第 25 卷第 9 期 Volume 25 Number 9 2015年9月 September 2015

文章编号:1004-0609(2015)09-2523-08

Ni-Co-Mn 合金的电镀工艺优化及 与金刚石复合镀的摩擦磨损性能

奚小波¹,缪 宏²,金亦富²,郑再象²,程吉林¹,张瑞宏² (1.扬州大学 水利与能源动力工程学院,扬州 225127; 2.扬州大学 机械工程学院,扬州 225127)

摘 要:通过电镀法制备 Ni-Co-Mn 三元合金并进行工艺优化,同时制备 Ni-Co-Mn-金刚石复合镀层,采用硬度、纳米划痕、SEM、EDS、摩擦磨损等分析镀层性能。结果表明:Ni-Co-Mn 三元合金电镀最佳主盐配方为 NiSO4 280 g/L、CoSO4 11 g/L、MnSO4 1 g/L; 镀液温度低于 50 时镀层易"烧焦",高于 60 时,镀层硬度及结合力下降;当电流密度增大至 3 A/dm²时,有利于形成平整致密的镀层;当电流密度超过 5 A/dm²时,镀层表面易出现析氢、积瘤等缺陷;最佳电镀工艺条件下的镀层硬度达 520.7 HV,膜基结合力达 25.52 N;Mn 含量越高,镀层硬度越大;Co含量越高,镀层与基体结合越好;Ni-Co-Mn-金刚石复合镀层的硬度达 890.2 HV,摩擦因数为 0.72,体积磨损率仅为 5.46×10⁻⁶ mm³/(N·m),金刚石与胎体 Ni-Co-Mn 合金结合牢固,复合镀层的磨削性好,耐磨性强。关键词:Ni-Co-Mn 合金;电镀;复合镀;纳米划痕;摩擦;磨损中图分类号:TQ153.2 文献标志码:A

Electroplating process optimization of Ni-Co-Mn alloy and tribological wear performance of composition plating with diamond

XI Xiao-bo¹, MIAO Hong², JIN Yi-fu², ZHENG Zai-xiang², CHENG Ji-lin¹, ZHANG Rui-hong²

(1. School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China;
 2. College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China)

Abstract: The Ni-Co-Mn ternary alloy samples were made by electroplating, and the process was optimized. While, the Ni-Co-Mn-diamond composite electroplating was prepared. The plating properties were detected by Vickers, scratch tester, SEM, EDS and friction wear testing machine. The results show that the optimum formula of main salt for Ni-Co-Mn alloy electroplating is NiSO₄ of 280 g/L, CoSO₄ of 11 g/L, MnSO₄ of 1 g/L. The alloy coating is easily burnt when the temperature is below 50 $^{\circ}$, then hardness and binding force will decrease when it is over 60 $^{\circ}$. An increase of current density to 3 A/dm² can make the coating smooth and dense, the hydrogen evolution, deposition nodules and other defects will be produced when current density is over 5 A/dm². The hardness of the optimized coating alloy reaches 520.7 HV, and the binding force is 25.52 N. The higher content of manganese element, the greater hardness of the coating. The higher content of cobalt element, the stronger binding force of the coating. The hardness of Ni-Co-Mn-diamond composite electroplating is 890.2 HV, its friction coefficient is 0.72, and its volume wear rate is only 5.46 × 10⁻⁶ mm³/(N·m). The holding force of diamonds in Ni-Co-Mn matrix alloy is high, the grind ability and abrasion performance of composite electroplating are also good.

Key words: Ni-Co-Mn alloy; electroplating; composite plating; nano-scratch; friction; wear

通信作者:缪宏,副教授,博士;电话:0514-87859737;E-mail:mh0514@163.com

基金项目:江苏省科技计划资助项目(BY2013063-11,BE2013110,BE2014352);江苏省高校自然科学研究项目(BKJB460016);扬州大学学术科技 创新基金资助项目(b13140)

收稿日期:2014-12-20;修订日期:2015-03-28

金刚石以其高耐磨耐腐、高硬度特性被广泛用于 砂轮、磨头、切割、修整、钻探等工具的制造,利用 复合电镀法可将金刚石微粒镶嵌在工具表面并结合牢 固^[1-3]。复合镀层中金刚石微粒弥散分布于金属镀层 中,这一金属层称作胎体,胎体作为结合剂将金刚石 微粒与基体固结。良好的胎体性能对提高金刚石工具 复合镀层的硬度、平整性以及金刚石微粒与胎体的结 合力发挥着重要作用,同时胎体也决定着复合镀层与 工具表面的结合性能,关系到复合电镀金刚石工具的 可靠性及使用寿命^[4-6]。因此,胎体合金性能具有十分 重要的研究意义。

常采用强度大、韧性高、与金刚石润湿性能好的 金属镍作为胎体层,但单一镍层硬度较低、耐磨性较 差[7],相关研究在镍胎体金属层中引入其他元素,如 Co、P、Mn 和 Fe 等,这些元素的加入可进一步提高 镍层的综合性能^[8]。研究显示^[9-13], Ni-Co和 Ni-Fe 合 金能提高胎体的强度和韧性,但硬度不足; Ni-Mn 和 Ni-P 合金能提高胎体硬度,但脆性较高,易开裂;而 Ni-Co-Mn 三元合金镀层综合了上述合金的优点,硬度 比 Ni-Co、Ni-Fe 的高, 脆性比 Ni-Mn、Ni-P 的低, 具 有较好的综合性能,满足复合电镀金刚石对胎体的性 能要求。同时,引入少量 Mn 元素也可减少合金中昂 贵金属 Co 的用量,大幅降低生产制造成本^[14]。由于 电镀工艺参数复杂繁多,工艺参数及配方成分精度要 求较高,目前,国内外对Ni基合金的研究主要集中在 辅助加工、添加元素对镀层性能的影响及其加工工艺 应用等方面^[15-18], Ni-Co-Mn 合金的研究甚少, 其工 艺优化及性能影响均未系统研究,因此,进一步开展 Ni-Co-Mn 合金电镀制备工艺优化研究十分必要。

本文作者优化了 Ni-Co-Mn 三元合金电镀工艺, 采用纳米划痕法测试了镀层与基材的结合力,研究不 同温度及电流密度对镀层合金性能的影响,并对镀层 进行显微组织与能谱分析,探究合金元素含量对镀层 硬度及膜基结合力的影响,为进一步提高 Ni-Co-Mn 三元合金性能提供了优化方案。同时,进行 Ni-Co-Mn-金刚石复合电镀试样的制备,研究复合镀层的摩擦磨 损性能,为金刚石复合电镀技术提供指导依据。

1 实验

1.1 实验材料

基体为 20 号钢片,尺寸 20 mm × 20 mm × 2 mm, 中心开 *d* 5 mm 圆孔;阳极采用四号镍,其纯度达 99.9%(质量分数),试验前用稀硫酸将镍板活化,去除 表层氧化膜。试验采用的电镀电源为 LPS-305 型直流 电源,镀槽采用 500 mL 烧杯,自制简易镀架,利用 85-2A 型数显恒温磁力搅拌器对镀液进行实时搅拌, 电镀试验装置如图 1 所示。

图1 电镀试验装置示意图

Fig. 1 Diagram of electroplating experimental equipment

镀液采用一定浓度的 NiSO4、NiCl2、CoSO4、 MnSO4、H3BO3、1-4-丁炔二醇、糖精、十二烷基硫酸 钠溶液,以NiSO4、NiCl2、CoSO4、MnSO4为镀液主 盐;以H3BO3作为缓冲剂补充镀液中的H⁺,调节镀液 pH,适宜的 pH为4.4~4.6;以1-4-丁炔二醇、糖精为 光亮剂,可细化镀层晶粒,使镀层平整、光亮;以十 二烷基硫酸钠作润湿剂,能较好地润湿电极,减少基 材对镀液中气泡的吸附,降低镀层孔隙的生成。电镀 试验前先进行基材预处理,首先将基材放入热碱性溶 液中(pH约为12,温度为75),利用超声清洗器进 行除油处理,处理时间约为40min;然后用去离子水 冲洗基材,并迅速将其放入20%(质量分数)的硫酸溶 液中进行活化处理,活化液温度为50,处理时间约 为1 min,以去除基材表面的氧化膜层;最后用去离 子水反复冲洗基材,即可进行电镀试验。

1.2 实验方案

一定量的 Cl⁻可提高镀液的导电性能,但过多的 Cl⁻会使镀层内应力增大,造成镀层粗糙有毛刺,所以 主盐中 NiCl₂ 不纳入因素分析。试验选取主盐成分 (NiSO₄、CoSO₄、MnSO₄)及温度 *t* 为正交因素,选用 L₉(3⁴)正交表进行正交试验分析,因素水平表如表 1 所示(*A*、*B*、*C*分别代指 NiSO₄、CoSO₄、MnSO₄浓度)。

镀液中其他组分含量如下:NiCl₂ 30 g/L,H₃BO₃
45 g/L(pH为4.5),1-4-丁炔二醇 0.2 g/L,糖精 0.4 g/L, 十二烷基硫酸钠 0.1 g/L。电镀工艺参数如下:电流密 度(J_K)为 3 A/dm²、电镀时间为 10 min、搅拌器转速为 500 r/min。

第25卷第9期

表1 因素水平表

 Table 1
 Orthogonal experimental factors

Level No.	$A/(g \cdot L^{-1})$	$B/(g \cdot L^{-1})$	$C/(g\cdot L^{-1})$	t/	
1	280	7	1	40	
2	300	9	1.5	50	
3	320	11	2	60	

在最优工艺条件下的镀液中添加 5 g/L 粒径为 1 μm 的金刚石粉体,进行 Ni-Co-Mn-金刚石复合镀层 的制备。

1.3 性能测试

采用 MHV-1000 型数显显微维氏硬度计对各镀 层硬度进行测量,载荷大小 1.96 N,保载时间 15 s, 各镀层测 8 组数据取平均值,布点呈"十"字状。

采用瑞士 CSM 公司生产的 Table Top(TTX)纳米 划痕仪进行镀层结合力的测试,划痕载荷为步进载荷, 步长为 0.3 N,初始划痕载荷为 0.3 N,结束划痕载荷 为 28 N,加载速率为 55.4 N/min,划痕速率为 6 mm/min,划痕长度为 3 mm。

采用日本日立公司生产的 S-4800 场发射扫描电 镜观察镀层表面形貌 采用X射线能量色散谱仪(EDS) 进行合金元素的定性与定量分析。

采用球盘摩擦试验机进行摩擦磨损试验,对磨件为 d 8 mm 的硬质合金球,旋转半径为 6 mm,转速为 150 r/min,载荷为 4 N,磨损时间 90 min。

2 结果与讨论

2.1 纳米划痕镀层结合力的测定

一般硬质膜层采用纳米划痕法测定膜基结合力是 通过声频发射检测的,当压痕载荷足够大时,硬质膜 层碎裂,微细膜层碎片崩裂产生不同声频,由此判断 膜层是否失效,此时的临界载荷即为膜基结合力。然 而,本测试样品 Ni-Co-Mn 合金为非硬质膜层,该合 金具有一定的延展性,压针划过时合金并不碎裂崩溅, 所以不能通过声频检测。图 2 所示为正交实验试样 1 的纳米压痕载荷曲线及压痕金相形貌。由图 2 可以发 现,划痕两侧不存在镀层碎裂迹象,当压针划至 2.56 mm 处时,膜层开裂失效,此时压痕载荷为 24.03 N。 通过持续增大划痕载荷,迫使镀层合金受压变形,当 载荷大至一定程度时,镀层开裂并与基材分离,对应 的载荷即可表示为膜基结合力。

图 2 纳米划痕深度-载荷曲线及划痕金相照片

Fig. 2 Scratch depth-load curves and metallographs of nano-scratch

2.2 镀液主盐含量确定

试验选取表面硬度(*H*_v)和镀层结合力(*L*_c)作为 Ni-Co-Mn 合金的评价指标,测量结果及极差分析如表 2 和 3 所示。由表 2 和 3 可以看出,对表面硬度影响

表 2 电镀正交试验中各试样的硬度及结合力

 Table 2
 Hardness and binding force of each sample in orthogonal plating experiment

Sample No.	$A/(g\cdot L^{-1})$	B/ (g·L ⁻¹)	C/ $(g \cdot L^{-1})$	t/	Hardness, HV	$L_{\rm c}/{\rm N}$
1	280	7	1	40	501.7	24.03
2	280	9	1.5	50	525.4	11.12
3	280	11	2	60	502.5	21.46
4	300	7	1.5	60	494.8	14.37
5	300	9	2	40	490.8	11.71
6	300	11	1	50	517.7	25.89
7	320	7	2	50	515.1	15.66
8	320	9	1	60	505.4	21.76
9	320	11	1.5	40	502.8	14.57

表 3 表面硬度及结合力极差分析

 Table 3
 Variance analysis of surface hardness and binding force

Property	Parameter	k_1	k_2	k_3	R
	A	509.87	501.10	507.77	8.77
	В	503.87	507.20	507.67	3.80
$H_{\rm V}$	С	508.27	507.67	502.80	5.47
	t	498.43	519.40	500.90	20.97
	A	18.87	17.32	17.33	1.55
T	В	18.02	14.86	20.64	5.78
L_{c}	С	23.89	13.35	16.28	10.54
	t	16.77	17.56	19.20	2.43

2525

的主次因素为 t、 A、 C、 B, 硬度越高, 合金耐磨性越 好,所以优化方案为 $A_1B_3C_1t_2$; 对结合力影响的主次 因素为 C、 B、 t、 A, 优化方案 $A_1B_3C_1t_3$ 。可以确定电 镀主盐最佳方案为 NiSO₄ 280 g/L、CoSO₄ 11 g/L、 MnSO₄ 1 g/L。

2.3 温度对镀层合金性能的影响

为进一步分析温度对镀层性能的影响,研究最佳 方案条件下在 40、45、50、55 和 60 时的镀层性能。 表 4 所列为不同温度下的镀层硬度及结合力,由表 4 可以看出,45、50 和 55 条件下的镀层性能相当, 而 40 和 60 条件下的镀层硬度及结合力有所降低。 图 3 所示为不同温度下的镀层表面状况。由图 3 可知, 当电镀温度在 40、45 和 50 时,镀层表面均出现"烧 焦"迹象(见图 3 中的黑色及黯淡区域部分),且随着 温度的降低,"烧焦"面积增大。温度过低时,镀液中 主盐离子的扩散迁移速度下降,高电流密度处的主盐 金属离子放电消耗后来不及传质补充,形成较大的浓 差极化,氢离子放电导致镀层烧焦。综上所述,55 时为最佳电镀温度。

2.4 电流密度 $J_{\rm K}$ 对镀层合金性能的影响

图 4 所示为不同电流密度 J_{K} 条件下制备的合金镀 层表面形貌。由图 4 可以发现, J_{K} 由 1 A/dm²增大至 3 A/dm²时,镀层表面逐渐变得平整光滑,镀层致密性 得到提高;当 J_{K} 增至 5 A/dm²时,镀层表面出现较多

表 4 不同温度条件下的镀层硬度及结合力

 Table 4
 Hardness and binding force of each electroplating coating under different temperature

Temperature/	Hardness, HV	$L_{\rm c}/{ m N}$
40	485.3	21.26
45	509.2	22.97
50	518.2	24.13
55	520.7	25.52
60	500.1	22.09

的颗粒物,平整性较差,这是由于 $J_{\rm K}$ 过大后,阴极(即 镀件)表面析氢加剧,镀液浓差极化增加,导致镀层表 面粗糙不平;电镀的过程伴随着氢的产生,并由镀层 内部向外表面扩散,在镀层表面产生张应力,使得镀 层表面粗糙不平,如图 4(c)所示;当 $J_{\rm K}$ 达到 7 A/dm² 时,这种现象更为严重,镀层表面出现较多的积瘤物 (见图 4(d))。这些积瘤物为镍聚集物,而镍的强度小 于合金强度,这将影响镀层表面的均匀性和致密性。 图 5 所示为不同 $J_{\rm K}$ 条件下制备的合金镀层硬度曲线。 由图 5 可知, $J_{\rm K}$ 为 3 A/dm²时,镀层硬度最大,达 520.7 HV,比1 A/dm²条件下的制备的镀层硬度(488.2 HV) 略大; $J_{\rm K}$ 为 5 A/dm²时,镀层硬度急剧下降至 345.2 HV;当 $J_{\rm K}$ 增至 7 A/dm²时,镀层硬度仅为 322.9 HV。 结合图 4 可知,3 A/dm²条件下的镀层表面致密性最 好,且表面光整,无析氢和积瘤等缺陷,因而硬度较

图 4 不同电流密度下制备镀层表面的 SEM 像

图 5 不同电流密度下制备的镀层硬度

大; *J*_K 过大后, 镀层表面出现氢脆且易形成积瘤, 镀 层致密度较差, 硬度下降。综上所述, 3 A/dm² 为最佳 电流密度。

2.5 Mn、Co含量对试样性能的影响

表 5 所列为正交试验的 9 组试样的性能及其 Ni、 Co 和 Mn 元素的质量分数。由表 5 可知,合金中 Ni 的含量最大,Co 含量次之,Mn 含量最少。图 6 所示 为 Mn 含量对镀层硬度的影响。由图 6 可知,Mn 的渗

表 5 镀层的性能及元素含量

 Table 5
 Properties and element content of samples

Sample	Hardness, HV	L _c /N –	Mass fraction/%		
No.			Ni	Co	Mn
1	501.7	24.03	86.04	13.82	0.14
2	525.4	11.12	89.60	10.10	0.30
3	502.5	21.46	86.16	13.70	0.14
4	494.8	14.37	89.02	10.86	0.12
5	490.8	11.71	89.43	10.45	0.12
6	517.7	25.89	85.56	14.18	0.26
7	515.1	15.66	88.99	10.75	0.26
8	505.4	21.76	86.02	13.83	0.15
9	502.8	14.57	89.13	10.74	0.13

入对提高镀层硬度有显著效果,且 Mn 含量越高,硬 度越大;当 Mn 含量从 0.12%增大至 0.30%时,硬度 从 490.8 HV 增大至 525.4 HV。Mn 晶胞为体心立方结 构,每个晶胞有 2 个原子,Ni 晶胞为面心立方结构, 每个晶胞有 4 个原子。相对而言,Ni 晶胞尺寸较大, 排列时易形成位错及空穴,因此,材料致密度降低, 强度下降,硬度减小,而 Mn 晶胞尺寸相对较小,可 填补空穴,提高材料致密度,且 Mn 含量越多,被填 补的空穴越多,致密度越高,硬度越大。图7所示为 Co含量对镀层结合力的影响。由图7可看出,随着合 金中 Co含量的提高,镀层与基材的结合力呈增大趋 势,Co含量越高,镀层合金的韧性越好,越有利于镀 层与基体的结合。结合图6和7可以发现,Mn和Co 含量分布处于各自分布区间的边缘位置,说明合金中 Mn的渗入会抑制 Co的渗入,而 Co的渗入亦抑制 Mn的渗入,极少量 Mn会使合金的延展性急剧下降, 而 Co的增加会促使合金韧性变好,因此,合金二者 的含量是呈此消彼长趋势。

图 6 锰含量对镀层硬度的影响

Fig. 6 Effect of manganese content on coating hardness

图 7 钴含量对镀层结合力的影响

Fig. 7 Effect of cobalt content on coating binding force

2.6 Ni-Co-Mn 三元合金最佳电镀工艺确定

综上分析可知,Ni-Co-Mn 三元合金的最佳电镀工 艺如下:主盐NiSO4 280 g/L、CoSO4 11 g/L、MnSO4 1 g/L,温度55,电流密度3 A/dm²。图8所示为在最 佳工艺条件下的镀层表面形貌。由图8可知,镀层组 织结构平整致密,无明显缺陷。图9所示为该镀层合 金的能谱图。由图 9 可知, 合金中 Ni、Co 和 Mn 的 含量分别为 85.85%、13.88%和 0.27%。同时, 该镀层 的表面硬度达 520.7 HV, 镀层与基体结合力达 25.52 N, 综合性能较好。

图 8 最佳条件下的镀层合金表面形貌

Fig. 8 Surface SEM image of optimized coating alloy

2.7 Ni-Co-Mn-金刚石复合层综合性能

图 10 所示为 Ni-Co-Mn-金刚石复合层的表面形 貌。由图 10 可知, 镀层表面金刚石分布均匀, 其硬度 达 890.2 HV, 显著高于 Ni-Co-Mn 合金层的, 说明复 合层中金刚石的高硬度性能得以体现, 且胎体合金对 金刚石的包裹性较好, 镀层致密, 硬度大。图 11 所示 为复合镀层摩擦因数随时间变化的关系曲线。由图 11 可知, 曲线分两阶段, 一是磨合阶段, 摩擦因数随时 间增大而增大,这一阶段的金刚石粉体被合金层包裹, 耐磨性未得以发挥, 且胎体合金较光滑, 表面粗糙度 较低, 摩擦因数较小, 磨损一段时间后, 金刚石从胎 体中显露, 表面粗糙度变大, 摩擦因数变大; 二是稳 定磨损阶段,复合镀层表面经过磨合后趋于稳定平整, 摩擦因数维持在水平内波动, 平均值为 0.72, 摩擦因

图 10 Ni-Co-Mn-金刚石复合层表面形貌

Fig. 10 Surface morphology of Ni-Co-Mn-diamond composite layer

图 11 Ni-Co-Mn-金刚石复合层摩擦因数随时间变化曲线 Fig. 11 Friction coefficient curve with time of Ni-Co-Mndiamond composite layer

数较大,磨削性能好。

材料耐磨性能的评判不能仅依据摩擦因数的大小,还需采用体积磨损率来评价^[19],其意义为消耗单位摩擦能量材料的磨损体积损失,即

$$W_{\rm r} = \frac{\Delta m}{\rho t F v} \tag{1}$$

式中: Δm 为磨损质量损失,g; ρ 为材料密度,g/mm³; t 为磨损时间,s; F 为施加载荷,N; v 为摩擦速度, m/s。此处, Δm 为 0.9 mg, ρ 为(金刚石与镍合金体积 比约 1:6 根据镀层中合金质量增加与总质量增加换算 出 ρ)8.1 mg/mm³, t 为 5400 s,p 为 4 N,v 为(旋转半 径 6 mm,转速 150 r/min)0.942 m/s,经计算, W_r 为 5.46×10⁻⁶ mm³/(N·m),体积磨损率较小,耐磨性强。 图 12 所示为复合镀层磨损后的表面形貌。由图 12(a)

图 12 Ni-Co-Mn-金刚石复合层磨损后的表面形貌 Fig. 12 Surface morphologies of Ni-Co-Mn-diamond

可知,磨痕宽度约为700 μm,磨痕较宽无犁沟,边缘 有少量磨屑堆积,磨痕深度均匀,无磨穿迹痕;磨痕 表面分布有微细金刚石(见图12(b)),且数量较多,说 明金刚石与 Ni-Co-Mn 胎体合金的结合性较好。

3 结论

composite layer after wearing

 Ni-Co-Mn 三元合金电镀的最佳工艺如下:主 盐 NiSO4浓度 280 g/L、CoSO4浓度 11 g/L、MnSO4 浓度 1 g/L,温度 55 ,电流密度 3 A/dm²。最佳工艺 下制备的镀层合金中的 Ni、Co、Mn 含量分别为 85.85%、13.88%、0.27%,镀层表面硬度达 520.7 HV, 膜基结合力达 25.52 N。

2) 镀液温度低于 50 时,镀层易烧焦;镀液温 度高于 60 时,镀层硬度及结合力下降。当电流密度 增大至 3 A/dm²,有利于形成平整致密的镀层;当电 流密度超过 5 A/dm²,镀层表面易出现析氢、积瘤等 缺陷。

3) Mn 对提高镀层硬度具有显著效果, Mn 含量越

高硬度越大 ;Co 含量的提高可有效增大镀层与基体的 结合力 , 含量越高结合越好 ; Mn、Co 元素含量在合 金呈此消彼长趋势。

4) Ni-Co-Mn-金刚石复合镀层的硬度高(HV 达 890.2),摩擦因数大(达 0.72),体积磨损率小(仅 5.46×10⁻⁶ mm³/(N·m)),金刚石与胎体 Ni-Co-Mn 结合 牢固,复合镀层的磨削性好,耐磨性强。

REFERECES

- PARK H K, ONIKURA H, OHNISHI O, SHARIFUDDIN A. Development of micro-diamond tools through electroless composite plating and investigation into micro-machining characteristics[J]. Precision Engineering, 2010, 34(3): 376–386.
- [2] 周海飞,祝郦伟,钱洲亥,杜 楠,田刚强.温度对 Ni-金刚
 石复合电沉积电化学行为的影响[J].中国有色金属学报,
 2013,23(8): 2229-2234.

ZHOU Hai-fei, ZHU Li-wei, QIAN Zhou-hai, DU Nan, TIAN Gang-qiang. Effect of temperature on electrochemical behaviors during Ni-diamond composite electrodeposition[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(8): 2229–2234.

- [3] ZHOU Hai-fei, DU Nan, ZHU Li-wei, SHANG Jian-ku, QIAN Zhou-hai, SHEN Xiao-ming. Characteristics investigation of Ni-diamond composite electrodeposition[J]. Electrochimica Acta, 2015, 151: 157–167.
- [4] CHEN Tai-jia, CHIOU Y C, LEE R T. Grinding characteristics of diamond film using composite electro-plating in-process sharpening method[J]. International Journal of Machine Tools & Manufacture, 2009, 49(6): 470–477.
- [5] TSUBOTA T, TANII S, ISHIDA T, NAGATA M, MATSUMOTO Y. Composite electroplating of Ni and surface-modified diamond particles with silane coupling regent[J]. Diamond & Related Materials, 2005, 14(3/7): 608–612.
- [6] HUANG Wei, ZHAO Yun-wei, WANG Xiao-lei. Preparing a high-particle-content Ni/diamond composite coating with strong abrasive ability[J]. Surface & Coatings Technology, 2013, 235: 489–494.
- [7] HOU K H, WANG Han-tao, SHEU H H, GER M D. Preparation and wear resistance of electrodeposited Ni–W/diamond composite coatings[J]. Applied Surface Science, 2014, 308: 372–379.
- [8] 孙仲鸣,杨 洋,杨凯华. 电镀镍-铁金刚石钻头配方与工艺研究[J]. 金刚石与磨料磨具工程, 2011, 30(1): 15-19.
 SUN Zhong-ming, YANG Yang, YANG Kai-hua. Study on the formula and technology of electroplated nickel-iron diamond bit[J]. Diamond & Abrasives Engineering, 2011, 30(1): 15-19.
- [9] SINGH S, SRIVASTAVA P, SINGH G. Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni[J]. Materials Research Bulletin, 2013,

48 (2): 739-746.

- [10] SHI L, SUN C F, GAO P, ZHOU F, LIU W M. Electrodeposition and characterization of Ni-Co-carbon nanotubes composite coatings[J]. Surface & Coatings Technology, 2006, 200(16/17): 4870–4875.
- [11] LIU Hong, GUO Rong-xin, LIU Zhu. Characteristics of microstructure and performance of laser-treated electroless Ni-P/Ni-W-P duplex coatings[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 3012–3020.
- [12] 徐 扬, 邹 勇, 栾 涛. 镀层 Cu 含量对 Ni-P-Cu 镀层性能及电化学行为的影响[J]. 功能材料, 2013, 44 (2): 244-248.
 XU Yang, ZOU Yong, LUAN Tao. The effect of Cu content on the properties and electrochemical behavior of electroless Ni-Cu-P coatings[J]. Journal of Function Materials, 2013, 44 (2): 244-248.
- [13] 相英伟,张晋远,金成海.化学复合镀纳米金刚石粉的研究
 [J]. 工程材料, 2010(4): 22-25.
 XIANG Ying-wei, ZHANG Jin-yuan, JIN Cheng-hai. A study of Ni-P nanometer diamond composite electroless plating[J].
 Journal of Materials Engineering, 2010(4): 22-25.
- [14] 杨瑞辰. 磨削切削工具电镀(Ni-Co-Mn)-金刚石复合镀层[J].
 电镀与精饰, 2009, 31(11): 14-17.
 YANG Rui-chen. (Ni-Co-Mn)-diamond composite coating electroplating for cutting and grinding tools[J]. Plating and Finishing, 2009, 31(11): 14-17.
- [15] BAI C Y, LEE J L, WEN T M, HOU K H, WU M S, GER M D. The characteristics of chromized 1020 steel with electrical discharge machining and Ni electroplating pretreatments[J]. Applied Surface Science, 2011, 257(8): 3529–3537.
- [16] LI Yun-dong, JIANG Hui, WANG Dong, GE Hui-yan. Effects of saccharin and cobalt concentration in electrolytic solution on microhardness of nanocrystalline Ni-Co alloys[J]. Surface & Coatings Technology, 2008, 202(20): 4952–4956.
- [17] 王子涵,杨 滨,蒋春丽,王庆富,张鹏程,范爱萍. 高频脉 冲电沉积改善Ni 镀层的组织和性能[J]. 中国有色金属学报, 2011,21(4): 829-835.
 WANG Zi-han, YANG Bin, JIANG Chun-li, WANG Qing-fu,

ZHANG Peng-cheng, FAN Ai-ping. Improvement of microstructure and properties of Ni coating prepared by high frequency pulsed-electrodeposition[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4): 829–835.

- [18] SUZUKI T, KONNO T. Improvement in tool life of electroplated diamond tools by Ni-based carbon nanotube composite coatings[J]. Precision Engineering, 2014, 38(3): 659–665.
- [19] 张永振,邱 明,上官宝,铁喜顺,马东辉.高速干摩擦条件 下铝基复合材料的摩擦磨损行为研究[J].摩擦学报,2005, 25(4):343-347.

ZHANG Yong-zhen, QIU Ming, SHANGGUAN Bao, TIE Xi-shun, MA Dong-hui. Friction and wear behavior of the materials under very high sliding velocity[J]. Tribology, 2005, 25(4): 343–347.

(编辑 龙怀中)