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Abstract: To find discriminating features in seismograms for the classification of mine seismic events, signal databases of blasts and 
microseismic events were established based on manual identification. Criteria including the repetition of waveforms, tail decreasing, 
dominant frequency and occurrence time of day were considered in the establishment of the databases. Signals from databases of 
different types were drawn into a unified coordinate system. It is noticed that the starting-up angles of the two types tend to be 
concentrated into two different intervals. However, it is difficult to calculate the starting-up angle directly due to the inaccuracy of the 
P-wave arrival’s picking. The slope value of the starting-up trend line, which was obtained by linear regression, was proposed to 
substitute the angle. Two slope values associated with the coordinates of the first peak and the maximum peak were extracted as the 
characteristic parameters. A statistical model with correct discrimination rate of greater than 97.1% was established by applying the 
Fisher discriminant analysis. 
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1 Introduction 
 

Microseismic events, with Richter magnitude from 
−3 to 3, refer to rockmass vibrations generated by 
fracturing or fluid disturbance. The microseismic 
monitoring technology, a geophysical approach, is used 
to monitor the status of underground structures. The 
distribution and its evolution of internal micro-cracking 
and deformations of the adjacent rock can be obtained by 
inversion analysis of the systems [1−3]. Microseismic 
monitoring technology has been rapidly developed in 
recent twenty years in the field of engineering geology, 
including tunneling, oil and gas exploration with 
hydraulic fracturing, nuclear waste disposal, as well as 
underground excavations existing potential hazards of 
room-and-pillar collapses and rockbursts. Applications of 
microseismic monitoring in China with their purposes 
are summarized in Table 1. Microseismic events, induced 
by the failure and deformation of rocks, can be located 
by developed methods [22−27]. On the other hand, from 
the micromechanical point of view, the particle 
simulation method [28−32] can be used to investigate the 
microseismic events in mines for monitoring its safety 

and stability. 
Generally, there are always some problems existing 

in the applications of microseismic monitoring systems 
because of the complex mining systems, including 
background noise, useless data, and blasting signals 
admixture. As a result, providing intuitive monitoring 
data accurately becomes impossible. The daily summary 
of the Yongshaba Mine’s monitoring data signifies that 
more than half are rejected data. And the total number of 
blasts is nearly one third of the accepted microseismic 
events. Noise signals existing obvious characteristics can 
be easily discharged, the most difficult task to identify 
microseismic events from blasts. Since they share a large 
scale of intersection in the frequency distribution, to 
achieve recognition of the two types of events via simple 
spectral analysis is quite difficult. 

Currently, some relatively effective identification 
methods are mainly dependent on the source  
parameters [33,34]. MALOVICHKO [35] selected the 
time of day, the repetition of waveforms, the high- 
frequency vs the low-frequency radiation and the 
radiation pattern as the discriminant features, then 
established the Gaussian maximum likelihood 
classification method for the classification. This method 
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Table 1 Some sites with microseismic monitoring system in China 
No. Site Time Purpose Reference 
1 Fankou Lead Mine 2003 Rockbursts monitoring and risk assessment [4] 
2 Hongtoushan Copper Mine 2004 Rockbursts monitoring and risk assessment [5] 
3 Huafeng Coal Mine 2004 Stress field inversion analysis [6] 
4 Dongguashan Copper Mine 2005 Rockbursts monitoring and risk assessment [7] 
5 Huize Lead and Zinc Mine 2006 Geostress monitoring and early warning [8] 
6 Zhangmatun Iron Mine 2006 Rockbursts monitoring and risk assessment [9] 
7 Yuejin Coal Mine 2008 Potential risks assessment of gas outburst [10] 
8 Sanshandao Gold Mine 2008 Hazards control of water inrush applied undersea [11] 
9 Shirengou Iron Mine 2008 Slope stability monitoring with open pit [12] 

10 Shizhuyuan Polymetallic 2008 Stability monitoring of goaf areas [13] 
11 Qianqiu Coal Mine 2008 Potential risks assessment of gas outburst [14] 
12 Xinzhuangmu Coal Mine 2008 Potential risks assessment of gas outburst [15] 
13 Wangfenggang Coal Mine 2008 Potential risks assessment of gas outburst [16] 
14 Jinping Slope 2009 Stability monitoring of bank slope [17] 
15 Taoshan Coal Mine 2009 Potential risks assessment of rockburst [18] 
16 Jinshandian Iron Mine 2009 Geological disaster monitoring [19] 
17 Dagangshan Slope 2010 Stability monitoring of active faults [20] 
18 Xianglushan Tungsten Mine 2010 Stability analysis of large goaf [13] 
19 Yongshaba Phosphate 2012 Hazards control within multi-level mining [21] 

 
provides a way to identify signals of different types, but 
great amount of computation leads to low efficiency. 
VALLEJOS and MCKINNON [36] proposed the 
identification of seismic records in seismically active 
mines by considering the logistic regression and the 
neural network classification techniques. An efficient 
methodology was presented for applying these 
approaches to the classification of seismic records [36]. 
However, seismic parameters (local magnitude, corner 
frequency, seismic moment, moment magnitude, seismic 
energy, static stress drop, apparent stress, etc.) provided 
by the full-waveform systems require precise P and 
S-wave hand-picking, scilicet, expertise and time. 

To determine discriminating features that are 
physically independent of each other, a blast signal 
database is established by field tests firstly and then a 
microseismic event database identified manually is built. 
Based on the two databases, six characteristic parameters 
from waveform starting-up analysis are extracted. By 
applying the Fisher discriminant analysis (FDA) to the 
characteristic parameters, a mathematical model that is 
able to correctly classify more than 97.1% blasts and 
microseismic events is established. 
 
2 Database 
 
2.1 Source of data 

Seismic records from the site of Yongshaba Mine 
are used to identify the proposed method in this work. 
The Yongshaba orebody is a phosphate deposit, located 

in Guizhou, China. The mining method of blasthole with 
delayed backfill is used to extract the ore underground. 
The studied region covering a volume of approximately 
3000 m × 300 m × 750 m, between 300 m and 700 m 
below the surface. Excavating multi-level simultaneously 
beneath the Jinyang Road is the principal situation 
nowadays. Potential hazards including landslides on the 
steeper surface, instability of the highway foundation and 
stope collapse are threating the safety to workers and 
residents. The underground microseismic monitoring 
system, used to inform the evolution of magnitude, 
temporal and spatial of the micro-fracture behavior, 
consists of 26 uniaxial and 2 triaxial velocimeters    
(Fig. 1). 
 
2.2 Samples 

The sample databases contain a total of 103 seismic 
records, from which 56 are labeled as normal events and 
the others are tagged as blasts. All of these seismic 
records are labeled manually. The usual practice of 
processing seismic data includes a qualitative or semi- 
quantitative classification of seismic events [35]. Four 
approaches to eliminate blasts from the seismic catalogue 
are applied in this study. 
2.2.1 Repetition of waveforms 

Blasts, especially stope firings, have multiple  
delays, which are expressed in the seismogram as similar 
signals repeating closely within a short time interval. The 
practice of decides whether an event is a blast or a 
microseismic event is based on the repetition feature. An 
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example is shown in Fig. 2. 
2.2.2 Tail and S-wave 

Commonly, seismograms capturing a blast will have 
a monotonically decreasing tail, which makes S wave 
arrival selection difficult to impossible. Seismograms 
capturing a microseismic events associated with shear 
fracturing will have an S-wave arrival more obviously 
than in the cases of blasts because the sources of the 
latter are usually in the focal mechanism of expansion 
and compression (Fig. 2). 
2.2.3 Time of day 

Another way to eliminate blasts from the 
microseismic catalogue is to apply time and/or spatial 
filters (i.e., events located close to blasts operating areas 
and/or at the blasting time are marked as blasts) [22]. 
Generally, mines have prescribed blasting time. The 
probability of an event being a blast is higher during 
these time. Two main daily blasting shifts are observed 
from the diurnal chart between 10:00 and 16:00 (stope 
firings) and 23:00 and 1:00 (development firings), each 
of which triggers an increase in seismicity (Fig. 3(a)). 
2.2.4 Dominant frequency 

A large number of actual observations and analysis 
show that blasts or explosions usually radiate higher 

frequency waves compared to normal microseismic 
events. Figure 3(b) shows that the amplitude spectra of 
the typical blast and microseismic event (presented in 
Fig. 2) reach up to 66.87 Hz and 22.11 Hz, respectively. 
The statistics data show that the values of the dominant 
frequency of the microseismic events varies from 
10−100 Hz to 30−260 Hz for blasts at Yongshaba Mine. 
 
3 Discriminating features 
 
3.1 First trend line 

Taking energy release rate into account, the 
waveform’s starting-up angle will vary between blasts 
and microseismic events. Figure 4(a) draws signals of 
blasts and microseismic events into a unified coordinate 
system. All waveform sections start at the point of each 
P-wave first arrival and end in their first peak points. 
Figure 4 shows huge differences existing in the time and 
amplitude distribution of the peak point within blasts and 
microseismic events. The statistical laws reflected by this 
figure also emphasize the importance of the waveform’s 
starting-up angle in identifying the two types of signal. 

However, connecting the starting point to the   
peak or any other sampling points directly to solve the 

 

 

Fig. 1 Isometric view of orebody, tunnels and microseismic monitoring system at Yongshaba Mine 
 

 
Fig. 2 Typical seismograms of first triggered sensor: (a) Blast; (b) Microseismic event 
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Fig. 3 Diurnal chart (a) and frequency distribution comparison of typical blast and microseismic event (b) at Yongshaba Mine 

 

 
Fig. 4 Comparison chart of signal starting-up before first peak within blasts and microseismic events (a) and schematic diagram of 
data points selecting and trend line constructed by linear regression (Solid circles represent sampling points, and the red ones 
represent selected) 

 
starting-up angle is infeasible due to the picking 
inaccuracy of P-wave first arrival. The slope value of the 
starting-up trend line of the waveform is taken instead of 
the starting-up angle, that is, selecting appropriate 
sampling points on the waveform as data points for linear 
regression, and then using the slope value of the trend 
line calculated by least squares fitting instead of the 
starting-up angle. 

In accordance with the waveform’s shocking 
tendency, the data points are selected based on the 
distribution of amplitude axis (y), rather than on the time 
axis (x). Selection criteria and given coordinates of each 
points are shown in Fig. 4(b) and Table 2. As seen in  
Fig. 4(a), certain waveforms that maintain a smooth 
period at the beginning followed by a sharp ascent to the 
first peak exist. In that case, the four-point fitting method 
used in this work well circumvents the defects of fitting 
by all of the sampling points, meanwhile, improving the 
recognition performance. 

Table 2 Data points selection criteria and given coordinate 

Point Selection criteria Coordinate 

P11 First peak (x11, y11) 

P12 y value nearest 0.75y11 (x22, y22) 

P13 y value nearest 0.5y11 (x33, y33) 

P14 y value nearest 0.25y11 (x44, y44) 

 
The equation of the trend line can be expressed as 

 
y=k0+k1x                                    (1) 
 
where k0 and k1 are the parameters required solving. The 
least square estimators are those values of k0 and k1 that 
could minimize the function below: 
 

∑
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where n is the number of data points. When evaluated at 

)ˆ,ˆ( 10 kk , we call the quantity )ˆ,ˆ(RSS 10 kk as the residual 
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sum of squares. The least square estimates can be derived 
in many ways, one of which is given by the expressions: 
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where x  and y  are the average values of x1i and y1i 

(i=1, 2, 3, 4), respectively. The codes SXX and SXY are 
calculated by equations: 
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Setting K1 as the slope value of the trend line 

calculated by Eq. (1) to Eq. (5) of the seismogram of the 
first triggered sensor by an event, and the logarithm of 
absolute value of K1 is considered as the feature “first 
starting-up”. Figure 5(a) shows the comparison of lg K1 
within blasts and microseismic events retrieved from the 
already established databases. 
 

 

Fig. 5 Comparison chart of slope values of two starting-up 
trend lines within waveforms of blasts and microseismic events 
(Histograms are used to illustrate behavior of discriminating 
features, whereas lines are used to display feature 
approximations by Gaussian curve fitting) 

3.2 Second trend line 
Parameter k2 is in similar calculation procedure with 

k1. First of all, select the appropriate peaks on the same 
side of x axis with the maximum peak as data points. As 
shown in Fig. 4(b), 4 peaks, the maximum four peak and 
the peaks with y value nearest 0.75y21, 0.5y21, 0.25y21, are 
selected. The slope value of the trend line before the 
maximum peak (the second trend line) is calculated 
using the least square estimates method. The logarithm 
of the absolute value of k2 is considered as the feature 
“second starting-up”. Figure 5(b) shows the comparison 
of lg K2 within blasts and microseismic events. 

Figure 5 shows that “starting-up” performs well as 
discriminating features for the considered mines. The 
characteristic parameter lg k1 provides the maximum 
separation between the populations of blasts and normal 
events. From Fig. 5(a), it is visible that normal events 
have average values of lg k1 from −4.5 to −1.5, whereas 
blasts have values from −2.0 to −0.5. From Fig. 5(b), it is 
visible that normal events have average values of lg k2 
from −4.0 to −2.0, whereas blasts have values from −2.5 
to −0.5. 
 
4 Model building 
 
4.1 Approach 

The approach used in this research establishes the 
discriminator as a function of waveform parameters 
through the use of Fisher discriminant analysis (FDA). 
FDA is the method used in statistics, pattern recognition 
and machine learning to find a linear combination of 
features which characterizes or separates two or more 
classes of objects. The classes of multi-dimensional data 
are projected onto a unique direction in order to make 
possible separation between the classes [37−40]. The 
Fisher discriminant analysis model of discriminant 
procedure is shown in Fig. 6. The performance of the 
discriminator is assessed by comparing the prediction 
outcomes of the model to known values. 

Take the two classes of ω1 and ω2 to illustrate the 
principles of Fisher discriminant analysis. Define N as 
the number of observations, m as the number of  
variables, p as the number of classes, and Nj as the 
number of observations in the jth class. Represent the 
vector of variables for the ith observation as xi. If the 
training data for all classes have already been stacked 
into the matrix X∈RN×m, then the mean vector of the two 
classes in input space can be expressed as 
 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈=

∈=

∑

∑

∈

∈

2

1

2
2

1
1

1

1

ω

ω

p

p

m
p

m
p

N

N

x

x

Xu

Xu

R

R

                       (6) 



Guo-yan ZHAO, et al/Trans. Nonferrous Met. Soc. China 25(2015) 3410−3420 

 

3415

 

 
Fig. 6 Flow chart for application of Fisher discriminant 
analysis 
 

Let the projection direction be: 
 
ω=(ω1, ω2, …, ωm)T∈Rm                                  (7) 
 

The projections of the mean vector and the mean 
vector of total sample in this direction are 
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Set 

BSS and 
WSS to be the square sum of 

between-class scatter (SB) and within-class scatter (SW), 
which are respectively defined as 
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The Fisher discriminant analysis is aimed to make 

the ratio of the 
BSS to 

WSS as large as possible, namely: 
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The results deduced by Fisher are presented as 
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Let θ be the classification threshold (generally 

calculated by the empirical formula), then the 
discriminant formulae are presented as 
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4.2 Modeling 

The aim of the present study is to establish a 
mathematical model for signal accurate identification of 
different classes of events using Fisher discriminant 
analysis. According to the analysis, parameters that 
characterize the tendency of the starting-up feature of 
waveform −lg k1 and lg k2 as well as coordinates of the 
first peak and the maximum peak which are also related 
to the energy release rate were chosen as inputting of 
training samples (Table 3). The FDA model for signal 
identification was established after developing the theory 
discussed above to the 103 sets of samples selected. The 
Fisher discriminant function generated has the following 
form: 
 
F=−92.588lg x11+3.878lg y11−8.471lg k1− 
 

3.704lg x21−33.644lg y21−4.304lg k2−186.187   (14) 
 

Equation (14), the canonical discriminant function, 
was used in the analysis. Table 4 shows that the 
discrimination capability of Eq. (14) is significant. The 
corresponding feature value of the discriminant function 
is 2.841 with variance ratio (discriminant efficiency) of 
100%>85%. The correlation coefficient is as high as 
0.860. So, it is concluded that the discriminant function 
can well distinguish the two categories through 
significance test. 

The test results on each back to the actual are listed 
in Table 5. It can be seen that more than 97.9% of 
original grouped cases are correctly classified by Fisher 
discriminant analysis method. Studies show that this 
method has a low misjudgment rate. The pretty good 
signal discriminant performance in blasts and 
microseismic events make it worthy of promotion in 
engineering applications. 
 
5 Conclusions 
 

1) Manual identification criteria, including the 
repetition of the waveforms, the tail decreasing, the 
occurrence time of day, and the dominant frequency have 
been summarized in detail. Signal databases of blasts and 
microseismic events were established based on the 4 
manual identification criteria. 

2) Two different intervals that the starting-up angles 
tend to be concentrated were noticed when signals from 
databases were drawn into a unified coordinate system. 
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Table 3 Training samples for model building 

Start-up parameters of waveform  Event type 
Sample code 

lg x11 lg y11 lg k1 lg x21 lg y21 lg k2  Real Identified 

1 −2.824 −3.665 −0.290 −1.566 −3.142 −1.400  1 1 

2 −2.602 −4.573 −1.624 −1.623 −3.545 −0.581  1 1 

3 −2.824 −3.546 −0.306 −2.301 −3.141 −0.955  1 1 

4 −2.875 −3.774 −0.476 −2.088 −2.910 −0.644  1 1 

5 −2.477 −3.650 −0.696 −1.506 −3.217 −2.482  1 1 

6 −2.602 −3.862 −0.801 −1.757 −3.103 −2.706  1 1 

7 −2.664 −4.885 −1.616 −1.422 −3.710 −2.673  1 2** 

8 −2.548 −3.856 −0.916 −1.946 −3.155 −1.699  1 1 

9 −2.331 −4.235 −1.519 −1.528 −3.413 −2.589  1 1 

10 −2.778 −4.744 −0.969 −1.921 −3.613 −2.374  1 1 

11 −2.574 −4.377 −1.507 −1.774 −3.407 −1.118  1 1 

12 −2.632 −4.247 −1.192 −1.535 −3.194 −1.843  1 1 

13 −2.778 −3.711 −0.473 −1.378 −2.644 −1.461  1 1 

14 −2.602 −4.643 −1.569 −1.566 −3.851 −2.350  1 1 

15 −2.824 −4.077 −0.797 −1.287 −2.943 −1.716  1 1 

16 −3.176 −2.411 1.204 −2.155 −2.000 −2.362  1 1 

17 −2.632 −4.025 −0.962 −1.791 −3.347 −2.697  1 1 

18 −2.198 −4.355 −1.518 −1.145 −3.751 −1.501  1 1 

19 −2.699 −4.285 −1.250 −1.761 −3.859 −1.784  1 1 

20 −2.699 −4.709 −1.557 −1.569 −4.016 −0.806  1 1 

21 −3.079 −4.239 −0.786 −2.210 −2.592 −1.539  1 1 

22 −2.875 −4.112 −0.774 −1.881 −2.728 −1.145  1 1 

23 −2.416 −4.498 −1.543 −1.946 −3.902 −1.228  1 1 

24 −2.737 −4.172 −0.996 −2.015 −3.147 −2.445  1 1 

25 −2.632 −3.797 −0.598 −2.632 −3.497 −2.385  1 1 

26 −2.875 −3.538 −0.376 −1.933 −2.559 −1.614  1 1 

27 −2.416 −4.318 −1.477 −1.424 −3.606 −1.248  1 1 

28 −2.778 −4.024 −0.700 −2.778 −3.724 −1.140  1 1 

29 −2.875 −4.721 −1.352 −2.699 −4.263 −1.448  1 1 

30 −2.699 −4.480 −1.268 −2.115 −3.673 −1.700  1 1 

31 −2.574 −4.599 −1.644 −1.245 −3.680 −1.532  1 1 

32 −2.875 −4.287 −0.943 −1.875 −3.426 −2.615  1 1 

33 −2.548 −4.590 −1.542 −2.000 −4.288 −2.146  1 1 

34 −2.824 −4.067 −0.680 −1.502 −3.461 −1.508  1 1 

35 −2.398 −4.404 −1.559 −1.416 −3.582 −0.609  1 1 

36 −2.824 −4.434 −1.106 −1.805 −3.483 −0.426  1 1 

37 −3.176 −5.077 −0.633 −1.839 −3.404 −0.943  1 1 

38 −2.574 −3.291 −0.260 −2.273 −2.672 −2.346  1 1 

39 −2.602 −4.094 −1.203 −1.921 −3.197 −1.818  1 1 

40 −3.000 −5.170 −1.260 −1.796 −3.094 −2.518  1 1 

41 −2.824 −3.665 −0.290 −1.566 −3.142 −1.904  1 1 

(to be continued) 
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(continued) 

Start-up parameters of waveform  Event type 
Sample code 

lg x11 lg y11 lg k1 lg x21 lg y21 lg k2  Real Identified 

42 −2.602 −4.573 −1.624 −1.623 −3.545 −0.717  1 1 

43 −2.824 −3.546 −0.306 −2.301 −3.141 −1.037  1 1 

44 −2.875 −3.774 −0.476 −2.088 −2.910 −0.848  1 1 

45 −2.477 −3.650 −0.696 −1.506 −3.217 −0.771  1 1 

46 −2.602 −3.862 −0.801 −1.757 −3.103 −1.304  1 1 

47 −2.664 −4.885 −1.616 −1.422 −3.710 −1.639  1 1 

48 −2.574 −5.468 −2.625 −1.257 −3.863 −3.958  2 2 

49 −1.864 −6.110 −3.172 −0.728 −4.514 −2.001  2 2 

50 −2.287 −6.338 −4.066 −0.752 −4.890 −2.533  2 2 

51 −1.933 −5.755 −3.316 −0.475 −4.616 −3.119  2 2 

52 −2.000 −5.975 −3.427 −0.482 −4.831 −3.167  2 2 

53 −2.210 −5.190 −2.830 −1.204 −4.689 −1.862  2 2 

54 −2.106 −5.929 −3.591 −1.078 −4.234 −3.986  2 2 

55 −2.145 −5.554 −3.244 −1.042 −3.825 −3.894  2 2 

56 −2.331 −5.273 −2.429 −0.957 −3.962 −3.109  2 2 

57 −2.187 −5.897 −3.439 −1.041 −4.180 −3.611  2 2 

58 −2.260 −5.386 −2.708 −0.929 −3.983 −3.101  2 2 

59 −2.222 −5.817 −3.128 −0.314 −3.742 −1.966  2 2 

60 −2.145 −5.586 −3.208 −1.034 −3.668 −2.067  2 2 

61 −2.155 −5.585 −3.217 −1.030 −3.623 −1.753  2 2 

62 −2.664 −5.709 −2.296 −1.350 −4.053 −2.591  2 2 

63 −2.632 −4.716 −1.601 −1.523 −3.586 −2.897  2 2 

64 −2.135 −4.588 −1.640 −1.921 −3.860 −4.233  2 2 

65 −1.986 −5.446 −2.983 −1.681 −4.894 −3.180  2 2 

66 −2.331 −4.678 −1.868 −1.235 −3.882 −4.318  2 2 

67 −2.664 −6.964 −2.824 −1.611 −3.961 −2.089  2 2 

68 −2.287 −5.174 −2.441 −1.179 −3.823 −1.943  2 2 

69 −2.398 −5.535 −2.726 −0.849 −4.008 −2.133  2 2 

70 −2.778 −4.827 −1.779 −1.256 −3.358 −4.187  2 2 

71 −2.273 −5.077 −2.484 −1.574 −4.383 −3.615  2 2 

72 −2.436 −5.090 −2.195 −1.553 −4.136 −4.124  2 2 

73 −2.574 −5.390 −2.385 −1.368 −3.572 −3.856  2 2 

74 −2.187 −6.839 −3.912 −0.831 −4.582 −4.174  2 2 

75 −2.030 −4.712 −2.277 −1.783 −4.128 −2.469  2 2 

76 −2.416 −5.336 −2.480 −1.222 −4.186 −3.128  2 2 

77 −2.699 −5.255 −2.062 −0.989 −3.989 −2.190  2 2 

78 −2.737 −4.775 −1.661 −1.611 −3.252 −2.834  2 2 

79 −2.416 −4.847 −1.977 −2.015 −4.136 −2.504  2 1** 

80 −2.477 −5.552 −2.767 −1.201 −4.260 −3.294  2 2 

81 −2.380 −6.260 −3.503 −0.597 −4.253 −3.892  2 2 

82 −2.699 −4.629 −1.607 −0.748 −2.807 −3.253  2 2 

(to be continued) 
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(continued) 

Start-up parameters of waveform  Event type 
Sample code 

lg x11 lg y11 lg k1 lg x21 lg y21 lg k2  Real Identified 

83 −2.499 −5.760 −2.161 −1.548 −3.710 −2.633  2 2 

84 −2.260 −4.797 −2.178 −0.603 −3.758 −1.798  2 2 

85 −2.632 −5.039 −2.145 −1.187 −3.766 −3.914  2 2 

86 −2.699 −5.659 −2.558 −1.611 −3.890 −1.844  2 2 

87 −2.260 −5.166 −2.434 −1.428 −4.357 −2.370  2 2 

88 −2.548 −4.875 −1.945 −1.260 −3.119 −3.610  2 2 

89 −2.363 −4.684 −1.927 −0.848 −3.790 −2.123  2 2 

90 −2.198 −6.728 −3.130 −0.866 −4.717 −1.730  2 2 

91 −2.456 −4.997 −2.033 −0.878 −4.194 −2.903  2 2 

92 −2.210 −5.340 −2.821 −1.234 −4.012 −4.248  2 2 

93 −2.247 −5.278 −2.747 −1.384 −4.136 −3.656  2 2 

94 −2.210 −5.390 −2.575 −1.274 −4.477 −2.140  2 2 

95 −2.398 −5.370 −2.401 −0.643 −4.670 −3.216  2 2 

96 −2.287 −4.634 −1.955 −1.161 −3.663 −2.233  2 2 

97 −2.602 −4.834 −1.818 −1.277 −3.582 −3.033  2 2 

98 −2.664 −5.500 −2.530 −1.350 −3.762 −3.778  2 2 

99 −2.824 −5.917 −2.762 −1.626 −4.158 −3.852  2 2 

100 −2.632 −4.713 −1.725 −0.779 −3.469 −2.254  2 2 

101 −2.574 −4.563 −1.446 −1.553 −3.586 −2.128  2 1** 

102 −2.875 −4.871 −1.583 −0.702 −3.101 −2.875  2 2 

103 −2.602 −4.975 −1.952 −0.520 −4.267 −2.366  2 2 
** misclassified case 
 

Table 4 Eigenvalue of Fisher discriminant function 

Eigenvalue Variance/% 
Cumulative 

value/% 
Canonical 
correlation 

2.841 100.0 100.0 0.860 

 
Table 5 Classification results of events and blasts 

Count Percentage/% 
Type 

Blasts Microseismic 
events Blasts Microseismic 

events 

Blast 46 2  97.9 3.6 
Microseismic 

events 1 54  2.1 96.4 

Total 47 56  100.0 100.0 

 
3) Given P-wave first arrival’s picking inaccuracy, 

the coordinates and the slope value of starting-up trend 
line of first peak and maximum peak were extracted as 
characteristic parameters. 

4) By applying the Fisher discriminant analysis to 
characteristic parameters extracted, a mathematical 
model that is able to correctly discriminate more than 
97.9% blasts and microseismic events is established. 
Statistical results show that this method has a good 

performance in blasts and microseismic events 
discrimination. Moreover, the approach shows the 
advantage that the characteristic parameters would not be 
affected by P- and S-wave arrival picking when 
compared with discriminations based on source 
parameters. 
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基于波形起振特征的矿山微震与爆破信号模式识别 
 

赵国彦，马 举，董陇军，李夕兵，陈光辉，张楚旋 

 
中南大学 资源与安全工程学院，长沙 410083 

 
摘  要：为探寻能够区分矿山微震信号和爆破信号的波形特征，建立基于人工识别标准的事件数据库。人工识别

的考虑因素包括：波形的重复特征、波形的衰减特征、信号的主频大小以及事件发生的具体时间。将数据库中的

微震信号和爆破信号调整至同一坐标系下发现，两类事件的起振角趋。于集中在不同的区间。考虑到 P 波到时提

取的不准确性，波形起振角难以准确计算，提出以应用线性回归拟合得到的起振趋势线斜率代替起振角。将首次

峰值起振趋势线斜率和最大峰值起振趋势线斜率连同首次波峰及最大波峰的坐标列为特征参数，应用 Fisher 判别

法，能成功实现微震事件与爆破时间的准确分离，识别正确率达到 97.1%。 

关键词：微震事件；矿山爆破；起振特征；Fisher 判别 
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