applications[J]. Journal of Magnetism and Magnetic Materials, 2002, 242–2: 1353–1355.

- [17] ZHANG Y, TANG W, HADJIPANAYIS G C, CHEN C, NELSON C, KRISHNAN K. Evolution of microstructure, microchemistry and coercivity in 2:17 type Sm-Co magnets with heat treatment[J]. IEEE Transactions on Magnetics, 2001, 37(4): 2525–2527.
- [18] KRONMULLER H, GOLL D. Micromagnetic theory of the pinning of domain walls at phase boundaries[J]. Physica B, 2002, 319: 122–126.

Microstructure transformation and magnetic properties of Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0} during annealing treatment

LI Li-ya, GAO Zhi, GE Yi-cheng, DENG Hui, YI Jian-hong, PENG Yuan-dong

(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)

Abstract: Microstructure and magnetic properties of Sm(Co_{bal}Fe_{0.108}Cu_{0.131}Zr_{0.042})_{7.0} annealed at 830 °C for 10–30 h have been systematically investigated by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and magnetic measurement. It is found that the heat-treated alloy consists of the rhombohedral Sm₂Co₁₇ phase as the cell and the hexagonal Sm(CoCu)₅ as the cell boundary phases. In addition, the structure contains Zr-rich plate-like phase on the basal planes, running across both the cells and cell boundaries, as well as Zr-rich Sm(CoCuFeZr)_x precipitates. It is obvious that the annealing time significantly affects the microstructure. With increasing the annealing time from 10 h up to 30 h, the Sm₂Co₁₇R cell size increases from 80–110 nm to 150 nm and becomes uniform, the density of platelet phase and the content of Sm(CoCuFeZr)_x precipitates also increase. The Cu-rich SmCo₅ sell boundary phase and Zr-rich Sm(CoCuFeZr)_x precipitates are responsible for the high coercivity at both room and high temperature. Magnetic analysis shows that the remanence B_r enhances from 0.625T to 0.845T with the annealing time increasing from 10 to 30 h. The intrinsic coercivity H_{ci} reaches the maximum value of about 2417.9 kA/m at room temperature and 693.5 kA/m at 500 °C after annealing for 20 h.

Key words: Sm₂Co₁₇-based high temperature permanent magnet; annealing treatment; precipitate; cellular structure

Foundation item: Project(51574293) supported by the National Natural Science Foundation of China; Project (2016cx04) supported by the Innovation Supporting Program of Key Laboratory of Advanced Materials of Yunnan Province, China

Received date: 2015-04-02; Accepted date: 2016-05-03

Corresponding author: LI Li-ya; Tel: +86-731-88877328; E-mail: liliya@csu.edu.cn

(编辑 王 超)