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Abstract: Taking Au-Cu system as an example and being guided by systematoic science philosophy, the following
contents are introduced: the alloy gene (AG) sequences and Gibbs energy transmission function of AG-holographic
information; equilibrium and subequilibrium transmission models on disordering AuCul( A?“Af“) compound; the
equilibrium holographic network phase diagrams (HNP) of AuzCu-, AuCu- and AuCus-type sublattice systems. The
buleprints to predicate holographic information for designing advanced alloys are the equilibrium and subequilibrium

HNP-diagrams of Au-Cu system, which describe the relationships among component, composition, structure, properties
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and temperature. The road algorithms to realize network, information and intelligence designing advanced alloys are that

“basic component system — AG-sequences — equilibrium HNP-diagrams of sublattice systems —equilibrium and

subequilibrium HNP-diagrams of alloy system—AG-engineering—holographic knowledge and database”, which is

called as the holographic alloy positioning design system (HAPDS).

Key words: Au-Cu system; alloy gene sequences; equilibrium and subequilibrium holographic network phase diagrams;

holographic alloy positioning design system; systematic metal materials science
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Fig. 1 Three structural unit sequences: (a) Basic coordination cluster sequences and AG-sequences: Bé*“--- B?“---B{;“,

BS B BSY and ANV APV ABY, AS AU AS" 5 (b) Characteristic  crystal-sequences:  Cgt---Cit---Chy*
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Fig. 2 AG-characteristic crystals theory and AG-properties: (a) AG-theory based on experimental techniques or the first-principles
electron theory of alloys; (b), (¢) AG potential energies giA“ and gl-c iA“ and vl.Cu sequences; (d), (e)

Potential energy curves of alloy genes: Wi (r)---W " (r)---5 (r), WS (r)--- W, (r)--- W (r) 5 (), (2) Gibbs energy levels:
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Fig4 AG! —T -x EHNP diagrams and TAG“‘ —x EHNP diagrams of Au;Cu-, AuCu- and AuCu;-type sublattice system: (a)
Three-dimension AG" —7 —x EHNP diagrams of Au;Cu-type sublattice system; (b) 7—x equilibrium phase diagram with
iso-mixed Gibbs energy TAGm —x curves of Au;Cu-type sublattice system; (c) Three-dimension AG." —7 —x EHNP diagrams of
AuCu-type sublattice system; (d) 7—x equilibrium phase diagram with iso-mixed Gibbs energy TAG"‘ —x curves of AuCu-type

sublattice system; (e) Three-dimension AG." —7 —x EHNP diagrams of AuCu;-type sublattice system; (f) T—x equilibrium phase

diagram with iso-mixed Gibbs energy TAGm —x curves of AuCu;-type sublattice system
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Fig. 5 o,-T-x EHNP and 7 -x EHNP diagrams of Au3Cu-, AuCu- and AuCu;-types sublattice system: (a)
Three-dimension ¢, —7 —x EHNP diagrams of Au;Cu-type sublattice system; (b) 7—x equilibrium phase diagram with iso-order
degree T —x curves of AuzCu-type sublattice system; (c) Three-dimension o, —7 —x EHNP diagrams of AuCu-type sublattice
system; (d) 7—x equilibrium phase diagram with iso-order degree 7 —x curves of AuCu-type sublattice system; (e)
Three-dimension o, —7 —x EHNP diagrams of AuCu;-type sublattice system; (f) 7—x equilibrium phase diagram with iso-order

degree T —x curves of AuCus-type sublattice system



2807

x—T and

Au _
ie

wH

IpSjEava

r

A

(=
=
(=]
(o))
2
(=]
o
3 = S
(=3
g 2 . .
A S =
(=] 3
nuu s x@ .o,., \ X 7
ANRSRINKKY -}
| a LOONON RN S
7 : LNSIOSHNNIRR RO
QRIS LR © SN o B = ..ow....:.z:..:.:::.... =
Ly s\l
B i s he QR =
: XA :::.ﬂ.m 00 = XXX
XKL = S - EOROONAAIMKKENRY” =
XXX % S AR KLY
5 RORAXKN S
& m; ,,,,,, i R S

W o, -T—-x B

EES

’

V=T —x FHTZE AT, T

x—T diagrams of Au;Cu-type alloy;
Gr-T-x (

Cu _
ie
(e), (f) Three-dimension x!
Cu
xi,e

Ak AR RSATE A 4R A e R S TR RS

I, 55

100-

FHE

.

T and x;

Au
1, —X=

(b) Three-dimension

s

type alloy;

—x—T diagrams of AuCu

Cu
1,

—x-T and x;

Au
Ly

type alloy

@ H 7 A

GM T BRI 2 4

ib]

T —x )M

Au _Cu
ie ’xi,e )_

(x;

Vi g, - T

X

s
=

J

x FAZAREI LI D). e

ZANE TP Au-Cu 1545 28 G0 1 V- R~ 199 2%

P B it o

2y
ZN

vt i e i

it

il

12)

Au
ie >

@ M (x;

25 &5 10

4) FAHAE 4 PR A
FOP AG™ - T — x M AIE
@© P AGT -T
SR AR A,

BV g, - T BAR K. T A SRR R
FURE IR -

I

Fig.6 AG-concentration EHNP diagrams: (a)
=

xlce“ —x—T diagrams of AuCu;

(¢), (d) Three-dimension x:

/4



2808 PR R AR

2015410 A

A G SRS R LR BYRT 28 5
SAENHS I BB " LI F. EfIpmERE &
MBS BT 5 Au-Cu 5 < 2 11T 4 5 2% AT
%

3 ZHESEFRFHHETEER

31 Au-CuGERHIFRS Gibbs 8T, , —x FE&M

KR

FCC BEAM 1 Au-Cu REA 4 N5e4 4 AIFH
Au;Cu. AuCu Fll AuCus VA% T AH UL K FCC JEAHE
TP . AR Gibbs it AG —x MR T-HTAT AT
ik, #AL T Au-Cu RIFTEA Gibbs it AG™ — EHNP
FHEST, SaHE A =4E AG™ —T —x Fl 3 A 4Efesy
TR SRR A Gibbs BRI T, ., —x, SFHITN
AGY =T, Z5 1 AGY —x WL AR . ey
PAF=YE g —T —x THINEAHEIFD 3 AN "Ykq, T
T, —x~ qp—x THIMEHME. XE, ¢ CREER
T2, LLRAT R (o YRE BRI (M, x ™)
P LA 25 A RFERIThRE . B 7() F1(b) 43 31
w7 T\ =X AT, —x V1T 25 AH 1

%iﬁm\\

T g =
\\.\\\\‘ \ : p G
\ \\ \4 N g
\
600
|
b 500 |
(¢}
3400} 1‘ A
300 \ 5 =
2001 \ g 870531

100 [ 6000 -1250

000"

=4
-8664.99 2
<

6000
[ -5000

50 60 70 80 90 100

xcu/%

010 20 30 40

850 ——
800} (b)

700} e &

600 7 VSR
Carssd | o %
v : : :

¥ 500}
Sa00f
300}
200}
100}

> /0.9629 095\ /o095 0.9593

50 60 70 80 90 100

xcu/%

0~ 10 20 30 40
B 7 Au-Cu &[] EHNP AHE
Fig. 7 EHNP diagrams of Au-Cu system: (a) TAG“‘ —-x
EHNP diagram; (b) 7, —x EHNP diagram

PIBLT, ., —x VUM B, 141 Au-Cu 45
AR E A E LB 7(a) ) T ERHE(A T 2
JLICHR[9]):

@ FHJ¥ AuzCu, AuCu Fl AuCu; UV T4 56
Je AR TE) PR AH B e el = B A Il Al B2 7, — x ith 420
J, AAEEXUHIX . IE4 R 5 SR .

@ ANFE A ZIE] R SEAE X TR AR A4 o3
It TPB(AG:%CH»’C) A Tpg (AGRucusX) 5 Tpp(AGRycys )
R Ty (AGy, ) - IV SRt o LT AL
BUARIEAFIX, A il S0 e v U0 B4R 7 1R XUAH
A X

® (0T, —x FHIRGHIE AU b, %
T — x SBPG L, ARSR P AT K B2 AT & Gibbs
HE o

@ K T>0W, ARFPaar RN Bkt
A%, 0 AusCu. AuCu 1 AuCu; H& PRI FER 41
(AP) A"~ ARUAS T AB (A5, SR IES B

32 Au-Cu 5 Z T &2 EMEHEERT) 8

O G& R T EMSHE R E R &
T AR RN S A e E R T B .
SEOURH DX A — A U, i TR AR B
HEM 3 NZRTHEEESEHINESER: &4
MY R SilE, AP IR S, DL
B ERT A BT B4 AR R AR R
Ga R NHEAN SR DLRRE— A AT G S DR K
JE . RSN A BRSOk T AR
I P25 AR BT 0B G B Il AR A RSP 4 R B A2

.

@ B R T4 E ML AT R S 7 A B R
iy 2 S5 A 25 A P RO AR HE AN i

@ A ROTT 4 B P A AR R T AR T
SRR L A R SRR A -

4 ZHEAEARTTEEEMKHEE—
AEEEERT EEERAR

41 SEEFEFHETMITTELEMEEEE
4.1.1 AP WP AR AR FUE X

“ AR GEANUEAT MR A BT AL IR 4
WIRGERIRE ST, I HATIE MR S A 5E) A6 el A2 45 4
HIHLI s R BA TR I ARGk 2 AR AR B /12
e A7 — JoP WP HT AR A € SOt s 2%



F25 BH 10

P, A SRR SR MZOHEM SR AR iR SR RS 2809

Bt NEII, A S IER MBI EERT Gibbs fELL ] AL
BUmARE, H 55 Gibbs AEL KA &L I MER (R )
FEANRE DA, N BRI R (85 ¥4 ) K E)- Gibbs
REAN G G AR A 1 « HAREE— A8 H” (RA-SA)HL
HIILIRHER) TR A, fHH Gibbs REERARm T T4
7% Gibbs feE 1.
4.12  AuCul( 43" A5 YL AW T AL S B 47 1 42
L 5 i 4% )

EEA T — ToIF AR S A% L A S I AR i
B Gibbs REME-FA 7720, R E M AR
PEVENIZE— a6 . BL A8 A4S T3 D 4L & i
AuCul( 4" AT WA I IFAL SL R e 2 i, A4
T 3IANRIM ATk #—, KRI AuCul( 45" 45")
A WA Ul A A DR 5 ) B PR ¥ R 0 VA R T
AR R AP SEIN B R KR ah g, & S
ToFPAL SR B A T . B, A SRR
GV AL T R L AuCul( 43" A )iE N AR 4k
R SR T ST B S B & SR 1) “RA-SA”
PUE, BB “ ity arE” 0 skt
(P A s SR =, &S BRI Ge v o AR AE
TR TG A R T AR A “ AR BE TR 7, “ AR AT P L
AN BRARLIE 7o R IR AR R T 90 I SR EE T, 2
LRI T3 SRR R I T B A i I - T
IR AR IR 330 S 0% 7, BB G “Retro 2487 %
PR A S0 B AR 1) & G SRR R R R, AL T —
BT A B 28 B AR E LR G.2). B 8 R T
AuCul( 4™ A7 YA PITE T IR £ 4 56 DR i P R B e
PP (AR BT AT G2).

4.1.3 S0P T AR 1) A i R DR R R RV 1 5
e

1) JE AR K S AR i, TR
PP 4 R R 2% AR 1R

@©  “TRA IS S IR B

M TH WM E 4L, EFHSEHTE
(AH. , —T) MEZEI R 2246 (AH, - T) S25 ik 4e, B
JE AR T (0, —T) #4e . & & H WK
(2, — T) B ARRARNE T (g, —T) 4 B %%
(AH. ,—T)—> (AH ~T) > (o, ~T)—>

(M) —T) > (g —T)

@  “URA ARSI A5 A 4 B DRI IR

S R A e, T ST R
(A, =T) MEE R (A, - T) SEigte, B
M4k 3K 19 4 0% B (o, -T) « & 4 3 Wk &

(P X ) = T) FIEABTER (g5, — T) 42 R4 12
Il
(Avg"x’o -T)—> (Avsrf'x ~T)—> (o, -T)—>
(M5 =T > (g = T) -
© A S o W 0 A o DR o BRI
A TY A A 4, 15T (o — T) M
Libl (0 s — T) SEHRERAR, B ARARFE A 4 S B I
(X, = T) RHARYE R (g, - T) 4B M4 17
Il
(05 =) > (x5 ~T) > (g = T)
2) WRHE A 4 SR P BRI IR, T 48 7% S0 B 20 1)
AN, ol A FE T2 A R R e
3) I RL A TR KL A E, A3k
NG Y SN P A & RSN i1

4.2 Au-Cu 8 & ZMTFEEEMLESHNP)E
42.1 Au-Cu &4 RIEA Gibbs At AG™ — SHNP A1

(AL

P55 AGR —x IR “A8 ik (8
FRA “E(EE0FE7 Y@ T Au-Cu RIEA Gibbs fE
AG™ — SHNP AHEPL, BN =4EAG™ ~T —x .
ST AR B (L P 9a)) Rl 3 S 4 P B3 AT P 2T
& Gibbs BEMT, ., —x, FFRAMAGT T, M
AGT —x WZHE . eI kE =4iq-T—x f1—
Yeqg,-T. T, -x. q,—T W FHEMEHIE, XH,
g REAERT )2V, UL T (o YFIGa 3 %K
JBE (M x ) o BRI A & A A S RE . L
T, on =X WTHEEATEI LI 9(b)) R T, —x V-
W25 AH I (LB 9(e) til, 4 Au-Cu &4 R T4
A 5L 0 288 A S 1) 2 SRR <

@ A AusCu. AuCu F1 AuCus BV A& 40 576
J A TR) PR AR S 46 = B SR ARG SR T, —x M2k
%, AEEA A TC P ARIAE XA X . b4 S
LRI ZR Y5

@ RIS, AN A A Z AL “ P A3
X7, 0 KK, FRTHR AusCus AuCu Fl AuCus
TR TR AR DX B B o3 43 0 A < 18.875%~36.20.%
Cu. 36.20%~63.05%Cu 1 63.05%~81.125%Cu. It4k
SRR PRI S I £ SR LI 9(d))*2: 21%~36.8%
Cu. 36.8%~62.5%Cu 1 62.5%~79.5%Cu.

@ AuCu Fl AuCuy BYF 74 4 1 S50 Bk AL
T, (x) O AR A S B T S ST P T —x
TR, SCIBEEATEE o) RSN 0.6< o) <
0.8, &H5HSTIEE R —F 0,



2810 rpE AT 4 2R 20154F 10 H

X%

X%

xAY%

161 . 16/ :
0=0.807
14+ < ] 14+ 0=0.807 1
0=0.4545 e
< 12 ~ N ] © 7 A 1
= 1o 0=0.4545 | S gl SRR 6=0.000 ]
2. S, e
"o C 0807 | | |
0=0. o
6l =0.000 ] o o087 |
4 : . 4 Y ]
B Y
T 0=0.4545 1 2t 0=0.4545 |
0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12

i (The number of Gibbs energy levels) i (The number of Gibbs energy levels)

8  AuCul( A" A7 YW E WAL I £ G FE IR R BE R e A

Fig. 8 x™ and x™" concentrations for tracking path on disordering AuCul( 42" A" ): (a), (b) As 0.990< &, <1, x™ and

1

xS concentration distributions; (c), (d) As 0.925< o, <0.990, x™ and x® concentration distributions; (e), (f) As

i i i
0.807< o, <0.925, x* and x* concentration distributions; (g), (h) As o; =0.807— o, =0.445, x/ and x*

i i i i

concentration distributions (introduced from Ref. [6])



25 &5 10

PHEIY, 5. SRR ARG RS RS e B ST AR

2811

AG™-AGE:. /(J-mol™)

850 ———————————
800 (c) 82
]

700 o
600 -

TAGm/K
N
(=3
S
*
+

300 | LS
2001 fI3
100 | /&

')
L]
=

!

850
800 r

700 f
600 |

070
%3.06

20 30 40 50 60 70
3622 x /% 63.06

B9 Au-Cu R4 5 M 45 AH(SHNP) ]

80 90 100

700 . : ; ; ‘
(d) + 316w disorder @%ﬁ

O 31GruAu,Cu g -
6501 O 32Leb disorder & =2 3

< 32LebAuCu b \v} 5

- 57Bat o
600- % T1Lut 3 & T

<{ 55Rhi CuAu & b

4 54Jau &

</ 540ri sg

é 550+ £ 55Rhi CuAu 5
o
D~ M
On+% *
O 9‘%
Soll +[ Au,Cu-type AuCu-type AuCu ;type
- T ROdimit LRO-limit LRO-limit

* 18.88.36 8at.94 36.68-63.05at% B3.05-81.13at %

400 : . . . L i . . .
0 10 20 30 40 50 60 70 80 90 100
xCu/%

Fig. 9 SHNP diagrams of Au-Cu system: (a) (AG™ —AGp,)—T —x SHNP diagram; (b) TAGm — x SHNP diagram; (c) T, —x

SHNP diagram; (d) Experimental jumping T;(x) temperatures, erroneously considered as equilibrium critical T, temperatures

from Ref. [23], and experimental limit composition ranges of long range ordered (LRO) Au;Cu-, AuCu- and AuCu;-type at room

temperature

@ T AuCu A FEEIAITARAIL, 1R
P KAH PSS, I, AN EAEE 2 SE 56 Bk
AR L ISR (KR SEI BT P 1L o (R H
124 0.6< o; <0.8-

SCEIER,  AuCu F1 AuCus LS WA AR A
SR ik 500 K LA by s TR IR EE I E T Ve
W, (EAERFEE)Y. #Rik, 76 SHNP M e “ K
FEA P AR RARX 7, KRR 7 B TT A4k X 7,

CKIEA TR, CHRRA X AT,
422 VA4 B R E AR B L

1) VP-4 4 SR 19 248 A LB A48 1 4 JEL (AL S 2 AT
X, LUK P — TP A8 W T i 4 R M 4255, LT
A D2 AH AR AL (5 AT S Bt T 2

2) “QMAC 1 CALPHAD W5 #H AT F—
TP S R AR R P I AR L T N IR R T,
WAL 7. (1) 5 424 Gibbs fE & EURT Au-Cu Z2AH BB
SEHTREII (LT B.2).

5 2EESEEMNERISEMARSE
(HAPDS)

Wl “ RAERFFT T G E— “ R0
FIVARF R G 2 A5 BAGFR R ot RR G I 484k
AP — “ RGHEARACIT T RE M s, IF
TR 2% 2 B s/ B, AR SO R ST
HAPDS R4, i M A BOR S AR T R B
FEL ML WE RAS AT S ALUES . Bl
BUFH1S, LLHAPDS BB ALy, A4l E 4k,
SR R E TR A5 S AR DG A L ) 22
SRR . Bl I0H . R ILT AR 6 5
Zi s LEE. BG4 NER: © HAPDS R4E
MERMEZIK, EHARGEEMEEE, (5 EREEREE
g ERL, ARk E A G @ HAPDS RE4iH
R ITRFIRR G RN TR(AGE)), ©H&EM. ¥it.



2812

T EA G R AR

20154F 10 H

BOUE HEF NSRRI K. @ HAPDS #4
B, et HAPDS RGeSt AL [ oy, I dilk
HiFEMCO)H Ly, SMMS .y, AGE H», HAPDS
AR5 F(HAPDSI H O A I (HAPDSC) HH A 4 il
@ B EE R LA 2 5 = AEOREE R (1 HAPDS &
Gt/ E . e 2 RGAHNERTH HAPDS &
SRR UL (L 10):

1) MC H 0 (ILE 10(a)) At H = AHARER R 10k £
AL e A 2 AT (CA) St 5Tk
JE(SPYIEE L 7 5 N B A AR LTH S (CO)T:

(2)

' ~ [\Chemical analysis

%5 o EATIEUR FEAR I, T R 215 R 1 1
MC Hdife, AFEIE . 785 R & 2 A
HWA, W .

2) SMMS H(IL K 10(b))%9351w2ﬂ%/%a@
KA . FE AR T HAPDS R4,
PR SRS S, LA R SMMS HEAL
A4 DA S AR B R A BN A1 . SMMS *E
BAE 3ANERIE: HEENAG)HE, &4
AR NS (AGA) FLE M & 4 R A & & A HES

(APA)FEIS . BTN LRI SR R0 R IBEIm , B 1l MY
(b) /’\
AGA-theory

AG-theory

CA-database

AA-database | \

©
Certification

Manufacture

AG-database

Discovery
. Objective database

©

Producing database

Shared information

database

AGE- center HAPDSC-center MC- center

Public policy
database

AGE-database MC-database

B 10 &REE6E Mot 5k &G A
Fig. 10 HAPD headquarters: (a) MC-center and information circulation; (b) SMMS-center and information circulation; (c)

AGE-center and information circulation; (d) HAPDSI-center and information circulation; (¢) HAPDSC-center and information

circulation



F25 BH 10

P, A SRR SR MZOHEM SR AR iR SR RS 2813

2& A5 AR B4 B A S AR B0 FE(HAK),  WHFgT
T,

3) AGE H1.lv HAPDS R4 M k. it &40
PAF BRSO RI—B—5iE—A N7
IR (LK 10(c). AG LTREZEUIEAR G S RLMN
EHNP 1 SHNP AHECH ARG, $EATHO Bk 45
vt, Tt sk aarrtae, T4 T E
R, e el & 2 R AR . et =4k
BRI R AL B RS R E TS © Puikin X
ST SR e A 4, R SEHES SR
W, RN RIR. @ B R
S0V A I O vl i I 2 S CY R T 7 i g
SHIMERES T BRI Z . @ BeE & RIS
Do WP WA, AR R, AR T AL K
MIPERE . 224 IRAS A RN B A5 A7 N 4% 1 1 U
PP X USfE EAE PEAN O, AR AGE-
R EEE 2, AR ZAT TR 13,

4) Ny T a5 HAPDS JLHh (g ug 1y, a0 g ar
HAPDSI F (B 10(d)). ‘& 52 HAPDS JEh {5 &
HR, H AT O W9 D 2 AR TAERE R,
N S AR B S R SE G S A TR A
EARM QPRI @ Vg 37 & rhoo RS20
W E. @ Wi 5 Ao EaE, @
HAPDS SR 5K TR SUFHR TR S5 1AL
B, @ KRR BIE. FEMmEhE R, 55 87E
HAPDS JHbr P, F e izit. ©® g
HAPDS  JEHh H 8 ) 2 AH G FLA 2 TR) 3 2R 1R 19 2845 5
R4, UKSHSBRRNMNSEERR.

5) M Tl HAPDS JLHbkb TR RALRAS, 2420
A7 HAPDSC H(LIE 9(e)), ‘& /& HAPDS F:hh/4E
AP, BRI © —J7 P &5t
K B2 AR R A A 27 00 S —T7
T2 HAPDS Hedt/ A= A1) Bt o (B HEB0R . &0F
FSCAGSE) R OR R DI R, WAL SR AT W)
A T2 352 @ T SR =M R : A4 2
T AR IR ISR TR RS A
BHAE T, e ek DR 7= RO6) AR PR BT R )
Biralk. @5H M LE1E,  ILFTE HAPDS Jih
A b i R KR BRI AT I B k. @ gl ik
M/ AE RIS AT UL I, AL AL 2 H, AL
S AT S TR AL, IRFFEEAAIRES . © il
EFFN DL TREEARN BAPUCEAIHRI, iy —
S I L T AR B R i () NSO © T
HAPD F G rh R 25 AH G IR A B P 1B
A 43 R 7 R

6 XTRGERFEFSITUERRIITIE

AR R E S e, 2T RGER T
AN T RERE TR C RFEIR 7. el
AMYEH “HEE7. “Had” MG B, A
B A IE O ZE IR 23 0] o 5 20080 22 AR 27 S UE W e
P IERA, “ i B 0] - TF ol RGBT 2 SR B,
O MR BT RGRER A LN,

WA RGFHET 2T A, AU A
NLT SMMS HERE, 1 HAEZR T “Ibie” AR
QMAC &4 M H FHE . QMAC # /)24 A1 CALPHAD
PSP AELE ) )L FITLL SMMS HEALEHE L T 94
2R IC A A ) SR iy SRR S ) BRI HLE

1) K38 RGFFA 220 R ARy il —“ B
FRGE I REARNE F 5 KT 25 R R 5 22 J2 P EANAS ] &5
FJZIRZ D) AR T2 1) DL B 546 5 1 i ) (1) A
KPR, EAL T A 3 ANEIR SMMS AESER): REfE
JRF A AR T 450, ARIRRE I 7/ 4 A
FEpgEHe, ARAHHESZ R . e — T —
FMAHH ORI B R R . “IBJRIE 7 BAREE LY
QMAC &4 M FHE . QMAC # /)24 A1 CALPHAD
)2 TR B REE SR A A RZ K BT AN
B RGHE.

2) MK RGBT 0 FR G 5 K 22 Rk i i —
“CRGG Z RPN T AR G R B B rh AR
JEIA A RS 7, SMMS HEZE rh R 7] J2 7B K
AN RoFHY: © RAEAIN BT, Sl
PEHL - WL PRI AR T B “ T A R TR
FERRFAE R /A SR R T 850 . PR b2 AR
VR @ RHASAE R TE. Y8,
T 25 PR T R AR SR & e S P A R A 4
AR AE SR HER SR RO R 2R . BT A4
RYGh I ERRR” RHEEARLG RIS @ KA
HAH Gibbs e RIAHMERE) “HEAHTFH)” #idE
SR A S AHHES R APE BT 2R

2 “HMIRTFRET I 1, R 4 M ETH
FEIR A TP AR B b T S R AR
S ZEEE, JERME R . R, 2R TFRE
& &R % T, QMAC HSIIRR A s 7 i
4 B AR A T R A R A B I
FHIEAS R)RAR & SAH M E5 1 2 FEME A I 22
WRGET, AEJZRNR AR Roc. i,
TR A A X PRI T s B R UF 2R



2814 PR R AR

2015410 A

MAFER AT BF—R P EUR () —d
WL 25 K6 R (Fr ), A RESRAF L . BUAR B A4 N 5%
IR B AR e B X AT il, HI8LLk
Wert 2.,

AP A S LU, fE QMAC 2R
CALPHAD #y 2 R« 4 C Ji 17 e R 1t
A TR T 7 75, AR IO PR /34010 « &
FEICREA) 7 1, BT TARBE R ] AusCu((44™); 45™),
AusCu( 43" AS)H AuCus( 4D (AT &P PR T
R ZEFIHAE E).

3) WK RGBT R G R R i i —
“CRGNE TR A N IR G BC R A  T bE
SRR T, AT T H &R %H 3 AR
AL R R © BRIE BT/ A S R 0 LT 45
YA VR, B O L A A1 IR AL
TR “RAE A 2 5 AR HAE e ae sk 0 3K
@ HEMIME 4N Gibbs AL/ Bk HE A
“&r 4 5L Gibbs BB 7 T Gibbs AEZL M /R
SR EZ MR, HE S HA S
Gibbs B8 G(x,T) HREUE &KL Gibbs B8 1L Hi bR
B, e RRA A Gibbs BE(G). 4IEHM(SS) HF
JE (o YRIE BRI BECY xRy x ™ )5 sy Rl
JEMISE R . A4FEN Gibbs REMIAE T XA PRl
/I Gibbs e A1 P-4 577 A & T P4 Gibbs fig
AR . B “ IR/ Gibbs R8PS A2
ORI CSG T RGR A, TRA AR 7 R4
RIS TRR B MR ERVE”, W] 2y R A3 B AR & 4 R 4t
(1) 31 5 AW P i 4 D KA s AG™ —x—T
S—x-T, o-x-T, YxM-x-T, Y x*-x-T,
DA R T T (q) M) g —x =T W Z5 A1 . A4
S ox=T, Yt —x—T M HE RGN
BIFF, B AG HEA SRS, AR S AR PR
P-4 A SRR AE AN 5 5 B PR FE IR G &R,
AG FFFINBEERIE, W IRAF B S AH R 11 R~ G
WX 2 SE R (OB F) s o 2 R BRI 5 15 23 R FE 1)
KR EANSE ST PN G 4 g R AP oy 1 2
AR O ZAHE 4 28 0 Tty A0~ 4 JEL 9 2 AH
B, 2359 A S HZEIE Gibbs BE AG — x B BRI Gibbs
REFLAT R VE” A1 “Gibbs HEAT MBI 315

£ QMAC #ligd, RHHBHHETFRETH
Schrodinger 77 FEAE N 2 J5FRAEM & AR T
TA5 AR R, EATTRES A S G(x, T) iR
()AL S (x,T) hEL(6). 75 QMAC #AJ12%FI

CALPHAD # 712, MAITARREE S R RR 4105 1
R “HFE )R T[] Gibbs BEZL” F1 “ 5 )& Gibbs
RE IR HE 7 I PORE 2”5 B R 3 06 3R (T
B, SIS A Gibbs RSB, FTLL, AR
FH AN 2 58 3 5 L IP) Gibbs BERR K

4) Hells RARFAIT 22 RGO I iy —“ 45 4
YO HERT, MO N IREL, REIMCARLE R, A 1d
TG —a (W, WM, ZEW)—EREW)
L, Ak, O IR R ORI ) R G AR
KRB R A R AT . A Uy BB R T MG
PRI R A SR PR s R BE A SeE A A SR
FRALTUON — .72 W0 — 7 W AH ELAH SCHR 1) R G AR
RIER AN A BB BRI, DLR
SRV LS B B (DNt b 6/ L) U 5 Sy NP 1 Na 1
T JE BRI

5) WKHE RO R ET ) ) i —C R MEA
PR AT ARG R e Ty, AT TG N IR AR
TSR S5 R ML AR SIZE R S 06 B A 1 A 4
DR P BRERYE, 7R T SR F7—Jo P -V i A2 1)
AT 9), 313 T HHARS) 1 2 J7 I T RSB R
B, AL A GAHAR SN ) 2 RIS 4 JEL Y 45 AH ] B
SE TR ORI AuCul( 4" A4S Y S BT
A ARFE SR RE I BE 1A T A S ] 4 A0 A"
I ABHE B e 1 IRBhRE, & S EOLe A P —
HIFHAL W T HT52E . @RI AuCul( A8 A5 Wty
W3 I P PN SR B B LS A G D LRI
WA (RA-SAWLE, & FEOE g
SYRIGETE A I IR R S S5 R (AuCull) e @K INAF
PEBRAS A G 3L (I A2 . AN L AT R ASY &4t
PR 2 A8 R AT TREIT AR/ SIYIE I B, BhAs
BEIENMIRE BT, U R IR A
(RIS T S LPIREIR N IR L),
BtiJG, Wil A8 A0 A TR, BiA ST RN
BAG, RA: RS HFNRERC” 1“7 %,
CERBER— LTI R AT S . B
T, 2B S xS P o) (AuCu &I o) &)
A O8)YRUINHGH LS v (K% @RI ARG 5 b,
7 BRARIRE 2 BT e AR /N, BRI R 5] Gibbs
BB, BARR RS @A, Mt W T AR G
%7, B “Retro-effect”. &K IAE QMAC #
22 CALPHAD # ) %4H, Kilh BEAK R 2218784k 5 | ik
AR ILGAL R P A AR S — A ARG LR 7.
UK A P — 0 Fp e A2 (R B AR MR 7 U DA A 1y R



F25 BH 10

P, A SRR SR MZOHEM SR AR iR SR RS 2815

T, . RE, AbATEE 1 Au-Cu R 554411 Gibbs
BE SR BRI PR R IR . @RI “ LR &4
FEDRR B R W) S A A SR 2 A Al
SRATFIIARR, LA R T~ 4 JE 9 2 A P A R e S
6) MKHE RGERH AT I ) fwd— RG0S A
BRI R G5 BRI S5t 0 3R G R AR A, i il —
“CRGUHARALVAR T RGN SOE R RO/
R, AREA R E# S AN MC. SMMS,
AGE. HAPDSI F1 HAPDC H.0h)AHE RELT HAPDS
RYHS, EREIE R T h 3 AN EOHE T A,
S T RIS ) A AR SR MGL I i “ 4
BHHEL”, IR S AU R AR % AL,
7) AR RGBT A MBI A —
Y IRAFIEARVL” , BRATLL Au-Cu &4 RN, A7
T —4%H 23 MEEMDELR TR & 8 R 5 M
O TG — S TR R B ER B e A R
AR i, ARUSEA AR Au F Cu 44 & L AR
I R BEIEE 24 Ll AuCu F1 AuCus th &4
(10 25 RS R AR AR R BE R AR AY, i & G R DN 4
IR — G IR DE B R R — 2 S SRS 1)
Gibbs AEATFF AL AT Gibbs REAT A A{E Ik, AT
Au-Cu Z IR KT H I 2 DL R8RS 4 4 JEL 9 28 AH
Blo TN D sl A B AT R A% R, 3] U % A
AR I BETT A 1R 45 R (O 022 00 22 ) R e (4
L AbAE 35, USSR REBEMR S AR IR
A0 P 4 KU AR PO, QMAC & 4L T HTE
QMAC # )% A1 CALPHAD #J)2% R HAT T fg
8) “HBIAR” 1) TR 1 A7 e ) R
FEAE
GBI BRRE R I B AE A RN E
MBI, R BRI, B ARy
FESY, ZEHEAS 18 4l A1 NEWTON)KIGI “ i
Rr2E” drgeia My, A EORBUSAE G “ 9B
VOB TIRK — AN . 1801 4F, FHEMI KT
Wkl W7 MRTCH R EHCE 20 246, &
TR AL R M B KA 35 4, A2 I R SRR
A% HL(C. NAGELD) 7 & 45 o 18 1 F 418 /R (.
MAYER)AZA % “Hem P e @7 MR g e
FE| ) B 2 55k R AR EE Y (H. HELMHALTZ) M 3745 31 1)
“He sPIEE iy, ARG (IH 50 A 5D
M) = 4 BEARIE 2 (J. POGGENDORFF)HE4 K 3. HfH
FHEAEY(E. JENNER)WISTIE 30 4F, KB T &
FORT ET NAEar i A Bep:, Sel T IR

AR R R . FH BB KPR % 2 (LE
BOLTZMANN) A 12 18 52 Flopf i xfE , 1 e Bl 7R
Wi, AR B,

R 5K . W E 5D S (M. FARADAY)
WA U NS AR K M DR AE A AT A S A
TR B A PAFIE AR, — B AR A A T 2
(R TRDERAG,  JS2 3X AN 7 REAR R 2 1 LA B3 7
Z A I P 5 3% B 5E (M. PLANCK)AR S H (1 5 4
i, fEH Al AR B A el vl ik
G P JSO0) 5 AT LB AR I SR, Wb )R R B T
RO T RE T AR U T AR KR T 7 At
(3K B ANFR R M B o SR B o GK IR SCHE (Fhike
B —Prg A — BRI IR “ R EAME A
P LA AT HE Hh (05 T A R L, (HAE AN BE
R RO LA 2256 1 H AR =2, U ARATTI Sk i
FEWE T ARSI H o S B s AT S R BT
MGEBIIE KA AR T I FEEeeeeee o BRI, FRATWIR
fFOMREARN, WEHARIHE BREH, AT
AT LEEIEA™ [l [T AN 7 1T 7 o

JUT ARG T, AEFRATARE] “ A7 1)
R DA ERR T 52 1 A 035 B v B B, BOEA R/ L A
F, AR N . BRI By
AR AR T 2 A RS A AT L4 Ty
B RO E R WS 1 AR LT VAT RN SRS E LR e e S
MR R AR IR N 2. S — 5T, TR
FERIFTBUR ARG, SR 2 MBI SCRF. 4k
SRR “HER” RIS, %44
PR IL R A R AR A (BLIE) B 27 A SR RIAL gl
P EEZABATT AT A R S PPN 250 2 R i v R b o
XUk, AT R O AR BE DT, M RS
o, BRI R Ty, R IZ MR R ETE
FURR AR 205 B T H A BRI FE ] | BUR A
SRR R TR SRR A TR

7 it

1) 24 HEBRAL IR S5 7 T b O R S 7, e
BT LR BRI, Yol G A
PEIRHEAR S5 70 . 554, QMAC Rl CALPHAD Jt
RIS AT R AR, AR 6 1 5T 5
GErp IR T AT 40 RS R B4 TR T
S TGS TR IE I T, LU 2 e MR A e



2816 PR R AR

2015410 A

AR A G RE PRGN IC. MATEARINRE
AR MR R G 1) BE A K FA T R R g AT
MELRGRF A BT S .

2) A4 HE N Gibbs BEAC 7 bR EUE AR A S AH I R
Sr—Hr AL Gibbs e —G &L M (5 JE Gibbs BEZ
M2l B 2 1) DG R MR 28, H e 5 B 4 AH 1Y) Gibbs
RE bR B2 B 4 FE A Gibbs REIIAEHR RS 24, QMAC
A CALPHAD JL A A FTE AT AN IR ER FH 47T
JE IR R DR AR T dICR X AR 7
@ 7 Frig i “Gibbs fE7 pRECESAS L 5 32 LI
Gibbs AERREL, 45iM9HTGI Gibbs RE S5 ALAMBAT
R IPINE

3) KA A — T VA A R A O SUFT 85z /)
Gibbs AEM 1275 (A 4 FE M Gibbs AE P irfE 47 ), &
SETERE R () B A A B ERE (), AT (o )R
JE(D R =Yt g, . —o—T M"Yk g, —T T4
W) 2 s 12 P o B IS AT R T B S e R 4
ge —x-TM3IN_Yig, ,~T q.r—x M, —xFH
ARG HIIE o T4 2 5 R0 4% B 1 B R 4 S I 4 4
B, IRk AT A A R AR . B4
QMAC F1 CALPHAD J:[FAMIBFFEAT M AR &
GEN, ARBEAT A 4 AL M Gibbs figfkik g, M
AN REZE A 7 — TG T A AR TR AR T e RN g A7 P
HESRNARBMEAE, ARETAI & 1
ENINE AP I

4) AT — JC I P18 2 AR PR AR J5 i SRS
RS BEAR I B S L D IR P PR (B 43 F Gibbs
REEST At ), LT =4k g, —o-T M4t
G — T YT B 2% R AR I o B0 ) S SAl &
BRM =Yg, —x-T M3 "Yq, T qor—x A
T, ,—x SHNP o G P-4 5 100 2% 8 42 < RIIE
A D ZS AR, AN BT G S P A TR 46
FPERR. 24, CALPHAD Al QMAC LA I 7T &
AT AR T A G R DR R 58 S 00 B AR R RV, T A S B
WU A AL BT AL SR 3 (P B 5L 5 A A A 4R ) 2 -1l
PG © B R F AR R R R AR L T3 LA
AR AL IR SRR T, » VA SR BT P o R
i, 0P T AuCu A IE R 2 0.8, LA S B 5
CA b B+ AR B U B I A A R P . @) i
WK 5 Y RIRIIBR AR T — x SR A P AR R
FEAZ IR M ALk . @ AR HUE (RA-SA)BLEISHE
HAG “HARIRG” A ARG PR P ge vt “ X

WORBEASIME” WA A AR AN G AR LA (1)
AHFLAFE X @ AbATT WA AusCuy AuCu Fl AuCu;,
WA T AL RS AusCus AuCu Al AuCus
AW S E T, 73 A7 T d5 v o AR DL R
AT 1) Gibbs BE B ECH BT IR Y Au-Cu 2T A1
HILAR LR B k] %, h a3
B4 LN A 4R Gibbs REALHRR KL, 1 JLACRE
LEWIRE 1. W) W R TR IR 2 AN m] A 62

5) Mk T 55 Gibbs B8 AGE —x HIZEH “ P
FOMEAEVE” F1“AT MBS, 3l 5L T Au-Cu
Z: ¥ EHNP 1 SHNP AHE . ‘&A1t Sedh& 4 vt At
RIS o sl R — S i, ] PN A 4T
WASHSFHEAT) 3 NEIREALR S ARG SR
4 A5 KRS 4 MY EHNP Fi SHNP A & (148 37,
BB A St SRl “IBsa” m “RRE
X7 AR, JFEI “MgiL” R BRI Wit tiE s
S HBIAC . 24, QMAC F1 CALPHAD & [l 44 (I #)F
FANIA @A LS A S 50T R 1) EHNP Al
SHNP #H &

6) SEIL “MZ b 15 BRI BE R T 50T & 5%
HEE4:7 kAR 2 @7 HAPDS £%:. HAPDS R 4011
JAREERZ “ RGP E 7, HIENRIRE “ REe
JEAELEFE” (SMMS), H RGP TR,
W SR A IEEREET 6 L “A8RE
AL AE ", &4, QMAC Hl CALPHAD & [F4411
AN AR TR BN LI “ M2 ib. 5 BRI fetb &
TSRS HIbEZ 2%

7) AUGEAE L HAPDS RSk /AL
e AU B AR B AR T (B 20T B AR 45 A T T
U, e HEBUNG1S, Ll HAPDS &k
Hl, AP AR, R RHIERE AR LS T
SRS IS S . R AR I . JER S
AL &R ILTTRR 25 4> £ I iz 2L [ 4k . HAPDS
RYIE W/AEH B HAAUESSE: © ek X
LTI SR ek & 4, i Se A AT
WCRI — it — g — N —FFR), AN
R @B A Garwt S5k “u
a7 MR, BRI REAL” AR, B B
HEB) R G ARV R 2 5 G S R TR R R e
@ e FERES G TR RR A7 ORI 26 43
Bic 77 & R AR Z R



525 %4 10 ] P, A SRR SR MZOHEM SR AR iR SR RS 2817

|Zﬁ1l_-|: A: “i%ﬁ{:’;% ” 5 “éﬁg ”

Al SEEESEMEEER

PR RE AR SR 1A% 5 R I BRAE NS DNA 7> 18, "EAHE TAZ R ki, 2ROk BE RSN
AN, CRERIEDIPER A T < LR A1),

Fra b “ AR R B R A BT A RO MR I T (CA), EAFAE T IRCAL 5T T
Oy RPEHE SRR N EARRIC” (L 1) SRR 75 IR ISEL, e BRI
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Table A.1 Valence electron structures (number of free electrons (sg), covalent electrons (s., d;) and non-valent electrons (d,)) ,
volumes(v), potential energies (¢) and single bond radii (R) of alloy genes, cohesive energy (E.), Debye temperatures (¢) and bulk

moduli (B) of characteristic crystals

ce valence electrons in outer shell v/ &/ R/ E./ o/ B/
i d, d, Se St 103 nm® (eVatom™) 10'nm  (Jmol™) K GPa

Au characteristic crystal

C(f“” 3.4013 5.8506 0 1.7481 16.9581 —3.8130 1.3428 368000 165.00 170.99
ci 3.4016  5.8523 0 1.7461 16.9524 —3.8146 1.3426 368162 165.06 171.17
Cf‘” 3.4007 5.8578 0 1.7415 16.9353 —3.8197 1.3423 368647 165.22 171.69
c 3.3995 5.8669 0 1.7336 16.9067 —3.8281 1.3417 369456 165.49 172.58
cM 3.399 5.8793 0 1.7216 16.8667 —3.8398 1.3409 370589 165.87 173.83
ci 3.3994  5.8951 0 1.7055 16.8152 —3.8549 1.3397 372046 166.37 175.45
ci 3.3998 59143 0 1.6859 16.7524 —3.8733 1.3383 373826 166.98 177.46
c 3.4005 5.9368 0 1.6627 16.6780 —3.8951 1.3367 375929 167.70 179.86
c 3.4014 59626 0 1.636 16.5923 —3.9203 1.3348 378357 168.52 182.68
C9Au 3.404 5.9912 0 1.6048 16.4951 —3.9488 1.3326 381108 169.47 185.94
i 3.4074  6.0229 0 1.5698 16.3865 —3.9806 1.3302 384182 170.52 189.67
Cfi‘” 3.4138 6.0569 0 1.5293 16.2665 -4.0159 1.3274 387581 171.70 193.89
che 3.4218  6.0936 0 1.4847 16.1351 —4.0544 1.3244 391303 172.99 198.65
Cu characteristic crystal
st 42877  5.0495 0 1.6628 12.3631 —3.6478 1.1793 352055 345.81 134.68
cr 4.3485 5.0119 0 1.6396 12.3593 -3.6212 1.1782 349491 344.58 133.76
C2C” 4.411 4.9762 0 1.6129 12.3478 —3.5969 1.1768 347150 343.53 133.05
ce 44737 49426 0 1.5837 12.3287 —3.5750 1.1753 345031 342.66 132.56
C4Cu 4.5366 49111 0 1.5523 12.3019 —3.5553 1.1735 343136 341.96 132.27
cs 4.6006  4.8815 0 1.5179 12.2675 —3.5380 1.1715 341463 341.45 132.20
cst 4.6648  4.8540 0 1.4812 12.2254 —3.5230 1.1693 340014 341.10 132.34
cst 47309  4.8282 0 1.4409 12.1757 -3.5103 1.1669 338787 340.96 132.70
CSC“ 4.7982 4.8042 0 1.3976 12.1183 —3.4999 1.1642 337784 340.99 133.28
st 4.866 4.7821 0 1.3519 12.0533 -3.4918 1.1612 337003 341.21 134.09
cy 49345 47618 0 1.3037 11.9807 —3.4860 1.1581 336446 341.61 135.15
CICI“ 5.0053 4.7429 0 1.2519 11.9003 —3.4826 1.1547 336111 342.20 136.44
Ccy 5.0778  4.7254 0 1.1968 11.8124 —3.4814 1.1511 336000 343.00 138.00
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Fig. A.1 Schemes of cell, chromosome and DNA: (a) Scheme of cell structurel®?; (b) Scheme of chromosome!®™; (¢) Scheme from

chromosome to DNA®
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Fig. A.2 Curves of AG-thermodynamic properties in Au-Cu system: (a), (b) Generalized vibration heat capacity curves:
CA“‘Vn-C}‘;“‘V---C;uz‘V s CC“‘V---CS?‘V---CIS“J ; (), (d) Generalized vibration energy curves: UG- .UMY...US™ ,

p.0 p.0
US™ ..U - .US™; (e), () Generalized vibration entropies curves: Si™Y...SAWY...gAmY = gfuv .. gCuv .. gCuv. (g, (h)
Generalized vibration free energy curves: X"V... X AV... x50, xSWY. x Y. x 5™V (i), (j) Enthalpy of formation curves:

HM - HM - HE, HE - H - HS"; (K), (1) Gibbs energy curves: Gg -G -Gy, G -GS -GS
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Fig. B.1 EHNP and SHNP diagrams of Au-Cu system by SMMS, experimental jumping temperatures and calculated phase

diagrams by CALPHAD- and QMAC-thermodynamics: (a) EHNP diagram with iso-order degree T —x curves and experimental

Jjumping T5(x) points®; (b) SHNP diagram with iso-order degree T —x curves and experimental jumping 7j(x) points™; (c) EHNP

diagram with isotherm AG, —x curves; (d) Subequilibrium phase diagram with isotherm AG, —x curves; (e) Experimental

jumping 7 temperatures, erroneously considered as equilibrium critical 7, temperatures

! and experimental limit composition

ranges of long range ordered (LRO) AusCu-, AuCu- and AuCus-type at room temperature™ >¥; (f) Calculated Au-Cu phase

diagram; (g) Calculated Au-Cu phase diagram®"; (h) Calculated Au-Cu phase diagram™*; (i) Calculated Au-Cu phase diagram!
(j) Calculated Au-Cu phase diagram

[66]

[65].
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Fig. C.1 Minimal mixed Gibbs energy AG

m
min

— T path on equilibrium order=disorder transition of stoichiometric Au;Cu alloy:

(a) Iso-order degree Gibbs energy AG.) —T path method; (b) Isothermal Gibbs energy AG; —o path method; (c)

AG(AGn,) — T path on equilibrium order==disorder transition of stoichiometric AusCu alloy; (d) o —T path on equilibrium

order=—disorder transition of stoichiometric Au;Cu alloy
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Fig. C.2 EHNP charts with EHNP curve of the first order thermodynamic properties on disordering Au3Cu((Afu )3 Ag“) : (a)
Three-dimension mixed Gibbs energy AG™ —T —o EHNP chart with AG" —T paths; (b) AG." —T path; (c) Three-dimension
mixed characteristic Gibbs energy AG™ —7 —¢ EHNP chart with AG,™ —T path; (d) AG;™ —T path; (¢) Three-dimension
mixed enthalpy AH™ —T —o EHNP chart with AH' —T path; (f) AH" =T path; (g) Three-dimension mixed potential energy
AE™ —T — o EHNP chart with AE]" —T path; (h) AE]" —T path; (i) Three-dimension mixed volume AV™ -T -o EHNP
chart with AV" —T path; (j) AV." — T path; (k) Three-dimension configurational entropy §¢—T —c EHNP chart with SJ -7
path; (I) S -7 path; (m) Three-dimension generalized vibration energy AU™' —T —o EHNP chart with AU —T path; (n)
AU —T path; (o) Three-dimension generalized vibration entropy AS' -7 —¢ EHNP chart with ASY —T path; (p) AS) -T
path; (q) Three-dimension configurational entropy energy TAS® —T —o EHNP chart with TAS; — T path; (r) TAS; —T path; (s)
Three-dimension generalized vibration entropy energy TASY —T —c EHNP chart with TAS) —T path; (t) TAS) —T path; (u)
Three-dimension generalized vibration free energy AXY —T —o EHNP chart with AX) —T7 path; (v) AX) —T path
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B D.1  Au,Cu-BUUAK 5 RGEH g —x — T Vi 4 B I £% AT

Fig. D.1 EHNP diagrams of ¢g—x—T of Au;Cu-type sublattice system: (a) Mixed Gibbs energy AG™ —x—T three-dimension
EHNP diagram; (b) Mixed characteristic Gibbs energy AG ™ —x—T three-dimension EHNP diagram, without including
configuration entropy; (c¢) Mixed enthalpy AH™ —x—T three-dimension EHNP diagram; (d) Mixed potential energy
AE™ — x—T three-dimension EHNP diagram, without including variations in AG-potential energies with temperatures; (¢) Mixed
volume AV™ —x—T three-dimension EHNP diagram; (f) Generalized mixed vibration free energy AX' —x—T three-dimension
EHNP diagram; (g) Generalized mixed vibration energy AU' —x—T three-dimension EHNP diagram, including variations in
AG-potential energies with temperatures; (h) Generalized mixed vibration entropy ASY —x—T three-dimension EHNP diagram,; (i)
Heat capacity cf; —x—T three-dimension EHNP diagram; (j) Thermal expansion coefficient o —x—T7 three-dimension EHNP
diagram; (k) Activity a,, —x—T three- dimension diagram; (I) Activity g, —x—7 three-dimension diagram
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Table E.1 AGA-crystal structures of alloy phases in Au-Cu system

L ‘ S
Phase Basic lattice Alloy gene at site AGA-cell gf:jg
Pure Au FCC-Lattice 4" [44,"] Fm3m
Pure Cu FCC-attice 45 (445" ] Fm3m
o AuCu AN (1), 4, (2) (24" (1),24," (2)] P4/mmm
OEEZS AuCu;  Au(1) Sublattice A (1), 4% (2) A 1,34 ) s
P AwCu  Cu(2) Sublattice A% (1), 45 (2) 34" (1), 45" ()] Pm3m
AuCu- 2D M () x, AN +x (1) x5, A7), o
mmm
type Au Au Cu Cu
“ v wy 23 M) x AN +x(2) /x. A
Auprich LGy 4 2 ) g ) 2T D 5 AT 45T AT
sublattice Au Au Cu Cu
Ordored AuCts- " O 0 A7+ O e, A"
alloys ~ YPe . 3 (M (2) /AN + 2 (2) ) 3 4]
-T1C u u u u
sst()lzttice DM @) g AN+ () x A7) ) _ .
AusCu- B W xp d™ 45" D x4
mom
type 3 @) g AN+ 3 (2) ) x, A

Disordered alloys FCC-basic lattice z ( xl,A“ Alf\“ + xl,c"‘ A™) 4[2 (xiA“ AI,A“ + xiC“ A7) Fm3m
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Fig. F.1 Atomic states and bond network structures of some compounds in FCC-based Ti-Al system: (a) D0,,-TizAl; (b) L1,-TizAl;
(¢) D0,,-TiAls; (d) L1,-TiAls; (e) L1-TiAl
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Fig. G.1 EHNP- and SHNP-charts on disordering AuCuI(AgA“Af“) : (a) Minimal mixed Gibbs energy AG

m

— T path obtained

by iso-order degree Gibbs energy equilibrium path method; (b) Experimental mixed enthalpy AH —7 path method based on

network chart of iso-order degree mixed enthalpies equilibrium paths, attaching equilibrium AH]" —T path; (c) AGL,

m

(OABC)

and AG," (Oabc) paths of equilibrium and subequilibrium order—disorder transitions, where AG)" denoting superheated driving

Gibbs energy; (d) o, (OABCD) and o, (OabcD) paths of equilibrium and subequilibrium order—disorder transitions, where Aoy,

denoting hysteresis order degree

(To be continued)
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Fig.G.2 AG-concentration SHNP charts on disordering AuCul(4:"45"): (a), (b) Three-dimension x™ —7—; and x™* —T—i

SHNP charts; (c), (d) Two-dimension iso-order degree xf; —i and sz(lJl' —i SHNP charts; (e), (f) Two-dimension iso-Gibbs energy

AU _ 5 and xicu —o SHNP charts
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Fig. G.3 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering AuCuI(Aé\“Af“) :
(a) Three-dimension mixed Gibbs energy AG™ —T—o EHNP chart with AGF —T and AG" -T paths; (b) AGS -T and

AG" —T paths
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Fig. G4 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering  AuCul(4g"AS™) :

(a) Three-dimension mixed characteristic Gibbs energy AG™ —T —o EHNP chart with AG;™ -7 and AG;™ -T paths; (b)

AG.™ —-T and AG™-T paths
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Fig. G5 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering  AuCul(4g™"A5™) :
(a) Three-dimension mixed enthalpy AH™ -T-o EHNP chart with AH-T and AH -T paths; (b) AH-T and

AH —T paths
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Fig. G6 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering  AuCul(4g"AS™) :
(a) Three-dimension mixed potential energy AE™ —-T —o EHNP chart with AED -7 and AE —T paths; (b) AE] —T and

AE =T paths
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Fig. G7 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering AuCuI(A?“Af“) :
(a) Three-dimension mixed volume AV™ —-T-o EHNP chart with AV -T and AV"-T paths; (b) AV -T and

AV," =T paths
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Fig. G.8 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering AuCuI(A?“Af“) :
(a) Three-dimension configurational entropy S°-T7-¢ EHNP chart with S -7 and S;—T paths; (b) S; -7 and S;-T
paths
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Fig. G.9 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering AuCuI(A?“Af“) :
(a) Three-dimension generalized vibration energy AU™' -T—¢ EHNP chart with AUM -T and AUM™'-T paths; (b)
AU -T and AU —T paths
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Fig. G.10 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering AuCuI(Ag“‘Af“) :

(a) Three-dimension generalized vibration entropy ASY -T—o EHNP chart with ASY -7 and ASY -7 paths; (b) AS; -T
and AS -T paths
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Fig. G111 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering AuCuI(Ag“‘Af“) :
(a) Three-dimension configurational entropy energy 7S¢-T-—o EHNP chart with 7S; -7 and 7S -7 paths; (b) 7S5 -T

and 7SS —-T paths
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Fig. G112 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering AuCuI(Ag“‘Af“) :
(a) Three-dimension generalized vibration entropy energy TASY —T —o EHNP chart with TASY -7 and TAS; —T paths; (b)

TASy —-T and TAS/-T paths
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Fig. G.13 EHNP charts with EHNP and SHNP curves of the first order thermodynamic properties on disordering AuCuI(Aé“Af“) :
(a) Three-dimension generalized vibration free energy AX'-T-o EHNP chart with AX) -7 and AX]-T paths; (b)
AX{-T and AX]-T paths

o (©) |

W
=3
L

IS
=1
\

(.mol ' K™
o

c /
p
w
=3

0 200 400 600 800 1000 1200 1400
T /K

B G14  AuCul(4 A5 ) AT TG A IR ARI0 ¢, — x — T 1 4 B 2 B 12 1
Fig. G14 The second order thermodynamic properties (heat capacity) on disordering AuCuI(A?“Af“): (@) cpe—T and

cps —T paths on c,—x-T EHNP diagram; (b) cpe —T and cps —T paths
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cps —T paths on c,-T-o EHNP diagram; (b) cpe —o and cps — o paths
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Fig. G19 The 3(RA-SA) mechanism and schemes of cell-scale and region-scale heterogeneities on disordering AuCuI(AéA“Af“) :
(a) AG arranging structure after A-manner alternating in 3(RA-SA) mechanism of three A?“ - A4C“ pairs in a single cell; (b) AG
arranging structure after B-manner alternating in 3(RA-SA) mechanism of three A4C“ - A8Au pairs in a single cell; (c) AuCu(H) alloy
containing three regions with cell-scale heterogeneity; (d) PTP-[AuCul(H)+PAP-AuCull] alloy containing three regions with
region-scale heterogeneity; (¢) AG arranging structure of a early SPAP-AuCull cell
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