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Motion and mixing of mono-disperse granular material in
cross section of rotary kiln
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Abstract: Accounting for the dispersed properties of granular materials, a motion model of granular materials was
established using three-dimensional discrete element method, then, the motion and mixing process of material in the
rotary kiln were calculated by the model. On this basis, the transverse mixing of granular material within the rotary kiln
was analyzed using an improved mixing index which could evaluate the degree of mixing quantitatively. The results,
being consistent with the experimental observations qualitatively, show that the transverse mixing becomes stable after
six to eight revolutions of the rotary kiln. Mixing index improved on particle contact-numbers can evaluate the mixing
degree of material more reasonably. There is an exponential function relationship between the mixing index and time,
two kinds of materials have an initial state of complete separation. The mixing rate increases with increasing rotational
speed of rotary kiln. Then, the higher the speed is, the shorter the time is needed for material to reach a complete mixing
situation, but the number of revolution needed will be more. When the low rotating speed is less than 20 r/min, the
mixing rate increases with the decrease of filling lever. The higher the speed, the stronger the kinetic energy dissipated in
granular material.
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Table 1 Calculation Parameters used in DEM model
Particle  Particle Coefficient of Cocfficient of Cocfficient of Coefficient of Elastic
radius,  density, sliding friction rolling friction of rolling friction of sliding friction of modulus of
R/mm  p/(kgm™>)  of particle, Hs—pp particle, y;,,/mm  particle-wall, y,,/ mm  particle-wall, 45 ., particle, E,/Pa
3 2090 0.63 0.05 0.3 0.85 5.5x10°
Elastic Coefticient of Coefficient of Poisson’s Poisson’s ) )
Diameter of Length of  Time step,
modulus of restitution of restitution of ratio of ratio of kiln ) )
kiln, d/mm  kiln, //mm At/s
kiln wall, E/Pa particle, ey, particle-wall, e,,,  particle, &, wall, &,
2x10"° 0.45 0.5 0.4 0.25 200 30 4.34x107
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Fig. 4 Mixing state of granular material in rolling regime: (a) Rolling regime; (b) Mixing states
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