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Abstract: The microstructure and phase precipitate behavior and their effects on the room temperature hardness and impact 

toughness of Inconel 740H aged at 750 °C for 10000 h were investigated by SEM, TEM and mechanical analysis. The as-received 

alloy shows a low hardness value of HB 168 and a highest toughness value of 96 J. After an aging treatment at 800 °C for 16 h and 

cooled in air (standard heat-treated condition), fine γ′ phase particles precipitate within the grains and small carbide particles are 

located at the grain boundaries. The hardness increases to HB 304 and the impact toughness decreases to 15 J after standard heat 

treatment. A maximum hardness value of HB 331 is achieved for the alloy aged at 750 °C for 300 h. With increasing the aging time 

from 300 to 10000 h, a decrease of the hardness and toughness is observed along with an enhanced quantity of M23C6 particles and 

the coarsening of γ′ phase. 
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1 Introduction 
 

The efficient ultra supercritical (USC) power  

plants, operating at steam temperatures of approximately 

600 °C and pressures of 25−30 MPa, use high-   

strength ferritic and austenitic steels (P92, TP347HFG, 

Super304, TP310HNbN) for boiler and turbine 

components [1−3]. 

The growing demand for electricity and 

environmental concerns has sparked initiatives in the 

United States, Europe and Asia aimed at developing an 

advanced ultra supercritical (A-USC) with the target 

steam temperatures of 700−760 °C and pressures of 

approximately 35 MPa [4−6]. However, the increased 

operating parameters put more stringent requirements on 

the properties of candidate materials and cannot be met 

by conventional ferritic and austenitic steels. 

Consequently, there are efforts to replace these materials 

by Ni-based superalloys due to a combination of their 

excellent microstructural stability, high creep-rupture 

strength, high oxidation and hot corrosion     

resistance [7,8]. Ni-based superalloys have already found 

widespread applications in a number of critical 

technological areas, such as jet-engine turbines and 

power plants. Some superalloys including solid solution 

strengthened and age-hardened nickel-based alloys  

(617 [9−12], 617B [13,14], 740 [15−19], 740H [20−25]) 

were evaluated for using as steam turbine and boiler 

components under A-USC steam conditions. 

Inconel 740 is a γ′-strengthened, precipitation- 

hardenable superalloy. Its desirable constituent phases, in 

addition to the FCC-structure γ matrix, are the FCC- 

ordered γ′ phase, MC carbides, and complex M23C6 

carbides. Undesirable phases include the complex Si-rich 

G phase, and the DO24-ordered hexagonal Ni3Ti-based η 

phase [15−19]. Inconel 740H is a modified version of 

Inconel 740. Compared with Inconel 740, the mole ratio 

of Ti to Al in Inconel 740H is lowered in order to 

eliminate microstructure instabilities (G and η phases) 

found in Inconel 740 during thermal aging and     

creep [20−25]. Since Inconel 740H has only recently 

been developed, few studies concerning the 

microstructure evolution and phase precipitate behavior 

of 740H during a long term aging (10000 h) have been 

carried out so far on this material. In this work, the 

microstructure and phase precipitate behavior of 740H 

aged up to 10000 h at 750 °C are analyzed with respect 

to the hardness and impact toughness measurements at 

room temperature. The purpose of present work is to 

provide experimental data for the material selection of 

700 °C ultra supercritical (USC) units in China. 
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2 Experimental 
 

The chemical composition of 740H tube     

(d50.8 mm × 8 mm) is listed in Table 1. 

 

Table 1 Chemical composition of 740H (mass fraction, %) 

Co Fe Ti Al B Cu Nb 

19.8 0.23 1.4 1.26 0.004 0.04 1.59 

Mg Pb As Sn Sb Pb 

0.002 0.0006 0.0009 0.001 0.0004 0.0006 

C Si Mn Cr Mo Ni 

0.05 0.16 0.25 25.37 0.01 50.1 

P Zr Bi S V Ag 

0.013 0.016 0.0002 0.0007 0.008 0.004 

 

The as-received samples (solution-treated for    

30 min at 1150 °C and then cooled in water) were 

marked by H0 and then followed by an aging treatment 

at 800 °C for 16 h and cooled in air (the standard 

heat-treated sample referred to as H1). The H1 samples 

were subsequently aged at 750 °C for 300, 1000, 3000, 

5000 and 10000 h and referred to as H2, H3, H4, H5 and 

H6, respectively. 

The hardness of the tested samples was measured 

with an HB−3000C Brinell hardness tester according to 

the requirement of GB/T 231.1−2009 and then the 

average value of hardness was obtained from the values 

of three testing points of the sample. The three 

V-notched charpy impact samples (55 mm × 10 mm ×  

5 mm) were tested at room temperature on a PKP450 

impact testing machine according to the requirement of 

GB/T229−2007 and then the average value of impact 

absorbed energy was obtained from the values of three 

impact samples. 

Metallographic samples were ground to 1000-grit 

and mechanically polished and then etched using a 

solution of HCl and HNO3 (the volume ratio of 3:1). 

Scanning electron microscopy (SEM) investigations 

were conducted using an FEI Quanta−400HV. Energy 

dispersive spectroscopy (EDS) micro-analysis was 

performed on an SEM. 

The samples for transmission electron microscopy 

(TEM) were prepared as follows. A foil with about   

500 µm in thickness was cut and mechanically ground to 

a thickness of 40 µm, from which the TEM disks with  

3 mm in diameter were punched. Twin-jet electro- 

polishing was performed using a solution of 10% 

perchloric acid and 90% acetic acid below −20 °C, with 

a polishing current of approximately 30 mA. TEM 

observation was carried out on a JEM−200CX 

transmission electron microscope (TEM) operating at 

200 kV. The phase identification was performed using 

the selected area electron diffraction (SAED) pattern. 

 

3 Results 
 

Figure 1 reveals the room temperature (RT) 

hardness under different conditions. The H0 sample had 

a low hardness value of HB 168 and then a remarkable 

increase of hardness for the H1 sample was observed. 

After that, the hardness of the alloy aged for 300 h (H2) 

reached a maximum value of HB 331. With an increase 

of aging time, the hardness decreased gradually to    

HB 307 (sample H6). 

 

 

Fig. 1 Room temperature hardness of Inconel 740H under 

different conditions 

 

Figure 2 shows the change of the RT impact 

absorbed energy under different conditions. The H0 

sample had the highest impact absorbed energy (96 J) 

that is the characterization for the toughness. An obvious 

decline in toughness (15 J) was observed for the H1 

sample and then a continuous decrease of toughness was 

visible. 

Figure 3 shows the SEM images of the fractured 

 

 

Fig. 2 Room temperature impact toughness of Inconel 740H 

(55 mm × 10 mm × 5 mm) under different conditions 
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Fig. 3 Room temperature impact fractured surfaces of H0 (a), H1 (b), H2 (c), H3 (d), H4 (e) and H5 (f) samples 

 

surfaces after room temperature impact test of the alloys 

under different conditions. For the H0 sample, the 

fracture surface was predominantly of ductile nature 

revealed by the occurrence of large equiaxed dimples, 

presenting a trans-granular pattern, as shown in Fig. 3(a). 

As for the H1−H5 samples, the fractographs of the aged 

alloys indicated a clear brittle fracture with a localized 

mixed-mode behavior (Figs. 3(b)−(f)). 

The microstructural evolution under different 

conditions was viewed by SEM (Fig. 4). Some large TiN 

particles (2.4−3.3 μm) rich in Ti (Fig. 4(f)) and (Nb,Ti)C 

particles (2.5−6.5 μm) rich in Nb and Ti (Fig. 4(e)) 

distributed within grains were detected in all samples 

(H0, H1, H2 and H6). As for the H1 and H2 samples, 

some precipitates were observed at grain boundaries. The 

amount of precipitates increased clearly after 10000 h 

aging (H6 sample), as shown in  Fig. 4(d). 

The TEM images and SAED pattern of 

intergranular precipitates under different conditions are 

shown in Fig. 5. For the H1 sample, γ′ phase particles 

with the sizes of 5−15 nm were visible in Fig. 5(a)). The 

sizes of γ′ phase particles were 30−70 nm (Fig. 5(b)), 

30−90 nm (Fig. 5(c)), 60−140 nm (Fig. 5(d)), 60−180 

nm (Fig. 5(e)), 70−220 nm (Fig. 5(f)) for H2, H3, H4, 

H5 and H6 samples, respectively. The TEM image of γ′ 

phase in the aged alloy has no remarkable change in 

shape in the process of aging. The spherical γ′ 

precipitates indicated strong coherency between γ′ phase  
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Fig. 4 SEM images of H0 (a), H1 (b), H2 (c), H6 (d) samples, and EDS analysis of (Nb, Ti)C (e) and TiN (f) in H6 sample 

 

and the γ matrix and a low degree of mismatch between 

the lattice parameters of both phases. The SAED pattern 

revealed that γ′ phase possessed an ordered FCC- 

structure with a lattice parameter of approximately   

0.353 nm [25]. 

Figure 6 shows the particle size distribution of γ′ 

phase particles evaluated from more than five fields of 

view for the TEM images. Via a size fitting histogram 

with a Gaussian profile, the average sizes of γ′ phase 

particles in H1, H2, H3, H4, H5 and H6 samples    

were about 9, 47, 77, 112, 131 and 149 nm,  

respectively, which followed the theory of Ostwald 

ripening, 

rt∝t1/3                                                          (1) 

where rt is the average radius of γ′ phases at time t. The 

results that rt has a linear relationship with t1/3 indicated 

the coarsening behavior of γ′ followed a diffusion 

controlled growth procedure. 

Figure 7 shows the TEM images and SAED patterns 

of intergranular precipitates under different conditions. 

Some carbide particles precipitated at the grain 

boundaries for the H1 sample. After aging for 300 h, an 

increased amount of M23C6 particles was clearly 

observed in Fig. 7(b). With prolonging the aging time, 

the agglomeration of M23C6 particles was visible at the 

grain boundaries (Figs. 7(d) and (e)). 
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Fig. 5 TEM images and SAED pattern of intragranular precipitates of H1 (a), H2 (b), H3 (c), H4 (d), H5 (e) and H6 (f) samples 

 
 

4 Discussion 
 

The as-received (H0) sample contained (Nb,Ti)C 

and TiN particles within grains. The distribution and size 

of the two phases took no change for the H1−H6 samples. 

The precipitates were a complex FCC-structure M23C6 

with lattice parameters of 1.05−1.08 nm and an ordered 

FCC-structure γ′ phase with a lattice parameter of 

approximately 0.353 nm for the H1−H6 samples [25]. In 

general, the grain boundary carbides exhibited block- 

shape [26]. 

As the main contributors to strengthening and 

hardening effect in Ni-based superalloys, the morphology, 

size and chemical composition of γ′ precipitates are of 

primary importance for the Inconel 740H. The TEM 

images, together with SAED pattern showing typical 

superlattice reflections from γ′ precipitates for the 

H1−H6 samples are given in Fig. 5. No γ″ precipitates 

were detected from the TEM images and SAED pattern. 

The γ′ precipitates exhibited a spheroidal morphology 

despite of becoming slightly cuboidal after long time 

aging. In general, the γ′ precipitates exhibited a 

coarsening process during aging. As for the alloy aged 

for 300 h (H2), all γ′ precipitates remained below 70 nm 

in radius, whereas after that γ′ precipitates of sizes 

30−100 nm were detected (H3). In the sample aged for 

10000 h (H6), a small proportion of larger γ′ precipitates 

with sizes of more than 200 nm were detected. In the 

process of aging, it is indicative of the growth of γ′ phase 

particles with prolonging the aging time. 
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Fig. 6 Size distribution histogram and its Gaussian fit for γ′ phase particles in H1 (a), H2 (b), H3 (c), H4 (d), H5 (e) and H6 (f) 

samples 

 

The aged alloys (H1−H6 samples) represented an 

enhanced RT hardness compared with the as-received 

sample (H0), which is correlated with the distribution 

and size of the precipitates and the relationship between 

the precipitates and the matrix phase. For example, the 

coherency between γ′ phase and the matrix was 

maintained during aging and resulted in a coherent stress 

for the aged alloy, thus giving rise to an enhanced 

hardness. On the other hand, the strengthening of the 

aged alloy also resulted from the precipitation of 

carbides as discrete particles both inside the grains and at 

the grain boundaries. The intra-granular carbides 

contributed to the strengthening effect by acting as 

barriers for dislocation motion and by stabilizing 

dislocations. The discrete nature of the grain boundary 

carbides was enhanced the hardness because it caused 

pinning of the boundary and decreased grain boundary 

sliding. The hardness of the H1 sample was HB 304 and 

then the hardness reached a maximum value of HB 331 

for the H2 sample. With an increase of aging time, the 
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Fig. 7 TEM images and SAED patterns of intergranular precipitates of H1 (a), H2 (b), H3 (c), H4 (d) and H5 (e) samples 

 

hardness decreased from HB 331 (sample H2) gradually 

to HB 307 (sample H6). There probably was a critical 

value for the diameter of γ′ phase particles that gave the 

optimum hardness of Inconel 740H. When the diameter 

of γ′ precipitates was below the critical value, the 

hardness increased monotonically with an increase of 

precipitate size (samples H1 and H2); when the size was 

above the critical value, the hardness decreased with an 

increase of the precipitate size (samples H2 to H6). 

The as-received alloy (H0 sample) exhibited the 

highest RT toughness revealed by dimple-ductile  

fracture. An obvious loss in RT toughness occurred 

predominately due to the carbides formed at the grain 

boundaries for the H1 sample. The grain boundaries were 

weakened by the grain boundary carbides and the 

separation occurred by the decohesion of carbide/matrix 

interface that was the initiation site for fracture. Hence, 

cracks may mainly take place at the grain boundaries 

during the impact test. On the other hand, the 

precipitation strengthening of γ′ phase of the aged alloys 

limited plastic deformation to the area nearby the grain 

boundaries, resulting in the occurrence of crack at the 

grain boundaries, which was an another important factor 

for the decrease of RT toughness. After aging, the 

toughness value decreased slightly with increasing the 

aging time and took no substantially change for the 

samples (H2−H6) possible due to the unchanged 

distribution of precipitates at intra- and inter-granular 

sites, which was manifested by the unchanged fracture 

surface (Fig. 3). 

 

5 Conclusions 
 

1) The precipitates were M23C6 carbide located 

inside the grains and at the grain boundaries and the γ′ 

phase dispersed within the grains for the H1−H6 

samples. 

2) During aging, the distribution of the grain 
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boundary carbides took no obvious change. The 

coherency between the γ′ precipitates and the matrix was 

maintained and the coarsening behavior of γ′ precipitates 

followed a diffusion controlled growth procedure. 

Prolonging the aging time induced the growth of 

precipitates both at the grain boundaries and inside the 

grains. 

3) There probably existed a critical value for the 

mean diameter of γ′ precipitates that gave the optimum 

hardness of Inconel 740H. When the diameter of γ′ 

precipitates was below the critical value, the hardness 

increased monotonically with increasing the precipitate 

size; when the size was above the critical value, the 

hardness decreased with the increase of precipitate size. 

4) A loss of room temperature impact toughness of 

the aged alloy was evident. 

5) The aged alloy represented good stabilities of 

hardness and toughness during aging. 
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镍基合金 740H 时效过程中的 

显微组织与相析出行为 
 

郭 岩，李太江，王彩侠，侯淑芳，王博涵 

 

西安热工研究院有限公司，西安 710032 

 

摘  要：借助扫描电镜、透射电镜和力学性能分析研究镍基合金 740H 在 750 °C 时效 10000 h 过程中的显微组织

和相析出行为及其对室温硬度和冲击性能的影响。供货态镍基合金 740H 的硬度低至 HB 168，最高冲击吸收能量

为 96 J。经 800 °C 标准热处理 16 h 后，晶内析出细小 γ' 颗粒，晶界析出少量碳化物，硬度提高到 HB 304，冲

击吸收能量降至 15 J。当合金在 750 °C 时效 300 h 时，硬度达到最大值 HB 331。随着时效时间由 300 h 延长至  

10000 h，硬度和冲击吸收能量均降低，晶界碳化物 M23C6数量明显增多，γ'相尺寸粗化。 

关键词：镍基合金 740H；时效；显微组织；相析出 
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