2015年10月 October 2015

文章编号: 1004-0609(2015)10-2929-07

复垦尾矿库重金属分布及生态风险评价

邓红卫,贺 威,周科平

(中南大学 资源与安全工程学院,长沙 410083)

摘 要:为评估尾砂矿生态风险,保护生态环境,实现可持续发展,研究某铅锌尾矿库中 Pb、Zn、Cu、As 4 种 重金属的垂向分布并对其污染程度和潜在生态危害进行评价。除使用地累积指数法和生态风险指数法,结合地累 积指数法和内梅罗综合指数法来评价多种重金属综合污染情况。结果表明:重金属在垂向上的分布不尽相同,复 垦土层重金属含量较下层小但仍超过土壤背景值;土层与尾砂交界处,重金属出现富集现象,污染程度最大;尾 砂层和深部区为中度或强污染。4 种重金属元素 Cu 的污染最轻,Pb、Zn、As 的在中度污染或强污染以上,对总 的生态风险指数贡献率由大到小依次为 As、Pb、Zn、Cu。单纯覆土对减少尾矿库重金属危害效果不明显,应联 合其他有效措施进行修复。

关键词:尾矿库;复垦;重金属污染;生态风险评价 中图分类号:X753 文献标志码:A

Heavy metals distribution in reclamation tailings and assessment of ecological risk

DENG Hong-wei, HE Wei, ZHOU Ke-ping

(School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract: In order to assess the ecological risk of tailings, protect ecological environment and achieve sustainable development, the vertical distribution characters of the heavy metals Pb, Zn, Cu and As in a tailings were investigated, and the pollution and potential ecological hazards degree were assessed. In addition to geoaccumulation index and ecological hazards index, the geoaccumulation index and Nemerow index were combined to evaluate the comprehensive pollution of heavy metals. The results show that the vertical distributions of heavy metals are different. The heavy metal concentration in the reclamation soil is lower but it is still higher than the soil background value. The heavy metal concentration in the interface between the soil and tailings is the highest, the pollution degree is the strongest. The pollution degrees in the tailings layer and deep area are more severe. Among these heavy metals, the pollution orders of the four heavy metals on the total ecological hazards index from big to small are As, Pb, Zn, Cu. The effect that simple covering soil on tailings to reduce heavy metal hazards index from big to small are As, Pb, Zn, Cu. The effect that simple covering soil on tailings to reduce heavy metal hazards is not significant, other effective measures should be combined to treat heavy metal pollution.

Key words: tailings; reclamation; heavy metal pollution; ecological hazards assessment

矿产资源的开发在推动国民经济发展的同时也带 来了非常严峻的生态和环境问题,特别是由采矿造成 的重金属污染,给生态平衡和人体健康造成持久性的 严重危害,如何解决环境问题、有效防治重金属污染 是目前普遍关注又是亟待解决的问题^[1-3]。许多专家学 者对重金属污染问题进行了分析,研究重金属污染的

基金项目:国家自然科学基金资助项目(51074178);国家"十二五"科技支撑计划项目(2012BAC09B00)

收稿日期: 2015-01-12; 修订日期: 2015-04-07

通信作者:邓红卫,副教授,博士;电话: 13974855898; E-mail: denghw208@126.com

污染评价及治理技术,这些研究大都以沉积物或矿区 周围土壤为研究对象,或研究农作物的重金属污染特 征,并对污染程度进行评价,研究发现矿区周边土壤、 农田均受到重金属的污染[4-10]。刘月等[11]以云南某典 型锡矿选矿厂为研究对象,分析研究重金属的污染特 征,但未对造成的生态风险进行分析评估。尾矿库作 为矿山企业重要的生产设施,在保护资源与环境方面 有着不可替代的作用。同时,尾矿库又是矿山企业最 大的危险源,尤其是在破坏生态环境方面,其影响是 长期性的^[12]。目前,对尾矿库重金属的生态污染评价 相关研究还比较少,因此,研究尾矿库重金属的迁移 分布及其对生态环境的危害风险意义重大,对尾矿库 进行生态风险评价也极其必要,由此可以降低尾矿库 运行期间的环境风险,并且在保障尾矿库周围居民生 命健康安全和生态安全方面也有非常重要的作用。本 文作者以我国南方大脚岭铅锌尾矿库为研究对象,对 尾矿库内重金属的迁移分布和污染特征进行分析研 究,并对其生态影响进行风险评价,以期对尾矿库的 污染治理和生态恢复提供参考。

1 样品采集与测试

1.1 尾矿库概况

大脚岭铅锌尾矿库位于湖南省资兴市清江镇,尾 矿库面积约为12626.57 m²,库容约为180897.28 m³, 该库区周围无重要文物古迹及珍稀动植物、人文及自 然景观,但是有重要河流东江湖通过,会对东江湖的 生态环境安全造成破坏。该尾矿库目前已废弃,上部 复垦,下部为尾砂,库内无积水,其上长满杂草。

1.2 样品采集与处理分析

尾矿库内设置 3 个采样点, 编号为 1、2 和 3, 各 采样点位置如图 1 所示。取样深度为 4.0 m, 0~60 cm 为复垦区, 60 cm 处为复垦土层与尾砂的交界面, 60~ 250 cm 为尾砂层, 250~400 cm 为深部区。

将采集的样品在室内常温风干并碾碎,用 1 mm 孔径尼龙筛除去砂砾和生物残体。采用 X 射线荧光 (XRF)测试法^[13]测试样品的重金属元素 Pb、Zn、Cu、 As 的含量,其浓度如表 1 所列。土壤重金属含量背景 值采用中华人民共和国国家标准之土壤环境质量标准 (GB 15618-1995)中二类标准值,Pb、Zn、Cu、As 4 种 重金属元素的背景值分别为 250、200、50 和 40 mg/kg。

图1 采样点位置

Fig. 1 Location of sample points

 Table 1
 Concentration of heavy metal

Sample	Depth/	С	Concentration/(mg·kg ^{-1})						
No.	cm	Pb	Zn	Cu	As				
	42.5	390	900	56	79				
	60	6460	15250	300	370				
1	90	2470	6640	130	260				
	250	5130	9210	200	220				
	400	7630	13380	240	440				
	42.5	430	850	65	65				
	60	19060	27110	970	3940				
2	90	10690	21260	490	1220				
	250	8180	17490	350	730				
	400	3710	9570	380	610				
	42.5	970	2260	83	370				
	60	1560	6580	260	1130				
3	90	1230	3480	140	120				
	250	590	1190	66	91				
	400	400	1340	49	130				
Background value		250	200	50	40				

2 评价方法

污染评价方法一般采用的有单因子指数法与内梅 罗综合指数法、地累积指数法、生态风险指数法、污 染负荷指数法等^[14-18]。地累积指数法(*I*geo)是德国科学 家 Muller 提出的^[19],该方法能反映重金属的自然分布 特征,还能判别人为因素对环境的影响,但只能给出 某点单个重金属的污染指数,不能给出某点多种重金 属综合污染指数和某重金属地区综合指数。内梅罗综 合指数法能得出多因子综合污染指数,可用于评价重 金属的综合污染指数。因此,可将二者结合,以地累 积指数代替单因子指数,得到新的综合指数,由此反 映出某采样点多种重金属综合污染指数和某重金属地 区综合指数^[20]。地累积指数法表达公式如式(1)所示:

$$I_{\text{geo}} = \log_2 \left[\frac{c_i}{1.5 \cdot B_{E_i}} \right] \tag{1}$$

式中: *c_i*为样品中某重金属元素的浓度; *B_{E_i}*为土壤环 境质量标准二级标准值; 1.5 是转换系数。为消除各地 岩石差异可能引起背景值的变动,地累积指数分级如 表 2 所列。

表 2 地累积指数分级标准和污染程度的相关性

Table 2 Correlation between I_{geo} classification and pollutiondegree

$I_{ m geo}$	Classification	Pollution degree
$I_{ m geo}{\leqslant}0$	0	Without pollution
$0 < I_{\text{geo}} \leq 1$	1	Mild-moderate
$1 < I_{geo} \leq 2$	2	Moderate
$2 < I_{geo} \leq 3$	3	Moderate-strong
$3 < I_{geo} \leq 4$	4	Strong
$4 < I_{\text{geo}} \leq 5$	5	Stronger
$5 < I_{\text{geo}}$	6	Strongest

新综合指数法计算式为

$$\left| P_{\text{geo}} \right| = \sqrt{\frac{(I_{ij})_{\text{ave}}^2 + (I_{ij})_{\text{max}}^2}{2}}$$
(2)

$$I_{\rm in} = \sqrt{\frac{(I_{ij})_{\rm ave}^2 + (I_{ij})_{\rm max}^2}{2}}$$
(3)

式中: *i* 为重金属元素种类; *j* 为样品数量; *P*_{geo}为第 *i* 种重金属的综合污染指数,正负与地累积指数相同;

表4 $C_{\rm f}^{\prime}$ 、	$E_{\rm r}^{l}$ 和 $R_{\rm I}$ 分级标准
---------------------------	------------------------------------

Table 4	Grade standard of $C_{\rm f}^i$,	E_r^i	and $R_{\rm I}$
---------	-----------------------------------	---------	-----------------

*I*_{in}为第*j*个样品的综合污染地累积指数;*I*_{ave}为地累积 指数算术平均值;*I*_{max}为地累积指数最大值。新综合 指数法在地累积指数基础上进行内梅罗指数计算,评 价分级在地累积指数基础上做相应调整,如表3所列。

表3 新的综合污染指数污染程度分级

 Table 3
 Classification of pollution levels of integrated pollution indices

Integrated pollution indices	Classification	Pollution degree
$P \leqslant 0$	0	Without pollution
$0 < P \le 0.5$	1	Light
$0.5 < P \le 1$	2	Light-moderate
$1 \le P \le 2$	3	Moderate
$2 \le P \le 3$	4	Moderate-strong
3< <i>P</i> ≤4	5	Strong
4 <i><P</i> ≤5	6	Stronger
$5 \le P$	7	Strongest

生态风险指数法(*R*₁)是由瑞典地球化学家 HAKANSON提出的,考虑重金属含量并且将重金属 的生态效应、环境效应和毒理学效应联系起来。潜在 生态危害指数包括单项污染系数、潜在生态危害单项 系数和重金属毒性响应系数^[21],其表达式为

$$R_{\rm I} = \sum E_{\rm r}^i \tag{4}$$

$$E_{\rm r}^i = T_{\rm r}^i \cdot C_{\rm f}^i \tag{5}$$

$$C_{\rm f}^i = \frac{C_{\rm s}^i}{C_{\rm n}^i} \tag{6}$$

式中: R_1 为潜在生态危害指数; E_r^i 为潜在生态危害单 项指数; T_r^i 某一重金属毒性响应系数; C_f^i 单项污染 系数; C_s^i 重金属浓度实测值; C_n^i 为参比值。重金属 毒性响应系数分别为 T_r^i (Pb)=5, T_r^i (Zn)=1, T_r^i (Cu)=5, T_r^i (As)=10, C_f^i 、 E_r^i 、 R_I 值对应的污染程度、潜在生 态风险程度如表 4 所列。

$C^i_{ m f}$	Single pollution grading	$E^i_{ m r}$	Single ecological risk degree	R_{I}	Total ecological risk degree
$C_{\rm f}^i \leq 1$	Light	$E_{\rm r}^i \leq 40$	Light	$R_{\rm I} < 150$	Light
$1 \leq C_{\rm f}^i < 3$	Moderate	$40 \leq E_{\rm r}^i \leq 80$	Moderate	$150 \le R_{\rm I} \le 300$	Moderate
$3 \leq C_{\rm f}^i \leq 6$	Higher	$80 \le E_{\rm r}^i \le 160$	Strong	$300 \le R_{\rm I} \le 600$	Strong
$6 \leqslant C_{ m f}^i$	Highest	$160 \leq E_{\mathrm{r}}^{i} < 320$	Stronger	$600 \leq R_{\rm I}$	Stronger
		$320 \leq E_{\rm r}^i$	Strongest		

3 结果与分析

3.1 重金属分布与深度关系

依据采集样品重金属含量,经过统计分析,得出 尾矿库中各金属元素含量随深度变化的关系如图2所 示。

从图 2 中可以看出,在复垦土层表面到土层与尾 砂交界面,重金属元素的浓度与深度呈正相关,在土 层与尾砂层交界面达到浓度最大值,呈现富集现象。 在复垦土层重金属含量增加与毛细吸附作用和生物化 学吸附作用有关,植物根系对重金属元素有吸附作用, 重金属向植物根系迁移的过程中土壤多孔颗粒对其产 生吸附作用使部分重金属元素沉淀下来,从而在土层 和尾砂层交界面出现富集。在尾砂层和深部区重金属 元素浓度随深度增加呈现减少的趋势,这说明重金属 元素含量与尾砂堆积的时间分布关系为负相关。在横 向相同深度,下游采样点重金属浓度比上游采样点重 金属浓度高,说明重金属在地下水流和大气降水淋溶 下向下游迁移扩散。

图 2 重金属元素在不同深度的分布

Fig. 2 Distribution of heavy metal in different depths

Table 5Statistic values of I_{geo} of heavy metal concentration

3.2 生态风险评价

3.2.1 地累积指数评价结果

尾矿库重金属污染地累积指数计算结果如表 5 所 示。从表5中看出,在复垦土层,Cu的Igeo为负值, 说明该尾矿库复垦土层无 Cu 污染; Pb 的 Igeo 在 0~1 之间,说明该尾矿库复垦土层中存在轻微 Pb 污染; As 的 Igeo 在 1~2 之间,说明该尾矿库复垦土层存在重 度 As 污染; Zn 的 I_{geo} 在 2~3 之间,说明该尾矿库复 垦土层存在重度 Zn 污染。在复垦土层与尾砂交界面 60 cm 处, Cu 的 Igeo 在 2~3 之间,说明在此处存在中 等或重度 Cu 污染; Pb 和 As 的 Igeo 在 4~5 之间, 说明 在此处存在重度或极重度 Pb 和 As 污染; Zn 的 Igeo大 于 5, 说明此处存在极重度 Zn 污染。在尾砂层和深部 区, Cu的 Igeo 在 1~2 之间,说明尾砂层和深部区中存 在中等 Cu 污染; As 的 Igeo 在 2~3 之间,说明尾砂层 和深部区中存在中等或重度 As 污染; Pb 的 Igeo 在 3~4 之间,说明在尾砂层和深部区存在重度 Pb 污染; Zn 的 Igeo 大于 5, 说明尾砂层和深部区存在极重度 Zn 污 染。重金属地累积指数在复垦层的由大到小依次为 Zn、As、Pb、Cu,在复垦层和尾砂层交界面的由大到 小依次为 Zn、As、Pb、Cu, 在尾砂层和深部区的由 大到小依次为 Zn、Pb、As、Cu。综上所述, 尾矿库 垂向分布上污染最严重的是 Zn, 较轻的是 Cu, 在复 垦层和尾砂层交界面以上 Pb 的污染程度大于 As 的, 交界面以下 As 的污染程度大于 Pb 的。

由新的综合指数法统计结果来看,在复垦层无 Cu 污染,Pb 为轻污染,Zn 为中污染至强污染级别,As 为中污染;在复垦层和尾砂交界面处,Cu 为强污染级 别,Pb 为强污染至极强污染级别,而Zn 和 As 为极强 污染级别;在尾砂层,Zn 达到了极强污染级别,Cu 为中污染至强污染级别,Pb 和 As 为强污染级别;在 深部区,Pb 为强污染级别,Zn 为强污染至极强污染 级别,Cu 和 As 为中污染至强污染级别。重金属综合 地累积指数,在复垦层由大到小依次为Zn、As、Pb、 Cu;在复垦层和尾砂交界面处由大到小依次为Zn、

				810	-												
Depth/	pth/ Pb			_	Zn			Cu			As			Intograta			
cm	$I_{\rm geo}$	Iave	$I_{\rm max}$	$P_{\rm geo}$	$I_{\rm geo}$	$I_{\rm ave}$	I _{max}	$P_{\rm geo}$	$I_{\rm geo}$	$I_{\rm ave}$	I _{max}	$P_{\rm geo}$	$I_{\rm geo}$	$I_{\rm ave}$	Imax	$P_{\rm geo}$	Integrate
42.5	0.670	0.542	1.371	1.042	2.156	2.000	2.913	2.499	-0.141	-0.161	0.146	-0.154	1.514	1.046	2.024	1.998	13.641
60	4.589	3.944	5.668	4.882	5.765	5.540	6.498	5.604	2.766	2.496	3.693	3.152	4.918	4.299	6.037	5.241	16.102
90	3.677	3.089	4.833	4.056	5.124	4.717	6.147	5.479	1.756	1.467	2.708	2.178	3.152	2.487	4.346	3.541	15.724
250	3.627	2.958	4.447	3.777	4.954	4.265	5.865	5.128	1.453	1.151	2.222	2.770	2.532	2.027	3.605	2.924	15.779
400	3.383	2.582	4.347	3.575	4.754	4.211	5.479	4.886	1.572	1.135	2.341	1.840	2.713	2.445	3.346	2.930	15.865

Depth/	F	' b	Z	'n	С	u	I	D	
cm	$C^i_{ m f}$	$E_{ m r}^i$	$C^i_{ m f}$	$E_{\rm r}^i$	$C^i_{ m f}$	$E_{\rm r}^i$	$C^i_{ m f}$	$E_{\rm r}^i$	$R_{\rm I}$
42.5	2.387	11.933	6.683	6.683	1.360	6.800	4.283	42.833	68.250
60	36.107	180.533	81.567	81.567	10.200	51.000	45.333	453.333	766.433
90	19.187	95.933	52.300	52.300	5.067	25.333	13.333	133.333	306.900
250	18.533	92.667	46.483	46.483	4.107	20.533	8.675	86.750	246.433
400	15.653	78.267	40.483	40.483	4.460	22.300	9.833	98.333	239.383

Table 6Statistic values of R_1 of heavy metal concentration

表6 重金属潜在生态风险指数统计分析

As、Pb、Cu; 在尾砂层和深部区由大到小依次为 Zn、 Pb、As、Cu。

3.2.2 潜在生态风险评价结果

潜在生态风险评价考虑了不同重金属元素的毒性 差异和环境对重金属元素污染的敏感程度,采样点重 金属元素计算结果如表6所列。由表6可以看出,在 复垦土层 Pb 和 Cu 的 $C_{\rm f}^i$ 值在 1~3 属于中度污染, Zn 和 As 的 Cf 值在 3~6 属于重度污染。考虑各金属元素 的毒性系数后, Pb、Cu 和 Zn 的潜在生态风险系数都 小于 40, 属于轻污染级别, 只有 As 的为中度污染, 4 种重金属的总的潜在生态风险指数小于 150, 为轻度 污染,各重金属对 R_I的贡献率由大到小依镒为 As、 Pb、Zn、Cu。在复垦土层与尾砂交界面处,Cu 的潜 在生态风险系数小于 80 为中度污染, Zn 为强污染, 而 Pb 和 As 分别为很强和极强污染级别, 4 种重金属 总的潜在生态风险指数大于 600 为极强污染,各重金 属对 R_I的贡献率由大到小依次为 As、Pb、Zn、Cu。 在交界面以下, Cu 的潜在生态风险系数均小于 40 为 轻污染, Zn 为中度污染, Pb 在尾砂层为强污染在深 部区为中度污染,As 在尾砂层和深部区均为强污染, 4 种重金属元素总的生态风险指数小于 300 为中度污 染,各重金属元素对 R_I的贡献率由大到小依次为 As、 Pb、Zn、Cu。这与以上两种方法的排序不相同,但 Cu 排序皆相同。综上所述, 4 种重金属中 Cu 的污染 较小, Pb、Zn 和 As 的污染较重。图 3 所示为 R_I 值与 深度变化的关系。从图 3 中可以看出,在复垦土层 R_I 值很小为轻度污染;复垦层与尾砂交界面 R_I值最大, 为 766, 此处生态危害最大, 为极强污染, 在尾砂和 深部区为中度污染。由此可得出,污染由小到大依次 为复垦土层、深部区、尾砂层、复垦土层与尾砂交接 面。

由以上分析可以看出,单纯覆土复垦的尾矿库虽 然能在一定程度上降低尾矿库重金属的危害,但是其 去除重金属的作用效果不明显,依然会威胁该尾矿库

Fig. 3 Correlation between R_1 and different depths

周边及东江湖的生态安全,应采取有效应对措施去除 或减轻重金属的危害。本文作者建议在复垦土层的基 础上种植超富集植物,利用植物对重金属的吸收富集 达到去除尾矿库重金属的目的,植物的选择以非人食 性的林木或草本为宜。另外,也可采用物理化学方法 去除重金属,鉴于尾矿库的特殊性,宜采取原位修复 措施,如工程防渗墙、PRB 技术等。

4 结论

 大脚岭铅锌尾矿库重金属含量严重超出国家 土壤环境质量标准,重金属在尾矿库各层分布不均匀。
 在复垦土层重金属含量较下层小,但仍超过土壤背景 值。在复垦土层与尾砂层交界面处,重金属出现富集, 浓度达到最大。在尾砂层和深部区,重金属含量较高。
 各层重金属含量由小到大依次为复垦土层、深部区、
 尾砂层、复垦土层与尾砂交界面。

2) 地累积指数法和新的综合指数法评价结果表
 明:各层中重金属污染程度不同,污染程度由小到大

依次为复垦土层、深部区、尾砂层、复垦土层与尾砂 交界面。总的来说, Cu 的污染程度较其它重金属的较 轻, Zn 的污染程度最重, Pb 和 As 的污染程度处在 Cu 和 Zn 的之间。

3) 生态风险指数法评价结果表明:复垦土层生态风险指数最小,为轻污染级别。土层与尾砂交界面处 生态风险指数最大,为极强污染级别,尾砂层和深部 区次之,污染由小到大依次为复垦土层、深部区、尾 砂层、复垦土层与尾砂交接面,总的来说各重金属元 素对 R₁的贡献率由大到小依次为 As、Pb、Zn、Cu。

REFERECES

[1] 周元祥. 安徽铜陵典型尾矿库地球化学和环境地球化学效应[D]. 合肥: 合肥工业大学, 2009: 22-35.

ZHOU Yuan-xiang. Research on geochemical characters and environmental geochemical effects of representative tailings impoundments in the region of Tongling, Anhui province[D]. Hefei: Hefei University of Technology, 2009: 22–35.

- [2] 王道芳. 粤西某矿山周边部分重金属元素的分布状况和迁移 特征[D]. 广州: 广州大学, 2013: 11-18.
 WANG Dao-fang. Distribution and migration characteristics of some heavy metals around one mine, Western Guangdong[D].
 Guangzhou: Guangzhou University, 2013: 11-18.
- [3] 李 飞,黄瑾辉,曾光明,袁兴中,梁 婕,唐晓娇,白 兵, 王晓钰. 基于 Monte-Carlo 模拟的土壤环境重金属污染评价方 法与实例研究[J]. 湖南大学学报(自然科学版), 2013, 40(9): 103-108.

LI Fei, HUANG Jin-hui, ZENG Guang-ming, YUAN Xing-zhong, LIANG Jie, TANG Xiao-jiao, BAI Bing, WANG Xiao-yu. Probabilistics environmental quality assessment method and case study of soil heavy metals based on Monte-Carlo simulation[J]. Journal of Hunan University (Natural Sciences), 2013, 40(9): 103–108.

- [4] MANTA D S, ANGELONE M, BELLANCA A, NERI R, SPROVIERI M. Heavy metals in urban soils: A case study from the city of Palermo(Sicily), Italy[J]. The Science of Total Environment, 2002, 300: 229–243.
- [5] 刘红磊, 尹澄清, 唐运平. 太湖梅梁湾岸边带底泥中重金属的形态与分[J]. 中国环境科学, 2010, 30(3): 389-394.
 LIU Hong-lei, YI Cheng-qing, TANG Yun-ping. Distribution and speciation of heavy metals in sediments at a littoral zone of Meiliang bay of Taihu lake[J]. China Environmental Science, 2010, 30(3): 389-394.
- [6] MA Zong-wei, CHEN Kai, YUAN Zong-wei, BI Jun, LEI Huang. Ecological risk assessment of heavy metals in surface sediments of six major Chinese freshwater lakes[J]. Journal of Environmental Quality, 2013, 42(2): 341–350.
- [7] WANG Pei-fang, LIU Jia-jia, WANG Chao, QIAN Jin, HOU Jun.

Seasonal, spatial distribution and ecological risk assessment of heavy metals in surface sediments from a watershed area in Gonghu Bay in Taihu Lake, China[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2014, 25(4): 605–616.

[8] 包汉峰,杨维薇,张立秋,封 莉. 污泥基活性炭去除水中重 金属离子效能与动力学研究[J].中国环境科学,2013,33(1): 69-74.

BAO Han-feng, YANG Wei-wei, ZHANG Li-qiu, FENG Li. Efficiency and kinetics of heavy metals removal from water by sludge-based activated carbon[J]. China Environmental Science, 2013, 33(1): 69–74.

- [9] MORTON B O, HERNANDEZ A E, GONZALEZ H G, ROMERO F, LOZANO R, BERAMENDI O L E. Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City[J]. Journal of Geochemical Exploration, 2009, 101: 218–224.
- [10] 林绍霞,张晴海,郭 媛,欧阳勇,林昌虎.贵州草海沉淀物 重金属污染特征及潜在生态风险分析[J].农业环境科学学报, 2012, 31(11): 2236-2241.
 LIN Shao-xia, ZHANG Qing-hai, GUO Yuan, OUYANG Yong, LIN Chang-hu. Pollution characteristics and potential ecological risk assessment of heavy metals in sediments of Caohai in Guizhou province[J]. Journal of Agro-Environment Science, 2012, 31(11): 2236-2241.
- [11] 刘 月,董颖博,林 海,陈月芳,于明利.云南某典型锡矿 选矿厂重金属污染特征[J].中国有色金属学报,2014,24(4): 1084-1090.

LIU Yue, DONG Ying-bo, LIN Hai, CHENG Yue-fang, YU Ming-li. Pollution characteristics of heavy metals in typical tin mineral processing plant of Yunnan, China[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(4): 1084–1090.

[12] 方雪娟. 基于RS和GIS的大冶市金属尾矿库环境风险评价研究——以铜山口铜矿尾矿库为例[D]. 武汉:中国地质大学, 2013:14-23.

FANG Xue-juan. Environmental risk assessment of metal tailing ponds in Daye based on RS and GIS[D]. Wuhan: China University of Geosciences, 2013: 14–23.

[13] 邢 宁,吴平霄,李媛媛,党 志.大宝山尾矿重金属形态及 其潜在迁移能力分析[J].环境工程学报,2011,5(6): 1370-1374.

XING Ning, WU Ping-xiao, LI Yuan-yuan, DANG Zhi. Analysis of chemical forms and potential mobility ability of heavy metals in tailings from Dabaoshan mine[J]. Chinese Journal of Environmental Engineering, 2011, 5(6): 1370–1374.

[14] 何东明, 王晓飞, 陈丽君, 苏 荣. 基于地积累指数法和潜在 生态风险指数法评价广西某蔗田土壤重金属污染[J]. 农业资 源与环境学报, 2014, 31(2): 126-131.
HE Dong-ming, WANG Xiao-fei, CHEN Li-jun, SU Rong. Assessment on heavy metals contaminations of sugarcane soil in

Assessment on heavy metals contaminations of sugarcane soil in Guangxi province by the Geo-accumulation index and potential ecological risk index[J]. Journal of Agricultural Resources and Environment, 2014, 31(2): 126–131.

- [15] CHENG Jie-liang, SHI Zhou, ZHU You-wei. Assessment and mapping of environmental quality in agricultural soils of Zhejiang province, China[J]. Journal of Environmental Science, 2007, 19: 50–54.
- [16] 叶 琛,李思悦,张全发. 三峡库区消落区表层土壤重金属 污染评价及源解析[J]. 中国农业生态学报, 2011, 19(1): 146-149.
 YE Chen, LI Si-yue, ZHANG Quan-fa. Sources and assessment of heavy metal contamination in the water-level fluctuation zone of the Three Gorges Reservoir[J]. Chinese Journal of Eco-Agriculture, 2011, 19(1): 146-149.
- [17] HAKANSON L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980, 14(8): 975–1001.
- [18] 王 捷,刘桂建,方 婷,袁自娇.基于污染负荷指数法评价 淮河(安徽段)底泥中重金属污染研究[J].中国科学技术大学 学报,2013,43(2):97-103.

WANG Jie, LIU Gui-jian, FNAG Ting, YUAN Zi-jiao. Assessment of pollution characteristics of heavy metals in the sediments of Huaihe river (Anhui section) by pollution load index[J]. Journal of University of Science and Technology of China, 2013, 43(2): 97–103.

- [19] 孙 悦, 舒 帆, 郝 伟, 李 丽, 孙卫玲. 典型 Pb/Zn 矿区 土壤重金属污染特征与 Pb 同位素源解析[J]. 环境科学, 2011, 32(4): 1146-1153.
 SUN Yue, SHU Fan, HAO Wei, LI Li, SUN Wei-ling. Heavy metal contamination and Pb isotopic composition in natural soils around a Pb/Zn mining and smelting area[J]. Environmental Science, 2011, 32(4): 1146-1153.
- [20] 卢岚岚,刘桂建,王兴明,王 婕.淮南顾桥矿土壤环境中微量元素的分布及其生态风险评价[J].中国科学技术大学学报,2014,44(2):112-118,170.
 LU Lan-lan, LIU Gui-jian, WANG Xing-ming, WANG Jie.

Distribution and ecological risk assessment of trace elements in mining soil in Guqiao coal mine, Huainan coalfield[J]. Journal of University of Science and Technology of China, 2014, 44(2): 112–118, 170.

[21] 雷建国,陈志良,刘千钧,彭晓春,蒋晓璐,欧英娟,周 鼎, 李方鸿. 广州郊区土壤重金属污染程度及潜在生态危害评价
[J].中国环境科学, 2013, 33(S1): 49-53.
LEI Jian-guo, CHEN Zhi-liang, LIU Qian-jun, PENG Xiao-chun, JIANG Xiao-lu, OU Ying-juan, ZHOU Ding, LI Fang-hong. The assessment of polluted degree and potential ecological hazards of heavy metals in suburban soil of Guangzhou city[J]. China Environmental Science, 2013, 33(S1): 49-53.

(编辑 李艳红)