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Abstract: A thickness strain model of aluminium alloy plate under plastic deformation, based on thin plate assumption was proposed.
It is found that when ratio of stress fractions is constant during in-plane loading, ratios of strain components under various loading
conditions are linearly related and these points of ratios form a #—# line. Under these simple loadings, strains in thickness direction
can be easily calculated by the #—# line equation without integral and differential work. When the plate is under more complicated
loading conditions, the thickness can be computed by the proposed optimization and piecewise calculation model. Validation
computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven
theories and FE simulation. Therefore, the developed model can be applied to engineering calculation, e.g. pre-stretching analysis of

aerospace aluminium thick plate, with acceptable accuracy.
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1 Introduction

7000 series aluminum alloy thick plates are widely
applied in aerospace for their combination of high
strength,  stress-corrosion-cracking resistance and
toughness. Stretching is a typical process performed on
solid solution treated aluminum thick plate to release
quenching-caused residual stresses through leading
uniform deformation to the plate in the rolling
direction [1].

Since available and measurable variables in
stretching process are strains of the plate, it is reasonable
to establish the analytical model based on strain-space
plasticity theory, which originated from soil and rock
mechanics. DRUCKER [2] firstly considered the
possibility of formulating the theory of elasto-plastic
material in strain space. The studies performed by
NAGHDI, TRAPP and CASEY [3,4] contributed to the
establishment of the theory by using plastic strain as state
variables with which most researchers are familiar.
YODER and IWAN [5] employed the relaxation stress as

state variables in formulations of strain space plasticity.
HAN and CHEN [6] built strain-space plasticity
formulation for hardening-softening materials with
elasto-plastic coupling, while FARAHAT et al [7]
modeled for concrete with compressive hardening-
softening behavior in strain-space. LU and VAZIR [8]
claimed that the stress- and strain-based plasticity theories
are equivalent by offering the alternative conjugate
expressions for the loading criteria, provided that the
material laws used are identical in both approaches.

The tensile tests performed on AA7075-T6 and
2024-T3 by LEE and SHAUE [9] indicated that the
materials are linear hardening. The compressive tests
under quasi-static loading conducted by ABOTULA and
CHALIVENDRA [10] and WU et al [11] showed the
similar stress—strain relations. Although mechanical
properties in the rolling and transverse directions of
commercial wrought aluminum alloy are slightly
different, the material can be considered to be isotropic
for simplification of modeling.

The aluminum thick plate is in plane-stress state
during stretching and in-plane stresses of it vary along
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the thickness-direction [1,12]. As is used in stress
measurement methods, such as layer removal [13,14],
incremental hole drilling [15], layer X-ray method [16]
and crack compliance method [17], thick plate can be
virtually divided into many thin sheets along its
thickness-direction and stress evolution in the thick plate
can be deduced from the stress status of the separated
thin sheets by superposition which was described in
Ref. [18]. Since the thickness of the virtually divided thin
sheet in the thick plate cannot be measured directly, a
model, which relates strain in the thickness-direction to
strains in the rolling/transverse direction, is the basis for
the research on residual stresses in the thick plate.

At present, the model for calculating thickness of
metallic plate under in-plane deformation is still
relatively lacking. Researches concerned with the
evolution of plate’s thickness are mostly focused on
bending deformation. ZHU [19] studied large
deformation pure bending of the wide plate made of the
power-law-hardening material. The results showed that
large curvature bending leads to a significant thickness
reduction of the bent plate. COLLIE et al [20] used
analytical models, numerical models and elastic—plastic
FEA to predict the final deformed geometry of induction
bends in thick-walled pipe. PENG et al [21] established a
theoretical solution to thickness variation of bending
metal sheet with perfect plasticity and linear hardening
character. In general, researches concerning theory of
plate/shell or non-linear plate theory [22] do not give
solution of thickness-direction strain of thin plate under
in-plane deformation and there are no models can be
applied to calculating strain of thickness-direction z for
aluminum plate which is under in-plane deformation
directly. With this model, the thickness of plate can be
computed by knowing deformation in the rolling and the
transverse directions.

Residual stress

2 Plate-layered hypotheses

Residual stresses in the aluminum thick plate is
relieved by applying a uniform plastic strain on it [23]
and a schematic diagram of stretching process for the
plate is shown in Fig. 1. The plate is under uniaxial
tension load which is uniformly distributed at each end
of the plate along the rolling direction (x-direction) while
quenching- caused residual stress o, varies along the
thickness- direction. Since the length and the width are
much larger than the thickness, the thick plate is in-plane
stress during the stretching process. In order to obtain
stress state at a given depth, the thick plate is assumed to
be made up of N layers of thin plates and one of them is
depicted in dash line in Fig. 1. The thin plate has a tiny
thickness, e.g., less than 1/40 of thickness of the thick
plate, so that the in-plane stress of it can be considered as
constant throughout its thickness. By knowing the stress
status of these thin plates, the stress evolution of the
thick plate can be easily deduced.

The loading condition of the thin plate is also drawn
in Fig. 1. The thin plate, with the same length and width
as the thick plate, is under uniformly distributed loads, F,
and F), in the rolling and the transverse directions
respectively. F, and F), are caused by the material around
the thin plate during stretching. With the increase of F
and F), stresses of the thin plate will grow from initial
state to the stress of elastic limit o,. After that, the thin
plate will deform plastically under further loading.

Figure 2 shows the evolution of the thin plate’s
strain state in the x and y directions during deformation.
In the plot, the abscissa ¢, is strain component in the
rolling direction and the ordinate &, is strain in the
transverse direction. The straining path of the thin
plate is nonlinear and drawn in solid line in Fig. 2. The
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Fig. 1 Schematic depiction of aluminium alloy plate to be stretched and thin plate under in-plane deformation
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Fig. 2 Strain evolution of thin plate during stretching

original state before deformation is defined as Point O
while Point A4 refers to the state when deformation of the
thin plate reaches the yield limit. The terminal of loading
is Point B and the thin plate is straining plastically during
stage AB.

Since the loading stage OA is elastic straining, the
stress status at Point 4 can be deduced by knowing
strains at Point 4 and the loading path can be considered
as the straight dash line between Point O and Point A.
However, the stress status at Point B depends on the
plastic loading path from Point 4 to Point B. In order to
calculate the nonlinear straining path 4B, the path is
divided into enormous linear loading segments because it
is easier to calculate the liner loading than nonlinear one.
A loading section, the ith loading segment, is also
depicted in Fig. 2. Since the segment A;DB; is fairly short,
it can be regarded as straight line 4,CB; in computation
with acceptable accuracy. Therefore, the first step of
calculation is to establish a model for linear loading
during plastic deformation and then develop a model for
nonlinear plastic loading.

It is supposed that the straining path between Points
A and B is straight line. Thus, incremental strain fractions
are linearly related to each other in the deformation stage
of O4 and AB, the relations between the strain
increments are then expressed as

0A AB
&y _ 04 Ey __AB 1
or = g (1)
X SX

where 773;4 and 77;;3 are proportion factors during OA
and AB stages, respectively. The superscript OA4 and AB
of #,,indicate that the variable is about the corresponding
stage. Meanwhile, the superscripts of strain ¢; indicate
that the variable is an increment from Point O to Point 4

or from Point 4 to Point B , e.g., gyOA =8yA —gyo and

AB _ B _ _A
&, =&, —¢&, .

If factor U;CB is not constant in deformation stage
AB, i.e., the straining path is nonlinear loading shown in
solid line in Fig. 2, the stage will be divided into a
number of short loading segments, such as segment 4,B;
in Fig. 2, and #,, of each segment is nearly invariable
when the number of segments is large enough. Then, the
model for linear loading can be applied to the given
deformation segment when Point 4 and Point B are
designated as the start and the end of it.

3 Construction of strain calculation model

In order to establish a model for ¢, under in-plane
deformation, relations between (g, ¢,) and &, under given
loading conditions are established by numerical
computation. The linear loading condition will be
discussed first and then the more complicated nonlinear
loading.

3.1 Consistent of stress increment ratio

From the deformation theory of plasticity, it is clear
that the relation between strain components remain
invariable when the proportion between stress
components is constant. Thus, the linear straining
condition can be obtained by presetting a linear stress
loading path because strain increment in terms of stress
increment has been well established and proved for
isotropic hardening material. In this case, a thin plate is
assumed under linear loading during plastic deformation
and thus the proportion between stress fractions in the x
and y directions of it is constant from the deformation
theory of plasticity, i.e.,

Vyx=0,/0 )

where y,, remains invariable during loading from Point O
to Point B. In stress space, the yield function of the
isotropic hardening material can be expressed as

f:@—k(jdzp)ﬂ 3)

where Jd? P is the accumulated plastic strain, k is the
hardening function, and J, is the second invariant of the
stress deviator tensor. Based on the flow rule, the
Hooke’s law and the consistency condition, the
expression of the strain increment [24] is

de; = Dy doy +liidak, 4)

h ooy ooy,

where Dy, is the tensor of elastic compliance, /4 is the
plastic modulus and gy, is the stress increment. Without
loss of generality, the material properties are Poisson
ratio »=0.33, elastic modulus E=1, slope of hardening
line E=1/11, stress of elasticity limit o,=1 and plastic

modulus / = dk/d(jdgp ) =0.1E.
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Suppose y,,=3 and then the stress history of the thin
plate is from O (0, 0, 0) to B (3, 9, 0). Substituting
parameters in Table 1 into Eqgs. (3) and (4) and Hooke’s
law, the evolution of strain components can be calculated
and the results are shown in Fig. 3.
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Fig. 3 Evolution of strain components during loading

In Fig. 3, the turning points of the three lines
correspond to the initial yield Point 4 in Fig. 2. It can be
found that all strain components grow linearly from
Point 4 to Point B, indicating that strain ratio U;CB isa
constant. Besides, the ratio of incremental strain
components between the z and x directions, i.e.,
2% = Ae®/Ae?® | is invariable in 4B stage. From
strain curves shown in Fig. 3, the connection between &,
and ¢, or g, is still unclear.

However, considering that ratios of strain
components are constant, a relation between 77;;3 and
77;3 under different y,, is expected. Therefore, it is
assumed that the values of y,, are -10", =20, -5, -1,
-0.5, 0, 0.5, 1, 10, 20 and 10", respectively, the above
computation is repeated while supposing UXOB =3. The
calculation results are drawn in Fig. 4.

From Fig. 4, it is clear that all points corresponding
to different y,, lie on a straight line. Thus, a

L
Fig. 4 Relation of ratios between strain components under
various loading conditions

conclusion can be drawn that anB and 77;)1(3 have a
linear relationship when the ratio of stress fractions y,, is
constant during loading. 77;3 can be easily calculated
by equation of the line, which is named #—# line for
simplicity. Since uniaxial loading meets the requirements
of point on the n—# line, the line’s equation can be
determined by the values of ﬂyAf and 77;:1‘3 under
uniaxial tensions in the x and y directions, respectively.

In the case of uniaxial tensile loading in the rolling
direction, the ratios of strain components can be
calculated by using Eq. (4):

4B _ AB:—ZI’!V—E

5
yxl T2x1 YW+ 2E ( )

Similarly, the ratios of strain components under
uniaxial transverse loading are

M=~ a2l (6)

In view of Egs. (5) and (6), the equation of #—# line
can be expressed as

AB 2hV+E AB
= _SEE (484 7
nil =5 o (i) (7)

3.2 Inconsistent of stress increment ratio

In the case of more complicated loading,
ie., ;/yOXA # )/ﬁVB , ratios of strain components are
nonlinearly related to each other and the accurate value
of 77;3 cannot be obtained by Eq. (7).

It is assumed that stress increase during loading
stage AB is fairly small, e.g., 6%=1070,, then
components of ¢'” can be treated as being linearly
related. Two loading paths are then concerned:
Gl yaly=(-05,03) and (r2'.7w)=(0.55, -0.5).
Using the same method applied in Fig. 4 and the
parameters in Table 1, the strain ratios during AB stage of
the above two paths are drawn in Fig. 5 in comparison
with points on —# line.

-0.40
y=-0.1 Loading path (a):
—0.42 I (94, y18)=(-0.5, 0.3)
0.42 T

-0.441
2y 0461
=

-0.48

-0.50F Loading path (b):

2 15" (0.55,~0.5) »=0.03
-(.52 i S I 1 1
-0.56 -0.54 -0.52 -0.50 -0.48 -046 -0.44

AB
?’_r.\

Fig. 5 Relation of ratios between strain fractions under two
loading paths
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In Fig. 5, the abscissa of points (c) and (d) are equal
to that of points (a) and (b), respectively. In order to
calculate the stress corresponding to loading paths
(a)—(d), a counterpart of Eq. (4) in strain space, i.e. the
strain-based elastic—plastic incremental constitutive
model, is employed and a general expression of it is

1 oF 0Q
do,=|C,, —————|d¢ 8
O ( ik = agij agklj % (3)

where Q is the plastic potential function, F is the yield
function in strain space, 4 is a scale factor. Substituting
the material properties and strains relation to the loading
paths (a)~(d) in Fig. 4 into Eq. (8), o.*’ of the
corresponding paths can be computed and there are
relations as follows:

0>0%@)>0 (), n2@)>n ) ©
0<oB®)<a®(d), 7 ®)<nd)

X

Since 0. is zero under plane stress, the values of
77;3 at points (a) and (b) are more accurate than those
of points (c) and (d). In view of relations in Eq. (9), an
optimization rule for 77;;“3 can be deduced and it is
shown in Fig. 6.

Compute 727 by n—#
equation, then get ' (0)

n2=n4+d,
then get /% (1)

Yes
No

O’;m (0) . O_;IL’( | }>0 NO

<[ a%(0)[>| g% (1)[>
Yes

[A=R2-4]
|

G

Fig. 6 Flow chart of optimization for 7:#

[Z=7]
|

4 Validation and discussion with FEM

A FEM analysis is performed by using FE software
MSC.Marc and the result of simulation is compared with
that of #—x method. Actual material parameters of

Al7075 used both in simulation and calculation are
Poisson ratio ©=0.33, elastic modulus E=69.5 GPa,
slope of hardening line E=3 GPa, stress of
elasticity limit o,~=410 MPa and plastic modulus

h= dk/d(_[d?p):3135 MPa.

The numerical simulation model is based on
the specimen, of which the dimensions are 1200 mm x
220 mm x 50 mm, measured by LIAO et al [25]. Since
the geometry and the boundary conditions are
symmetrical, a simplification of the FE model is applied
by using 1/8 of the plate to reduce the calculation time
required. A numerical thin plate model with dimensions
of 600 mm X110 mm x 2.5 mm is established in
MSC.Marc according to the specimen and it is illustrated
in Fig. 7, and then the model is divided into 10 layers. An
8-node 3D solid element of 10 mm x 10 mm X 0.5 mm is
selected in each layer. Stress and strain of thin plate with
3D entity deformation were calculated by this model.
Two adjacent edges of thin plate are fixed, and uniform
displacement is exerted on the other two edges according
to loading parameter. Boundary conditions above
mentioned the model calculation conditions are the same.

&-node element

0 o 10 mm

0.5 mm

30 mm

_./" Thick plate \/
el
220 mm

Fig. 7 FE model of thin plate used in simulation

4.1 p—n method

It is assumed that y}?XA = y;rB =0.2 and 6,"* =0,/2,
the stress of the thin plate increased from Point O (0, 0, 0)
to Point B (652.34 MPa, 130.47 MPa, 0) during loading.
The results of simulation and #—# calculation are
compared in Fig. 8. It can be found that the result of n—#
matches the FE result very well.

Compared with Eq. (4) and FE simulation, #—# line
equation is much simpler and easier to be used in
engineering application for its markedly reduced
calculation without integration and differential work.

4.2 Optimization method

When y}?XA # ijB , the optimization and piecewise
(OP) method described in Fig. 6 is applied to calculating
the z-direction strain.

In the first place, a calculation flow, here named
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o—¢—o, 1s used to testify the accuracy of the algorithms
with the material being applied. The loading conditions
in terms of stress are preset firstly and Eq. (4) is used to
calculate the corresponding strain evolutions under these
loadings. Then, the results of computed strain are applied
to the calculation flows in Fig. 6 to obtain the stress data
which are compared with the preset stresses. The preset
loading conditions in terms of stress and the results of
computation are listed in Table 1.

0019 /

Initial yield point 4

=-0.02t
@&
y94=0.2
-0.03 V=02
= £. by #7—# method
-0.04 F — ¢&. by FE method

0 100 200 300 400 500 600
g./MPa

Fig. 8 Computed z-direction strain of thin plate by #—# method
in comparison with results of FE simulation

Table 1 Parameters and results of 6—&—o validation

Relative
error at Point B/%

Absolute error

. -3
7’yOxA 7,;13 GfB/O'S at Point B/10

x-locus y-locus x-locus  y-locus
08 9 1 15.6 14.4 0.75 0.15
4 0.6 1 0.36 0.78 0.03 0.05

The stress growth in the x direction during plastic
deformation, O'fB , is o, under these loadings and is
divided into 20 segments in the piecewise method. The
maximum number of iteration cycles in optimization
method is 50 and the initial step length of searching, 4, is
1% of 77;3 , which is calculated by n—# method. The
strain evolutions, calculated by Eq. (4), from Point 4 to
Pint B corresponding to the loading paths are listed in
Table 1. The computation results are described in Fig. 9.

It is clear in Fig. 9 that the computed stresses are in
good agreement with the preset stresses. Table 1 shows
that the maximum relative error is below 0.75%,
indicating that OP method has an acceptable accuracy. If
the number of segments and iteration cycles increases,
better accuracy would be obtained. In the simulation
validation, the second loading path listed in Table 1 is
applied to the FE model illustrated in Fig. 9. The results
of the simulation and the OP method are shown in
Fig. 10.

Figure 10 shows that the calculated thickness-

10
(a)
— Preset stress
+ g, by OP method
= g, by OP method y01=() 8
6f e o.by OP method y-{.-l 56,6
Sé,, ¥
5
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Step increment in A-B
1.8 (b) y
1.6} ’._r"./r
14y :r-"’r"!. B—
12} -
g 10f
S1Or oiy
081 806
0.6F — Preset stress
+ g, by OP method

041 = g, by OP method
02 e . by OP method

poeo o oo oo oo oo oooooe

0 5 10 15 20

Step increment in A-B
Fig. 9 Computed stress curves by OP method in comparison
with preset stress

= &_ by OP method

~0.01} — ¢ by FE simulation

i
I
-0.02+ A

Initial yield point

003}
W
-0.04F—0 B—
-0.05} y01=4
1B=() 6
-0.06} T
0 100 200 300 400 500

o./MPa
Fig. 10 Comparison between computed z-direction strains by
OP method and FE simulation for thin plate under second
loading path in Table 1

direction strain matches the results of FE analysis very
well. The comparison of the results suggests that the
developed calculation model has a good accuracy when
the plastic deformation stage is finely meshed. Since the
model is developed under strain hardening background,
the developed model, #—7 and OP method can also be
applied to computing the thickness of plate made by
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perfect plastic material, such as steel. The model
developed above has been applied to the research,
described in Ref. [18], on the residual stress in stretched
aluminum plate.

5 Conclusions

1) When ratio of stress fractions is constant during
in-plane loading, ratios of strain components (77;{3 ,
77;3 ), under various loading conditions are linearly
related and these points of ratios form a #—# line. In the
case of simple loading, strains in thickness direction can
be easily calculated by the #—# line equation without
integral and differential calculation.

2) When the plate is under more complicated
loading conditions, the thickness of the plate can be
computed by the proposed optimization and piecewise
calculation model after dividing its plastic deformation
stage into short loading segments. Validation
computations indicate that the results of the presented
model are in good agreement with those of the proven
theory and FE simulation. Therefore, the developed
model can be applied to engineering calculation with
acceptable accuracy.

References

[1]  PRIME M B, HILL M R. Residual stress, stress relief, and
inhomogeneity in aluminum plate [J]. Scripta Materialia, 2002, 46:
77-82.

[2] DRUCKER D C. Some implications of work hardening and ideal
plasticity [J]. Quarterly Journal of Applied Mathematics, 1950, 7(4):
411-418.

[3] NAGHDI P M, TRAPP J A. The significance of formulating
plasticity theory with reference to loading surfaces in strain space [J].
International Journal of Engineering Science, 1975, 13(9-10):
785-797.

[4] CASEY J, NAGHDI P M. On the nonequivalence of the stress space
and strain space formulations of plasticity theory [J]. ASME Journal
of Applied Mechanics, 1983, 50(2): 350—354.

[5] YODER P J, IWAN W D. On the formulations of strain space
plasticity with multiple loading surfaces [J]. ASME Journal of
Applied Mechanics, 1981, 48(4): 773—778.

[6] HAN D J, CHEN W FE. Strain-space plasticity formulation for
hardening-softening materials with
International Journal of Solids and Structures, 1986, 22(8): 935-950.

[77 FARAHAT A M, KAWAKAMI M, OHTSU S M. Strain-space
plasticity model for the compressive hardening-softening behavior of
concrete [J]. Construction and Building Materials, 1995, 9(1): 45-59.

[8] LU P F, VAZIRI R. The equivalence of stress- and strain-based
plasticity theories [J]. Computer Methods in Applied Mechanics and
Engineering, 1997, 147: 125-138.

[91 LEE H T, SHAUE G H. The thermomechanical behavior for
aluminum alloy under uniaxial tensile loading [J]. Materials Science
and Engineering A, 1999, 268: 154—164.

elastoplastic coupling [J].

[10]

(1]

[12]

[13]

[14]

[13]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

(23]

. Soc. China 25(2015) 3381-3388

3387
ABOTULA S, CHALIVENDRA V B. An experimental and

numerical investigation of the static and dynamic constitutive
behavior of aluminium alloys [J]. The Journal of Strain Analysis for
Engineering Design, 2010, 45: 555—-565.

WU Y F, LI S H, HOU B, YU Z Q. Dynamic flow stress
characteristics and constitutive model of aluminum 7075-T651 [J].
The Chinese Journal of Nonferrous Metals, 2013, 23(3): 658—665.
PRIME M B. Residual stress measurement by successive extension
of a slot: The crack compliance method [J]. Applied Mechanics
Reviews, 1999, 52(2): 75-96.

WANG Shu-hong, ZUO Dun-wen, WANG Min, WANG Zong-rong.
Modified layer removal method for measurement of residual stress
distribution in thick pre-stretched aluminum plate [J]. Transactions of
Nanjing University of Aeronautics & Astronautics, 2004, 21(4):
286-290.

BENDEKA E, LIRAA I, FRANC-OISB M, VIAL C. Uncertainty of
residual stresses measurement by layer removal [J]. International
Journal of Mechanical Sciences, 2006, 48: 1429—1438.

PRIME M B, MICHAEL R H. Uncertainty analysis, model error, and
order selection for series-expanded, residual-stress inverse solutions
[J]. Journal of Engineering Materials and Technology, 2006, 11:
175-185.

HU Yong-hui, WU Yun-xin, CHEN Lei, GUO Jun-kang.
Experimental measurement of surface residual stresses of quenched
aluminum alloy thick plate by X-ray method [J]. Materials China,
2011, 30(2): 51-55. (in Chinese)

GONG Hai, WU Yun-xin, LIAO Kai. Analysis on validity of residual
stress measurement methods for aluminum alloy thick-plate [J].
Journal of Materials Engineering, 2010(1): 42—46. (in Chinese)
ZHANG S Y, WU Y X, GONG H. A modeling of residual stress in
stretched aluminum alloy plate [J]. Journal of Materials Processing
Technology, 2012, 212: 2463-2473.

ZHU H X. Large deformation pure bending of an elastic plastic
power-law-hardening wide plate: Analysis and application [J].
International Journal of Mechanical Sciences, 2007, 49: 500-514.
COLLIE G J, HIGGINS R J, BLACK I. Modelling and predicting
the deformed geometry of thick-walled pipes subjected to induction
bending [J]. Journal of Materials: Design and Applications, 2010,
224: 177-189.

PENG Y R, JIANG Y, DUAN J C, ZHAO F, LUO W B. A theoretical
solution to thickness variation of bending metal sheet with perfect
plasticity and linear hardening character [J]. Journal of Plasticity
Engineering, 2003, 10(3): 22-25.

STEIGMANN D J. Thin-plate theory for large elastic deformations
[J]. International Journal of Non-linear Mechanics, 2007, 42:
233-240.

TANNER D A, ROBINSON J S. Modelling stress reduction
techniques of cold compression and stretching in wrought aluminium
alloy products [J]. Finite Elements in Analysis and Design, 2003,
39(5-6): 369-386.

CHEN W F, SALEEB A F. Elasticity and plasticity [M]. Beijing:
China Architecture & Building Press, 2005.

LIAO Kai, WU Yun-xin, GONG Hai, YAN Peng-fei, GUO Jun-kang.
Effect of non-uniform stress characteristics on stress measurement in
specimen [J]. Transactions of Nonferrous Metals Society of China,
2010, 20(5): 789—794.



3388

Shu-yuan ZHANG, et al/Trans. Nonferrous Met. Soc. China 25(2015) 3381-3388

BT T iaE SRR ) N TR B B #4270 5Kk fi#
RATR 12, B oy, RiEdT

1. gk R BUH TREZERE, Kb 410004;
2. FRIRE MU IREABE, Kb 410083

B B EIEEEE SRR 1A A VL s A AR A 1 IR SRR T I R 1) N AR (SR AR . 2
BT AR R B g 43 B LA T Y SR AR T i R ep o RO, AR AR ) R AR OC R, BRI — RS
AT LA IS I P A LU AR RS P L e R, B = o DRIL, 40 ) 43 o ) S0 L A9 G 2R In e 1 s g
SCRFETT W) AR T LU p—n ST RIS, RS T R AN IS S . AR AL T SN S 2R R BRAS
FCR R n] DUE R 32 IS AU ARG ). WFFUER W], o545 15 DA BIS AIA BRIT 07 B4 R AN R 25 /)
T0.75%, FORS LIS TREN AR o AR AT Y0 e ik 0 5 <6 JEAR PR i L 2000 2 S B B H
KRR KW FPELAMERELL, R NSO, BRI, Hha

(Edited by Xiang-qun LI)



