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Abstract: The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures
(573—723 K) and strain rates (0.01-10 s™") was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer
(EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at
high Zener—Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with In Z=24.01
(723 K, 0.01 s™") gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are
present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is

likely the mechanism for dynamic recrystallization. The low density of AlZr dispersoids near grain boundaries can make

contribution to strain-induced boundary migration.

Key words: aluminum alloy; Zener—Hollomon parameter; dynamic recrystallization; strain-induced boundary migration; Al;Zr
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1 Introduction

Dynamic recrystallization (DRX) often occurs in
aluminum and aluminum alloys during hot deformation,
and generally there are dynamic
recrystallization (CDRX) and discontinuous dynamic
recrystallization (DDRX) [1,2]. In most aluminum
alloys, DDRX was rarely observed because of its high
tendency to recover [3,4]; however, some recent
investigations have shown that DDRX may occur in
Al-Mg, Al-Cu-Li and Al-Zn—Mg—Cu alloys [5—7].
CDRX was reported to occur at high temperatures and
low strain rates [5,8,9], and at severe strain geometric
dynamic recrystallization (GDRX) tends to occur [7,8]. It
is known that particle-stimulated nucleation (PSN),
strain-induced boundary migration (SIBM) or subgrain
rotation (SGR) is the possible mechanism of DRX. PSN

continuous

may lead to DDRX because second phase particles can
induce a high gradient dislocation density around them
during deformation, which may stimulate
recrystallization nucleation and growth [10]. SIBM may
occur during DRX as well, and the driving force is the
difference in the density of dislocations; grain boundaries
(GBs) can bulge into the regions with a high density of
dislocations [10]. SGR, which often occurs in the interior
of original grains, generally results in CDRX [11].
Recrystallization has great influence on the
properties of aluminum alloys. For instance, in
Al-Zn—Mg—Cu alloys, which are called aeronautical Al
alloys [12], the occurrence of recrystallization can
decrease strength, toughness and corrosion resistance and
increase quench sensitivity. HAN et al [13] reported that
the increase of recrystallization fraction leads to lower
strength and fracture toughness of 7050 aluminum alloy.
KANNAN and RAJA [14] reported that it is possible to
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enhance stress corrosion resistance of Al-Zn—-Mg—
Cu—Zr alloys by inhibiting recrystallization. LIU
et al [15] found that recrystallization results in a larger
amount of high angle boundaries and incoherent
dispersoids, and consequently increases quench
sensitivity of 7055 aluminum alloy. Therefore, it is
essential to inhibit recrystallization so as to further
improve properties of these alloys. In these aluminum
alloys, there are some possible ways to inhibit
recrystallization. One is to promote uniform precipitation
of fine Al3M (M=Zr, Sc, etc) dispersoids [16,17], which
can hinder the migration of subgrain boundaries and
grain boundaries; the second one is to decrease the
amount of large second phase particles so as to minimize
PSN [18]; the third one is to decrease stored deformation
energy, for instance, by elevating temperature slowly
during solution heat treatment or by stepped solution
heat treating [13,19]. However, during hot deformation,
dynamic recrystallization may be triggered due to the
increased deformation energy, and this may exert great
influence on the static recrystallization during
subsequent solution heat treatment. Therefore, it is
desirable to have better understanding of the DRX
behavior of these alloys, though studies have been done
on hot deformation behavior of some Al-Zn—Mg—Cu
alloys, such as 7075, 7050 and 7150 alloys [2,20,21].

In this work, dynamic recrystallization behavior of
7085 aluminum alloy was investigated, and this is
helpful for controlling recrystallization and obtain
combination of high strength and corrosion resistance.

2 Experimental

The material was a 7085 aluminum alloy ingot with
chemical composition of Al-7.59Zn—1.65Mg—1.54Cu—
0.11Zr (mass fraction, %). The ingot was homogenized
at 743 K for 24 h and then cooled in air. Small
cylindrical specimens with 10 mm in diameter and
15 mm in height were machined from the homogenized
ingot. Uniaxial compression tests were conducted on a
Gleeble 3500 thermomechanical simulation unit at
temperatures of 573—723 K with strain rates of 0.01—
10 s'. The specimens were heated to the desirable
deformation temperature with a heating rate of 3 K/s,
held for 2 min and then compressed. All specimens were
deformed to a true strain of 0.7 and then quenched in
room temperature water immediately to freeze the
as-deformed microstructure.

All deformed specimens were sectioned parallel to
the compression axis along the centerline for
microstructure examination. Electron back scattered
diffraction (EBSD) technique was used to examine the
microstructure of the specimens so as to obtain
information about DRX; this was performed on a

ZEISS-EVOI18 scanning electron microscope (SEM),
and the scanning step size was 1.75 pm and the results
were analyzed using HKL Channel 5 software. The
distribution of alloying elements in the grains was
examined by electro-probe microanalyzer (EPMA).
Some specimens were mechanically thinned to a
thicknesses of about 80 pm, punched into foils of 3 mm
in diameter, electropolished in 30% HNO; and 70%
CH;0H solution below —30 °C and then observed on a
JEOL-2100F transmission electron microscope (TEM)
operated at 200 kV to examine the microstructure.

3 Results and discussion

The true stress—strain curves during hot
compression of 7085 aluminum alloy at strain rates of
0.01-10 s' and at temperatures of 573-723 K are
presented in Fig. 1. The peak stress tends to increase
with the increase of strain rate or the decrease of
temperature, which is similar to previous investigations
on Al-Zn—Mg—Cu alloys [2,20,21]. In general, an initial
rapid increase in the flow stress can be seen with the
increase of strain; however, the shape of the flow curves
was changed by strain rate. At low strain rates of 0.1 s
and 0.01 s ', the flow stress tends to be constant with the
further increase of strain; at 1 s ', the flow stress
increases slightly; at 10 s™', the flow stress tends to
decrease especially at the temperature of 573 K.
Moreover, the stress—strain curves are serrated at the
rates of 1 s”' and 10 s™', which may indicate alternate
occurrence of dynamic hardening and dynamic
softening [5,21]. The fall of flow stress at the highest
strain rate of 10 s ' (Fig. 1(a)) shows that dynamic
softening and work hardening lose balance, which may
be attributed to the adiabatic heating [22].

The softening mechanism may be deduced by
microstructure examination. In order to describe the
influence of hot deformation parameters on
microstructure, a Zener—Hollomon (Z) parameter was
used, and therefore the effect of both temperature and
strain rate can be taken into consideration [1]. The Z
parameter can be expressed as

Z = éexp(%] (1)

where ¢ is strain rate, 7 is temperature, R is the mole
gas constant, Q is the apparent activation energy. Q value
was determined to be 172.0 kJ/mol [23], and the value of
Z can be calculated under various hot deformation
conditions.

Orientation imaging maps of the specimens under
various hot deformation conditions are given in Fig. 2. It
can be seen that grains are elongated after hot
deformation, and Z values have significant effects on the
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Fig. 1 True stress—strain curves of 7085 aluminum alloy during hot compression: (a) 573 K; (b) 623 K; (¢) 673 K; (d) 723 K

microstructure. For high Z values, as shown in Figs. 2(a)
and (b), there are many thin black lines in the interior of
grains, which may indicate a high density of cells or
substructures. With the decrease of Z value to 28.44, the
number of cells or substructures decreases significantly,
and they tend to locate near original GBs (Fig. 2(c)). For
lower Z values, cells and substructures seem to disappear
and some subgrains and recrystallized grains may be
seen (Figs. 2(d) and (f)). It is likely that for high Z values
dynamic recovery (DRV) is the dominant softening
mechanism, and for low Z values both DRV and DRX
make contribution to softening during deformation.
Recrystallized grains tend to be present near the serrated
original grain boundaries and at triple GBs junction
(Fig. 2(f)); few recrystallized grains can be associated
with second phase particles, which may indicate that
PSN is not the likely recrystallization mechanism.
Moreover, characteristics of GDRX could not be found,
and therefore it is reasonable to conclude that GDRX did
not occur during deformation. After a careful look in
Figs. 2(d) and (f), it can be found that recrystallized
grains exhibit similar color as the deformed grain, which
may indicate that they have similar orientation. And it is
probably that no SGR occurred during hot deformation.
Therefore, SIBM is the most likely recrystallization

mechanism.

Furthermore, a quantitative analysis was performed
to show the effect of Z values on the microstructural
characteristics, and the results are given in Fig. 3. From
Fig. 3(a), it seems that the fraction of low angle
boundaries (LABs) increases slightly and
correspondingly that of high angle boundaries (HABs)
decreases with the increase of Z values. From Fig. 3(b),
the fraction of deformed regions increases rapidly with
the increase of Z value from 24.01 to 28.44, and then
only slightly at higher Z values; the fractions of
substructured and recrystallized regions exhibit an
opposite trend. A higher fraction of LABs may indicate a
higher fraction of deformed microstructure and
substructures; while an increased fraction of HABs
indicates the occurrence of DRX. The highest fraction of
DRX of about 10.2% was observed at In Z=24.01 (723 K,
0.01 s™). In order to have a better understanding of DRX
in this alloy, further microstructure examination by TEM
and EPMA were carried out, and typical results are
shown in Figs. 4 and 5.

Figure 4 shows the TEM bright field images and
selected area diffraction patterns of the homogenized and
as-deformed specimens. In the homogenized specimen,
some coherent or semi-coherent Al;Zr dispersoids with
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Fig. 2 EBSD imaging maps of specimens deformed under different hot deformation conditions: (a) In Z=36.10 (623 K, 10 s ');
(b) In Z=31.5 (723 K, 10 s7Y); (¢) In Z=28.44 (673 K, 0.1 s"); (d, f) In Z=24.01(723 K, 0.01 s "); (¢) Representation of color code

used to identify crystallographic orientations on standard stereographic projection (red: [001]; green: [101]; blue: [111]); (f) Image
quality map related to (d)
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Fig. 3 Effects of Z values on fraction of boundaries (a) and fraction of deformed, substructured and rerystallized microstructures (b)



Dong-feng LI, et al/Trans. Nonferrous Met. Soc. China 26(2016) 1491-1497 1495

Al Zr pin'ning
dislocation

Recrystallized
~ grain

i

b

Fig. 4 TEM images of homogenized and as-deformed specimens: (a) Homogenized; (b) In Z=36.10 (623 K, 10 s™'); (¢) In Z=31.5
(723 K, 105 ™"); (d—f) In Z=24.01 (723 K, 0.01 s™"), subgrain (d), recrystallized grain (e) and grain boundary (f)

no-contrast lines can be seen in the interior of grains
(Fig. 4(a)). These dispersoids can inhibit recrystallization
during  hot deformation and  solution heat
treatment [15,18]. At high Z values, for instance,
In Z=36.10, the interaction between dislocations and
nanoscale particles can be observed (Fig. 4(b)). Apart
from Al;Zr dispersoids, these nanoscale particles include
n phase (Mg(Zn, Cu),). These dense and fine particles

can exert strong pinning effects on dislocation movement.

At lower Z values, few nanoscale # phase particles can
be identified. It is Al;Zr dispersoids that pin dislocations
and subgrain boundaries (Figs. 4(c) and (d)). During hot
deformation at high strain rates, dislocations and
subgrain boundaries may break away from pining of
these fine particles, which makes contribution to the
serrated flow stress—strain curves (Fig. 2). At the lowest
Z value, i.e., InZ=24.01, some small recrystallized
grains can be found, and typical TEM image is given in
Fig. 4(e); it is likely a recrystallized grain, which
exhibits an equiaxed shape and is surrounded by
HABs. Moreover, the bulging of HAB was also observed
under this condition (Fig. 4(f)). It seems that there is a

low density of Al;Zr dispersoids in this region,
which cannot retard migration of this HAB, and thus
the recrystallized grain can grow into the adjacent
grains with many dislocations. This result may
support the SIBM mechanism of DRX during hot
compression.

Apart from hot deformation parameters such as high
temperature and low strain rate for SIBM to occur,
another factor may be the initial inhomogeneous
microstructure, which gives rise to nonuniform
distribution of dislocations and subgrains (Fig. 2). The
presence of grain boundaries is partly responsible for the
different deformation performances of grains under the
same deformation condition. Another reason may be the
nonuniform distribution of the recrystallization inhibitor
Al;Zr dispersoids. In general, there is an inhomogeneous
distribution of Zr in Al-Zn—-Mg—Cu—Zr alloys due to
peritectic reaction during solidification [24]. Zr element
tends to be enriched at the center of grains but depleted
in the regions close to grain boundaries. Figure 5 gives
EPMA images and line scanning results of Zr element.
The shape of grains is visible as the GBs are decorated
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Fig. 5 EPMA images and line scanning results of Zr element in various specimens: (a, b) Homogenizated; (c, d) In Z=36.10 (623 K,

10s™); (e, ) In Z=24.01 (723 K, 0.01 s

by bright second phase particles. From Figs. 5(b)—(f), in
both the homogenized and as-deformed specimens, the
content of Zr is lower near GBs than in the central
regions of the grain. As a result, there is a higher density
of Al;Zr dispersoids in the interior of grains, which may
make this region harder than those close to GBs.
Therefore, a large gradient of dislocations is likely to
appear. Simultaneously, the lack of Al;Zr dispersoids
adjacent to the initial GBs is favorable for bulging of
GBs. These factors can make contribution to SIBM
during hot compression at low Z values.

4 Conclusions

1) At high Z values, the softening mechanism of
7085 aluminum alloy is dominated by dynamic recovery
during hot compression. With the decrease of Z value,
dynamic recrystallization tends to occur. The largest
fraction of DRX about 10.2% is obtained under the hot
compression condition with In Z=24.01 (723 K, 0.01 s").

2) Strain-induced boundary migration is the likely
dynamic recrystallization mechanism during hot
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compression with In Z=24.01 (723 K, 0.01 s'). The
inhomogeneous distribution of Al;Zr dispersoids can
make contribution to strain-induced boundary migration.
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