
 

 

 

 
Trans. Nonferrous Met. Soc. China 25(2015) 3381−3388

 
Construction and solution of strain model along thickness of 

aluminum alloy plate under plastic deformation 
 

Shu-yuan ZHANG1,2, Kai LIAO1, Yun-xin WU2 
 

1. School of Mechanical and Electrical Engineering, 
Central South University of Forestry and Technology, Changsha 410004, China; 

2. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China 
 

Received 21 November 2014; accepted 12 May 2015 
                                                                                                  

 
Abstract: A thickness strain model of aluminium alloy plate under plastic deformation, based on thin plate assumption was proposed. 
It is found that when ratio of stress fractions is constant during in-plane loading, ratios of strain components under various loading 
conditions are linearly related and these points of ratios form a η−η line. Under these simple loadings, strains in thickness direction 
can be easily calculated by the η−η line equation without integral and differential work. When the plate is under more complicated 
loading conditions, the thickness can be computed by the proposed optimization and piecewise calculation model. Validation 
computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven 
theories and FE simulation. Therefore, the developed model can be applied to engineering calculation, e.g. pre-stretching analysis of 
aerospace aluminium thick plate, with acceptable accuracy. 
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1 Introduction 
 

7000 series aluminum alloy thick plates are widely 
applied in aerospace for their combination of high 
strength, stress-corrosion-cracking resistance and 
toughness. Stretching is a typical process performed on 
solid solution treated aluminum thick plate to release 
quenching-caused residual stresses through leading 
uniform deformation to the plate in the rolling   
direction [1]. 

Since available and measurable variables in 
stretching process are strains of the plate, it is reasonable 
to establish the analytical model based on strain-space 
plasticity theory, which originated from soil and rock 
mechanics. DRUCKER [2] firstly considered the 
possibility of formulating the theory of elasto-plastic 
material in strain space. The studies performed by 
NAGHDI, TRAPP and CASEY [3,4] contributed to the 
establishment of the theory by using plastic strain as state 
variables with which most researchers are familiar. 
YODER and IWAN [5] employed the relaxation stress as 

state variables in formulations of strain space plasticity. 
HAN and CHEN [6] built strain-space plasticity 
formulation for hardening-softening materials with 
elasto-plastic coupling, while FARAHAT et al [7] 
modeled for concrete with compressive hardening- 
softening behavior in strain-space. LU and VAZIR [8] 
claimed that the stress- and strain-based plasticity theories 
are equivalent by offering the alternative conjugate 
expressions for the loading criteria, provided that the 
material laws used are identical in both approaches. 

The tensile tests performed on AA7075-T6 and 
2024-T3 by LEE and SHAUE [9] indicated that the 
materials are linear hardening. The compressive tests 
under quasi-static loading conducted by ABOTULA and 
CHALIVENDRA [10]  and WU et al [11] showed the 
similar stress−strain relations. Although mechanical 
properties in the rolling and transverse directions of 
commercial wrought aluminum alloy are slightly 
different, the material can be considered to be isotropic 
for simplification of modeling. 

The aluminum thick plate is in plane-stress state 
during stretching and in-plane stresses of it vary along 
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the thickness-direction [1,12]. As is used in stress 
measurement methods, such as layer removal [13,14], 
incremental hole drilling [15], layer X-ray method [16] 
and crack compliance method [17], thick plate can be 
virtually divided into many thin sheets along its 
thickness-direction and stress evolution in the thick plate 
can be deduced from the stress status of the separated 
thin sheets by superposition which was described in  
Ref. [18]. Since the thickness of the virtually divided thin 
sheet in the thick plate cannot be measured directly, a 
model, which relates strain in the thickness-direction to 
strains in the rolling/transverse direction, is the basis for 
the research on residual stresses in the thick plate. 

At present, the model for calculating thickness of 
metallic plate under in-plane deformation is still 
relatively lacking. Researches concerned with the 
evolution of plate’s thickness are mostly focused on 
bending deformation. ZHU [19] studied large 
deformation pure bending of the wide plate made of the 
power-law-hardening material. The results showed that 
large curvature bending leads to a significant thickness 
reduction of the bent plate. COLLIE et al [20] used 
analytical models, numerical models and elastic–plastic 
FEA to predict the final deformed geometry of induction 
bends in thick-walled pipe. PENG et al [21] established a 
theoretical solution to thickness variation of bending 
metal sheet with perfect plasticity and linear hardening 
character. In general, researches concerning theory of 
plate/shell or non-linear plate theory [22] do not give 
solution of thickness-direction strain of thin plate under 
in-plane deformation and there are no models can be 
applied to calculating strain of thickness-direction z for 
aluminum plate which is under in-plane deformation 
directly. With this model, the thickness of plate can be 
computed by knowing deformation in the rolling and the 
transverse directions. 

 
2 Plate-layered hypotheses 
 

Residual stresses in the aluminum thick plate is 
relieved by applying a uniform plastic strain on it [23] 
and a schematic diagram of stretching process for the 
plate is shown in Fig. 1. The plate is under uniaxial 
tension load which is uniformly distributed at each end 
of the plate along the rolling direction (x-direction) while 
quenching- caused residual stress σr, varies along the 
thickness- direction. Since the length and the width are 
much larger than the thickness, the thick plate is in-plane 
stress during the stretching process. In order to obtain 
stress state at a given depth, the thick plate is assumed to 
be made up of N layers of thin plates and one of them is 
depicted in dash line in Fig. 1. The thin plate has a tiny 
thickness, e.g., less than 1/40 of thickness of the thick 
plate, so that the in-plane stress of it can be considered as 
constant throughout its thickness. By knowing the stress 
status of these thin plates, the stress evolution of the 
thick plate can be easily deduced. 

The loading condition of the thin plate is also drawn 
in Fig. 1. The thin plate, with the same length and width 
as the thick plate, is under uniformly distributed loads, Fx 
and Fy, in the rolling and the transverse directions 
respectively. Fx and Fy are caused by the material around 
the thin plate during stretching. With the increase of Fx 
and Fy, stresses of the thin plate will grow from initial 
state to the stress of elastic limit σx. After that, the thin 
plate will deform plastically under further loading. 

Figure 2 shows the evolution of the thin plate’s 
strain state in the x and y directions during deformation. 
In the plot, the abscissa εx is strain component in the 
rolling direction and the ordinate εy is strain in the 
transverse direction. The straining path of the thin   
plate is nonlinear and drawn in solid line in Fig. 2. The  

 

 
 
Fig. 1 Schematic depiction of aluminium alloy plate to be stretched and thin plate under in-plane deformation 
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Fig. 2 Strain evolution of thin plate during stretching 
 
original state before deformation is defined as Point O 
while Point A refers to the state when deformation of the 
thin plate reaches the yield limit. The terminal of loading 
is Point B and the thin plate is straining plastically during 
stage AB. 

Since the loading stage OA is elastic straining, the 
stress status at Point A can be deduced by knowing 
strains at Point A and the loading path can be considered 
as the straight dash line between Point O and Point A. 
However, the stress status at Point B depends on the 
plastic loading path from Point A to Point B. In order to 
calculate the nonlinear straining path AB, the path is 
divided into enormous linear loading segments because it 
is easier to calculate the liner loading than nonlinear one. 
A loading section, the ith loading segment, is also 
depicted in Fig. 2. Since the segment AiDBi is fairly short, 
it can be regarded as straight line AiCBi in computation 
with acceptable accuracy. Therefore, the first step of 
calculation is to establish a model for linear loading 
during plastic deformation and then develop a model for 
nonlinear plastic loading. 

It is supposed that the straining path between Points 
A and B is straight line. Thus, incremental strain fractions 
are linearly related to each other in the deformation stage 
of OA and AB, the relations between the strain 
increments are then expressed as 
 

= ,   =
OA AB
y yOA AB

yx yxOA AB
x x

ε ε
η η

ε ε
                       (1) 

 
where OA

yxη  and AB
yxη  are proportion factors during OA 

and AB stages, respectively. The superscript OA and AB 
of ηyx indicate that the variable is about the corresponding 
stage. Meanwhile, the superscripts of strain εij indicate 
that the variable is an increment from Point O to Point A 
or from Point A to Point B , e.g., OA A O

y y yε ε ε= −  and 
AB B A
y y yε ε ε= − . 

If factor AB
yxη  is not constant in deformation stage 

AB, i.e., the straining path is nonlinear loading shown in 
solid line in Fig. 2, the stage will be divided into a 
number of short loading segments, such as segment AiBi 
in Fig. 2, and ηyx of each segment is nearly invariable 
when the number of segments is large enough. Then, the 
model for linear loading can be applied to the given 
deformation segment when Point A and Point B are 
designated as the start and the end of it. 
 
3 Construction of strain calculation model 
 

In order to establish a model for εz under in-plane 
deformation, relations between (εx, εy) and εz under given 
loading conditions are established by numerical 
computation. The linear loading condition will be 
discussed first and then the more complicated nonlinear 
loading. 
 
3.1 Consistent of stress increment ratio 

From the deformation theory of plasticity, it is clear 
that the relation between strain components remain 
invariable when the proportion between stress 
components is constant. Thus, the linear straining 
condition can be obtained by presetting a linear stress 
loading path because strain increment in terms of stress 
increment has been well established and proved for 
isotropic hardening material. In this case, a thin plate is 
assumed under linear loading during plastic deformation 
and thus the proportion between stress fractions in the x 
and y directions of it is constant from the deformation 
theory of plasticity, i.e., 
 
γyx=σy/σx                                    (2)  
where γyx remains invariable during loading from Point O 
to Point B. In stress space, the yield function of the 
isotropic hardening material can be expressed as 
 

( )p
23 d 0f J k ε= − =∫                      (3) 

 
where pdε∫  is the accumulated plastic strain, k is the 
hardening function, and J2 is the second invariant of the 
stress deviator tensor. Based on the flow rule, the 
Hooke’s law and the consistency condition, the 
expression of the strain increment [24] is 
 

1d d dij ijkl kl kl
ij kl

f fD
h

ε σ σ
σ σ
∂ ∂

= +
∂ ∂

              (4) 

 
where Dijkl is the tensor of elastic compliance, h is the 
plastic modulus and σkl is the stress increment. Without 
loss of generality, the material properties are Poisson 
ratio υ=0.33, elastic modulus E=1, slope of hardening     
line Et=1/11, stress of elasticity limit σs=1 and plastic 
modulus ( )pd / d dh k ε= ∫ = 0.1E. 
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Suppose γyx=3 and then the stress history of the thin 
plate is from O (0, 0, 0) to B (3, 9, 0). Substituting 
parameters in Table 1 into Eqs. (3) and (4) and Hooke’s 
law, the evolution of strain components can be calculated 
and the results are shown in Fig. 3. 
 

 
Fig. 3 Evolution of strain components during loading 
 

In Fig. 3, the turning points of the three lines 
correspond to the initial yield Point A in Fig. 2. It can be 
found that all strain components grow linearly from 
Point A to Point B, indicating that strain ratio AB

yxη  is a 
constant. Besides, the ratio of incremental strain 
components between the z and x directions, i.e., 

/AB AB AB
zx z xη ε ε= Δ Δ , is invariable in AB stage. From 

strain curves shown in Fig. 3, the connection between εz 
and εx or εy is still unclear. 

However, considering that ratios of strain 
components are constant, a relation between AB

yxη  and 
AB
zxη  under different γyx is expected. Therefore, it is 

assumed that the values of γyx are −1010, −20, −5, −1, 
−0.5, 0, 0.5, 1, 10, 20 and 1010, respectively, the above 
computation is repeated while supposing 3OB

xσ = . The 
calculation results are drawn in Fig. 4. 

From Fig. 4, it is clear that all points corresponding 
to  different  γyx   lie  on  a  straight  line.  Thus,  a 
 

 
Fig. 4 Relation of ratios between strain components under 
various loading conditions 

conclusion can be drawn that AB
yxη  and AB

zxη  have a 
linear relationship when the ratio of stress fractions γyx is 
constant during loading. AB

zxη  can be easily calculated 
by equation  of the line, which is named η−η line for 
simplicity. Since uniaxial loading meets the requirements 
of point on the η−η line, the line’s equation can be 
determined by the values of AB

yxη  and AB
zxη  under 

uniaxial tensions in the x and y directions, respectively. 
In the case of uniaxial tensile loading in the rolling 

direction, the ratios of strain components can be 
calculated by using Eq. (4): 
 

1 1
2= =

2 2
AB AB
yx zx

hv E
h E

η η − −
+

                        (5) 
 

Similarly, the ratios of strain components under 
uniaxial transverse loading are 
 

2
2 2=
2

AB
yx

h E
hv E

η +
− −

, 2 =1AB
zxη                       (6) 

 
In view of Eqs. (5) and (6), the equation of η−η line 

can be expressed as 
 

( )2= +1
2 2

AB AB
zx yx

hv E
hv h E

η η+
− −

                    (7) 

 
3.2 Inconsistent of stress increment ratio 

In the case of more complicated loading,        
i.e., AB

yx
OA
yx γγ ≠ , ratios of strain components are 

nonlinearly related to each other and the accurate value 
of AB

zxη  cannot be obtained by Eq. (7). 
It is assumed that stress increase during loading 

stage AB is fairly small, e.g., σx
AB=10−3σs, then 

components of σAB can be treated as being linearly  
related. Two loading paths are then concerned: 

=),( AB
yx

OA
yx γγ (−0.5, 0.3) and )5.0   ,55.0(),( −=AB

yx
OA
yx γγ . 

Using the same method applied in Fig. 4 and the 
parameters in Table 1, the strain ratios during AB stage of 
the above two paths are drawn in Fig. 5 in comparison 
with points on η−η line. 
 

 
Fig. 5 Relation of ratios between strain fractions under two 
loading paths 
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In Fig. 5, the abscissa of points (c) and (d) are equal 
to that of points (a) and (b), respectively. In order to 
calculate the stress corresponding to loading paths 
(a)−(d), a counterpart of Eq. (4) in strain space, i.e. the 
strain-based elastic−plastic incremental constitutive 
model, is employed and a general expression of it is 
 

1d dij ijkl kl
ij kl

F QC
A

σ ε
ε ε

⎛ ⎞∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

                 (8) 

 
where Q is the plastic potential function, F is the yield 
function in strain space, A is a scale factor. Substituting 
the material properties and strains relation to the loading 
paths (a)−(d) in Fig. 4 into Eq. (8), σz

AB of the 
corresponding paths can be computed and there are 
relations as follows: 
 

0 (a) (c), (a) (c)

0 (b) (d), (b) (d)

AB AB AB AB
z z zx zx
AB AB AB AB
z z zx zx

σ σ η η

σ σ η η

⎧ > > >⎪
⎨

< < <⎪⎩
         (9) 

 
Since σz

AB is zero under plane stress, the values of 
AB
zxη  at points (a) and (b) are more accurate than those 

of points (c) and (d). In view of relations in Eq. (9), an 
optimization rule for AB

zxη  can be deduced and it is 
shown in Fig. 6. 
 

 
Fig. 6 Flow chart of optimization for AB

zxη  
 
4 Validation and discussion with FEM 
 

A FEM analysis is performed by using FE software 
MSC.Marc and the result of simulation is compared with 
that of η−η method. Actual material parameters of 

Al7075 used both in simulation and calculation are 
Poisson ratio υ=0.33, elastic modulus E=69.5 GPa,  
slope of hardening line Et=3 GPa, stress of     
elasticity  limit  σs=410  MPa  and  plastic  modulus 

( )pd /d dh k ε= ∫ =3135 MPa. 

The numerical simulation model is based on     
the specimen, of which the dimensions are 1200 mm × 
220 mm × 50 mm, measured by LIAO et al [25]. Since 
the geometry and the boundary conditions are 
symmetrical, a simplification of the FE model is applied 
by using 1/8 of the plate to reduce the calculation time 
required. A numerical thin plate model with dimensions 
of 600 mm ×110 mm × 2.5 mm is established in 
MSC.Marc according to the specimen and it is illustrated 
in Fig. 7, and then the model is divided into 10 layers. An 
8-node 3D solid element of 10 mm × 10 mm × 0.5 mm is 
selected in each layer. Stress and strain of thin plate with 
3D entity deformation were calculated by this model. 
Two adjacent edges of thin plate are fixed, and uniform 
displacement is exerted on the other two edges according 
to loading parameter. Boundary conditions above 
mentioned the model calculation conditions are the same. 
 

 
Fig. 7 FE model of thin plate used in simulation 
 
4.1 η−η method 

It is assumed that 2.0== AB
yx

OA
yx γγ  and σx

AB = σs /2, 
the stress of the thin plate increased from Point O (0, 0, 0) 
to Point B (652.34 MPa, 130.47 MPa, 0) during loading. 
The results of simulation and η−η calculation are 
compared in Fig. 8. It can be found that the result of η−η 
matches the FE result very well. 

Compared with Eq. (4) and FE simulation, η−η line 
equation is much simpler and easier to be used in 
engineering application for its markedly reduced 
calculation without integration and differential work. 
 
4.2 Optimization method 

When AB
yx

OA
yx γγ ≠ , the optimization and piecewise 

(OP) method described in Fig. 6 is applied to calculating 
the z-direction strain. 

In the first place, a calculation flow, here named 
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σ−ε−σ, is used to testify the accuracy of the algorithms 
with the material being applied. The loading conditions 
in terms of stress are preset firstly and Eq. (4) is used to 
calculate the corresponding strain evolutions under these 
loadings. Then, the results of computed strain are applied 
to the calculation flows in Fig. 6 to obtain the stress data 
which are compared with the preset stresses. The preset 
loading conditions in terms of stress and the results of 
computation are listed in Table 1. 
 

 
Fig. 8 Computed z-direction strain of thin plate by η−η method 
in comparison with results of FE simulation 
 
Table 1 Parameters and results of σ−ε−σ validation 

Absolute error 
at Point B/10−3  Relative 

error at Point B/%OA
yxγ  AB

yxγ  s/σσ AB
x  

x-locus y-locus  x-locus y-locus

0.8 9 1 15.6 14.4  0.75 0.15 

4 0.6 1 0.36 0.78  0.03 0.05 

 
The stress growth in the x direction during plastic 

deformation, AB
xσ , is σs under these loadings and is 

divided into 20 segments in the piecewise method. The 
maximum number of iteration cycles in optimization 
method is 50 and the initial step length of searching, Δ, is 
1% of AB

zxη , which is calculated by η−η method. The 
strain evolutions, calculated by Eq. (4), from Point A to 
Pint B corresponding to the loading paths are listed in 
Table 1. The computation results are described in Fig. 9. 

It is clear in Fig. 9 that the computed stresses are in 
good agreement with the preset stresses. Table 1 shows 
that the maximum relative error is below 0.75%, 
indicating that OP method has an acceptable accuracy. If 
the number of segments and iteration cycles increases, 
better accuracy would be obtained. In the simulation 
validation, the second loading path listed in Table 1 is 
applied to the FE model illustrated in Fig. 9. The results 
of the simulation and the OP method are shown in    
Fig. 10. 

Figure 10 shows that the calculated thickness- 

 

 
Fig. 9 Computed stress curves by OP method in comparison 
with preset stress 
 

 
Fig. 10 Comparison between computed z-direction strains by 
OP method and FE simulation for thin plate under second 
loading path in Table 1 
 
direction strain matches the results of FE analysis very 
well. The comparison of the results suggests that the 
developed calculation model has a good accuracy when 
the plastic deformation stage is finely meshed. Since the 
model is developed under strain hardening background, 
the developed model, η−η and OP method can also be 
applied to computing the thickness of plate made by 
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perfect plastic material, such as steel. The model 
developed above has been applied to the research, 
described in Ref. [18], on the residual stress in stretched 
aluminum plate. 
 
5 Conclusions 
 

1) When ratio of stress fractions is constant during 
in-plane loading, ratios of strain components ( AB

yxη , 
AB
zxη ), under various loading conditions are linearly 

related and these points of ratios form a η−η line. In the 
case of simple loading, strains in thickness direction can 
be easily calculated by the η−η line equation without 
integral and differential calculation. 

2) When the plate is under more complicated 
loading conditions, the thickness of the plate can be 
computed by the proposed optimization and piecewise 
calculation model after dividing its plastic deformation 
stage into short loading segments. Validation 
computations indicate that the results of the presented 
model are in good agreement with those of the proven 
theory and FE simulation. Therefore, the developed 
model can be applied to engineering calculation with 
acceptable accuracy. 
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塑性变形下铝合金板材厚向应变模型的构建和求解 
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摘  要：建立适合铝合金材料的各向同性线性强化薄板在平面应力状态下塑性变形时厚向应变的求解模型。当加

载于薄板的应力分量之比在平面内塑性变形过程中为常数时，薄板的应变分量间呈线性关系，研究发现这一系列

不同应力比例和对应的应变比例值构成直线方程，即 η−η线。因此，当应力分量间呈恒比例关系加载于薄板时，

其厚度方向的应变可以通过 η−η线方程快速得到，避免了积分和微分运算。当薄板处于更加复杂的加载状态时，

其厚度可以通过提出的迭代优化算法模型得到。研究表明，计算结果与现有理论和有限元仿真结果的相对误差小

于 0.75%，其精度达到工程应用要求。该模型可用于航空高强铝合金厚板预拉伸工艺分析等实际应用。 
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