2015年9月 Sep 2015

文章编号:1004-0609(2015)-09-2335-07

AZ41M 镁合金动态再结晶临界条件

蔡志伟^{1,2},陈拂晓^{1,2},郭俊卿^{1,2}

(1. 河南科技大学 材料科学与工程学院,洛阳 471023;2. 河南科技大学 有色金属共性技术河南省协同创新中心,洛阳 471023)

摘 要:采用 Gleeble-1500D 型热/力模拟试验机在变形温度 300~450 、应变速率 0.005~1 s⁻¹条件下对 AZ41M 镁合金进行热模拟压缩试验。用计算加工硬化率的方法处理试验数据,再结合 ln θ - ε 曲线的拐点及- ∂ (ln θ)/ $\partial\varepsilon$ - ε 曲 线最小值判据,建立合金热变形过程中的动态再结晶临界应变模型。根据热压缩实验数据,分析温度和应变速率 等工艺参数对合金动态再结晶的影响。结果表明:在该实验条件下,AZ41M 镁合金的 ln θ - ε 曲线均具有拐点特征, 对应的- ∂ (ln θ)/ $\partial\varepsilon$ - ε 曲线均出现最小值,该最小值所对应的应变即为临界应变 ε_c ,得到合金临界应变预测模型;临 界应变随变形温度的降低和应变速率的增加而增大,且峰值应变 ε_p 和临界应变 ε_c 的比值满足 $\varepsilon_p/\varepsilon_c$ =1.97。 关键词: AZ41M 镁合金;加工硬化率;动态再结晶;临界条件;组织演变 中图分类号:TG111.7 文献标志码:A

Critical conditions of dynamic recrystallization for AZ41M magnesium alloy

CAI Zhi-wei^{1, 2}, CHEN Fu-xiao^{1, 2}, GUO Jun-qing^{1, 2}

(1. School of Materials Science and Engineering,

Henan University of Science and Technology, Luoyang 471023, China;

2. Collaborative Innovation Center of Nonferrous Metals of Henan Province,

Henan University of Science and Technology, Luoyang 471023, China)

Abstract: The hot simulation compression tests of AZ41M magnesium alloy were conducted at deformation temperature in the range of 300–450 and strain rate in the range of 0.005–1 s⁻¹ with the Gleeble–1500D thermal-mechanical simulation test machine. The critical strain model of dynamic recrystallization for AZ41M magnesium alloy during hot deformation was obtained by computing the work hardening rate θ from initial experimental data and combining with the inflection point criterion of $\ln\theta - \varepsilon$ curves and the minimum value criterion of $-\partial(\ln\theta)/\partial\varepsilon - \varepsilon$ curves. The influences of temperature and strain rate on the dynamic recrystallization were investigated based on the experimental data. The results show that an inflection point presents in the $\ln\theta - \varepsilon$ curve and a minimum value appears in the corresponding $-\partial(\ln\theta)/\partial\varepsilon - \varepsilon$ curve when the critical state of AZ41M magnesium alloy is attained, the strain that relates to the minimum value is the critical strain ε_c . The predicting model of critical strain is described. The critical strain increases with the decrease of deformation temperature and the increase of strain rate, and the ratio of peak strain (ε_p) and critical strain ε_c is 1.97.

Key words: AZ41M magnesium alloy; work hardening rate; dynamic recrystallization; critical condition; microstructure evolution

基金项目:河南省基础与前沿技术研究项目(112300413227)

收稿日期:2014-10-27;修订日期:2015-06-15

通信作者:陈拂晓,教授,博士;电话:0379-65627265;E-mail:chenfx126@126.com

镁合金是现代工业生产中最轻的金属结构材料, 在电子通讯、汽车制造及航空航天等领域应用前景广 阔^[1]。但镁合金的密排六方晶体结构使其室温变形能 力较差^[2],热塑性加工成为其成形的主要方式。

在镁合金的热塑性变形过程中,动态再结晶是一 种重要的组织演化机制。动态再结晶不仅可以细化晶 粒,还能消除缺陷,提高力学性能^[3],对改善镁合金 塑性成形能力起到积极的促进作用。动态再结晶刚开 始发生时的应变即为临界应变,只有当实际变形程度 超过临界应变时,动态再结晶才能发生^[4]。童小山等^[5] 建立了 ZM21 及 ZM61 镁合金动态再结晶临界应变模 型 发现两者的临界应变均随应变速率的增加而升高, 随变形温度的增加而降低。黄光杰等^[6]采用单参数方 法,建立起 AZ31 镁合金临界应变与变形条件的定量 关系。研究人员对 AZ41M 镁合金的动态再结晶行为 进行了研究, WANG 等^[7]研究了双辊铸轧 AZ41M 镁 合金板料的变形行为及动态再结晶机制,王忠军等^[8] 研究了铸造 AZ41 镁合金动态再结晶与位错运动的协 调关系,但挤压态 AZ41M 镁合金动态再结晶临界条 件及相关模型的研究却鲜有报道。

AZ41M 属于 Mg-Al-Zn-Mn 系合金,是制造飞机 内部构件、舱门、壁板及导弹蒙皮等的优良材料^[9]。 此外,该类镁合金一般通过模锻成形,为了提高可加 工性,需要先通过挤压使坯料预成形^[10],因此,研究 挤压态 AZ41M 镁合金的动态再结晶行为具有重要应 用价值。本文作者以模拟挤压态 AZ41M 镁合金热压 缩所获得的实验数据为基础,通过对加工硬化率曲线 的特征点进行识别,构建了涵盖应变速率及变形温度 的动态再结晶临界应变模型,以期为热加工工艺的制 定、组织性能的控制提供理论支持。

1 实验

实验材料为挤压态 AZ41M 镁合金,其化学成分 如表 1 所列。原始铸锭在 400 条件下均匀化处理 12 h,然后以 13 mm/s 的速度挤压,挤压温度为 350 , 挤压比为 7.32。再用线切割加工出轴向平行于压缩方 向的 d10 mm × 15 mm 圆柱试样,压缩前在试样两端 面均匀涂敷润滑剂,以减小摩擦对实验结果的影响。 使用 Gleeble-1500D 型热/力模拟机沿轴向对试样进行 压缩,变形温度 t为 300、350、400 和 450 ,应变 速率 $\dot{\epsilon}$ 为 0.005、0.05、0.1 和 1 s⁻¹。实验时将试样以 5 /s 的升温速率加热到预定温度,保温 3 min 以消除 试样内部温度梯度,然后压缩至真应变 0.7。试样经压 缩后立即水淬,以保留热变形组织。将变形后试样沿 平行于压缩方向的轴截面切开,然后经过镶嵌、预磨、 抛光和腐蚀处理后,采用 Olympus-PMG3 型金相显微 镜观察显微组织。金相侵蚀采用 5 g 苦味酸+5 mL 冰 醋酸+100 mL 无水乙醇+10 mL 蒸馏水的腐蚀剂。

表 1 AZ41M 镁合金的化学成分

Table 1Chemical composition of AZ41M magnesium alloy(mass fraction, %)

Al	Zn	Mn	Si	Cu	Ni	Fe	Mg
4.37	0.96	0.44	0.007	0.002	0.002	0.001	Bal.

2 结果与分析

2.1 流变曲线

图 1 所示为 AZ41M 镁合金在不同实验条件下的 真应力-真应变曲线。由图 1 可知,变形初期流变应 力随应变的增加而迅速上升,这是由于变形过程中位 错大量增殖并发生堆积和缠结[11],位错密度增加,阻 碍了位错的运动,产生加工硬化现象^[12-13];当应变量 增加到一定程度时,变形储能增加,发生动态再结晶 软化[14],抵消了部分加工硬化,但此阶段加工硬化仍 然占主导地位,因此流变曲线仍呈上升趋势,但斜率 下降;随着应变量继续增加,软化速率不断加快,当 动态软化与加工硬化达到平衡时,曲线出现峰值,而 当软化作用开始占主导地位时,曲线则平缓下降。总 体而言,图1所示的流变曲线呈现出单峰现象,具有 典型的动态再结晶特征[15]。此外,合金的峰值应力和 稳态应力都随着变形温度的升高或应变速率的降低而 减小,说明 AZ41M 镁合金属于热敏感型和应变速率 敏感型材料。

2.2 动态再结晶临界应变

2.2.1 基于加工硬化率的临界应变分析

发生动态再结晶的临界应变是研究动态再结晶的 重要指标,而流变应力曲线无法直观地反映出临界应 变值,需要对流变应力曲线进行加工硬化率处理。 POLIAK 等^[16]研究表明,发生动态再结晶时,材料的 $\theta-\sigma$ 曲线($\theta=\partial\sigma/\partial\varepsilon$,其中, σ 为真应力, ε 为真应变)呈 现拐点特征,即- $\partial^2\theta/\partial\sigma=0$,而此拐点与- $\partial\theta/\partial\sigma-\sigma$ 曲线

图 1 不同条件下 AZ41M 镁合金的真应力-真应变曲线 **Fig. 1** True stress-strain curves of AZ41M magnesium alloy under different conditions: (a) t=300 ; (b) $\dot{\epsilon}=0.1$ s⁻¹

的最小值点对应。可利用偏导数推导出如下关系: $-\partial(\ln\theta)/\partial\varepsilon=\partial\theta/\partial\sigma$,说明不仅 $\theta-\sigma$ 曲线呈现拐点特征, $\ln\theta-\varepsilon$ 曲线也必然具有相应的拐点特征^[17]。则根据 AZ41M 镁合金热压缩试验数据绘制 $\ln\theta-\varepsilon$ 和 $-\partial(\ln\theta)/\partial\varepsilon-\varepsilon$ 曲线,再利用 $-\partial^2(\ln\theta)/\partial\varepsilon=0$ 判据即可得到 相应的临界应变值 ε_{co}

实验得到的真应力--真应变曲线不光滑而呈现波 浪型,为了便于通过实验数据获得加工硬化率 θ,需 要先对真应力--真应变曲线进行拟合,获得相关性较 好的拟合方程,再通过微分运算求得各真应变下的拟 合曲线斜率,最后绘制 lnθ-ε 曲线,确定临界应变。

研究人员对 TA15 钛合金^[17]、TC11 钛合金^[18]的真 应力-真应变曲线进行拟合,均取得较好效果。本文 作者采用不同方式对各变形条件下的真应力-真应变 曲线进行拟合,以温度 350 、应变速率 0.05 s⁻¹条件 下的拟合为例,所用方程及所得相关性系数 *R* 如式 (1)~(5)所示:

$$\sigma = \begin{cases} (b_0 + b_1\varepsilon + b_2\varepsilon^2 + b_3\varepsilon^3 + b_4\varepsilon^4 + b_5\varepsilon^5) / \\ (a_0 + a_1\varepsilon + a_2\varepsilon^2 + a_3\varepsilon^3 + a_4\varepsilon^4 + a_5\varepsilon^5 + a_6\varepsilon^6), \\ R = 0.99956 \\ (1) \\ (b_0 + b_1\varepsilon^{0.5} + b_2\varepsilon + b_3\varepsilon^{1.5} + b_4\varepsilon^2 + b_5\varepsilon^{2.5}) / \\ (a_0 + a_1\varepsilon^{0.5} + a_2\varepsilon + a_3\varepsilon^{1.5} + a_4\varepsilon^2 + a_5\varepsilon^{2.5}), \\ R = 0.99855 \\ a_0 + a_1\varepsilon + a_2\varepsilon^2 + a_3\varepsilon^3 + a_4\varepsilon^4 + a_5\varepsilon^5 \\ a_0 + a_1\varepsilon + a_2\varepsilon^2 + a_3\varepsilon^3 + a_4\varepsilon^4 + a_5\varepsilon^5 \\ + a_6\varepsilon^6 + a_7\varepsilon^7 + a_8\varepsilon^8, \\ R = 0.96048 \\ a_0 + a_1\varepsilon + a_2\varepsilon^2 + a_3\varepsilon^3 + a_4\varepsilon^4 + a_5\varepsilon^5 \\ + a_6\varepsilon^6 + a_7\varepsilon^7 + a_8\varepsilon^8 + a_9\varepsilon^9, \\ R = 0.97225 \\ a_0 + a_1\varepsilon + a_2\varepsilon^2 + a_3\varepsilon^3 + a_4\varepsilon^4 + a_5\varepsilon^5 \\ + a_6\varepsilon^6 + a_7\varepsilon^7 + a_8\varepsilon^8 + a_9\varepsilon^9 + a_{10}\varepsilon^{10}, \\ R = 0.98137 \\ \end{cases}$$

对比发现,对于温度 350 、应变速率 0.05 s⁻¹ 条件下的真应力--真应变拟合曲线,式(1)相关性系数 最大,能更好地反映曲线规律,且对于式(3)~(5),当 指数大于 10 就会出现拟合不收敛情况,因此该条件下 选取式(1)为拟合方程,拟合所得结果如图 2 所示。

图 2 变形温度 350 、应变速率 0.05 s⁻¹ 时的真应力--真应 变实测曲线与拟合曲线

Fig. 2 Experimental curve and fitting curve deformed at temperature of 350 and strain rate of 0.05 s^{-1}

由图 2 可得真应力-真应变曲线拟合方程如式(6) 所示:

 $\sigma = (0.00628 + 2.4904\varepsilon + 925.45393\varepsilon^2 +$

 $\frac{123.50877\varepsilon^{3} + 11643.17837\varepsilon^{4} - 18403.36542\varepsilon^{5})}{(0.0006765 + 0.0282\varepsilon + 12.92082\varepsilon^{2} - 33.7816\varepsilon^{3} + 12.92082\varepsilon^{2})}$

 $440.35182\varepsilon^4 - 702.58379\varepsilon^5 + 182.06091\varepsilon^6) \tag{6}$

根据式(6)可求得各真应变下的加工硬化率 θ ,进

而绘制出 $\ln\theta - \varepsilon$ 曲线,并采用三次方程进行拟合,所 得结果如图 3(a)所示。由图 3(a)可知, $\ln\theta - \varepsilon$ 曲线在真 应变 0.03 附近出现拐点,为了精确地确定拐点的具体 位置,得出 $\ln\theta - \varepsilon$ 曲线拟合方程:

 $\ln\theta = 9.27971 - 240.25667\varepsilon + 5971.91411\varepsilon^2 - 57296.8217\varepsilon^3$ (7)

対式 (7) 进行 微分,利用 运算 结果 绘制出 $-\partial(\ln\theta)/\partial\varepsilon-\varepsilon$ 曲线,如图 3(b)所示,曲线方程为 $-\partial(\ln\theta)/\partial\varepsilon=240.25667-11943.82822 \varepsilon+171890.4651 \varepsilon^{2}$ (8)

在图 3(b)中,当 $-\partial^2(\ln\theta)/\partial\varepsilon=0$ 时所对应的应变即 为临界应变,则温度 350 、应变速率 0.05 s⁻¹时所对 应的临界应变 ε_c 为 0.0347。

图 3 在变形温度 350 、应变速率 0.05 s⁻¹ 时 ln θ 与应变 ε 及- ∂ (ln θ)/ $\partial \varepsilon$ 与应变 ε 之间的关系

2.2.2 临界应变模型的建立

采用以上相同的方法,可绘制其他热变形条件下的 lnθ-ε 曲线,所得结果如图 4 所示。由图 4 可知, 不同温度(见图 4(a))及不同应变速率(见图 4(b))下 lnθ-ε 曲线的变化规律相似。变形初期,加工硬化率随 应变的增加快速下降,然后进入缓慢降低阶段,到最 后又快速下降,在加工硬化速率缓慢降低阶段的某处

图 4 不同变形条件下 $\ln \theta = \varepsilon$ 之间的关系

Fig. 4 Relationships between $\ln\theta$ and ε under different deformation conditions: (a) t=300 ; (b) $\dot{\varepsilon}=0.1$ s⁻¹

曲线出现拐点。

图 5 所示为不同变形条件下对应于 $\ln\theta - \varepsilon$ 曲线的 $-\partial(\ln\theta)/\partial\varepsilon - \varepsilon$ 关系曲线。由图 5 可知, $-\partial(\ln\theta)/\partial\varepsilon - \varepsilon$ 曲 线均出现最小值,且曲线最小值与 $\ln\theta - \varepsilon$ 曲线的拐点 位置相对应,最小值处所对应的应变值即为动态再结 晶临界应变。

图 6 所示为不同变形温度、应变速率对临界应变 ε_c及峰值应变 ε_p影响的三维线框架面图。由图 6 可知, 变形温度对临界应变及峰值应变的影响为负,即在同 一应变速率下,临界应变及峰值应变均随着变形温度 的升高而降低。这是因为温度越高,原子热振荡及扩 散速率越快,位错迁移的驱动力越强^[17],滑移系临界 切应力越低^[19-20],则动态再结晶更容易发生。此外, 应变速率对临界应变及峰值应变的影响为正,即在同 一变形温度下,临界应变及峰值应变均随着应变速率 的增加而增大。这是因为应变速率越大,位错合并抵 消的时间越少,再结晶晶粒也越来不及形核和长 大^[14],则动态再结晶较难发生。

为了定量分析变形温度及应变速率对动态再结晶 临界应变的影响,本文作者引入涵盖变形温度和应变 速率的 Sellars^[21]模型结构来表征临界应变模型:

Fig. 3 Relationships among $\ln\theta$ and ε (a) and $-\partial(\ln\theta)/\partial\varepsilon$ and ε (b) at temperature of 350 and strain rate of 0.05 s⁻¹

图 5 不同变形条件下 $-\partial(\ln\theta)/\partial\varepsilon$ 与 ε 之间的关系

Fig. 5 Relationships between $-\partial(\ln\theta)/\partial\varepsilon$ and ε under different deformation conditions: (a) t=300 ; (b) $\dot{\varepsilon}=0.1$ s⁻¹

图 6 不同变形温度和应变速率对峰值应变及临界应变的 影响

 $\varepsilon_{\rm c} = aZ^b \tag{9}$

式中:a、b均为常数;Z为温度补偿应变速率因子, $Z = \dot{\epsilon} \exp[Q/(RT)]$,其中Q为变形激活能,对实验数 据进行多次线性回归处理,并根据 $Q = R \left[\frac{\partial \ln \dot{\epsilon}}{\partial \ln[\sinh(\alpha\sigma)]} \right]_T \left[\frac{\partial \ln[\sinh(\alpha\sigma)]}{\partial(1/T)} \right]_{\dot{\epsilon}}$ 计算得到本 实验条件下的变形激活能 Q 为 165.2049 kJ/mol。 对式(9)两边取对数,可得:

$$\ln \varepsilon_{\rm c} = \ln a + b \ln Z \tag{10}$$

求出不同变形温度和应变速率下的临界应变 ε_c 和 参数 Z, 绘制 $\ln \varepsilon_c - \ln Z$ 散点图,并进行单因素线性回 归,所得结果如图 7 所示。由式(10)可知,图 7 直线 截距即为 $\ln a$,斜率为 b,进而求得 $a=2.58 \times 10^{-4}$, b=0.17356,则所求临界应变预测模型为

$$\varepsilon_{\rm c} = 2.58 \times 10^{-4} Z^{0.17356} \tag{11}$$

临界应变 ε_c 与峰值应变 ε_p 基本上也呈现线性关 系,进一步对其进行单因素线性回归,所得结果如图 8所示,可得临界应变与峰值应变之间的关系:

$$\varepsilon_{\rm p} = 1.97 \varepsilon_{\rm c}$$
 (12)

由式(12)可知,峰值应变比临界应变滞后,即动 态再结晶在应变量达到峰值应变之前就已经发生。

图 7 $\ln \varepsilon_c$ 与 $\ln Z$ 之间的关系

Fig. 7 Relationship between $\ln \varepsilon_c$ and $\ln Z$

图 8 临界应变与峰值应变的关系

Fig. 8 Relationship between critical strain and peak strain

2.2.3 显微组织演变

图 9 所示为 AZ41M 镁合金挤压态及不同条件下

图 9 AZ41M 镁合金挤压态不同条件下变形后的光学显微组织

Fig. 9 Optical microstructures of AZ41M magnesium alloy deformed under different conditions: (a) As-extruded; (b) t=400 $\dot{\varepsilon}=1 \text{ s}^{-1}, \varepsilon=0.07$; (c) T=400 , $\dot{\varepsilon}=1 \text{ s}^{-1}, \varepsilon=0.2$; (d) T=400 , $\dot{\varepsilon}=1 \text{ s}^{-1}, \varepsilon=0.7$

变形后的光学显微组织。由图 9(a)可知, AZ41M 镁合 金原始挤压态组织由等轴晶组成,平均晶粒尺寸约为 29.37 μm。当 t=400 、 $\dot{\epsilon}$ =1 s⁻¹、应变量 ε 为 0.07 时 (见图 9(b),该条件下的临界应变 ε_c约为 0.066),晶界 呈锯齿状,初始动态再结晶晶粒开始在原始晶粒交界 处形核。当应变量增加至 0.2 时(见图 9(c)),再结晶晶 粒增多,并呈项链状分布于原始粗大晶粒周围。当应 变量继续增加到 0.7 时(见图 9(d)),已发生完全动态再 结晶,此时组织较为均匀,材料力学性能良好,平均 晶粒尺寸约为 7.34 μm。

3 结论

 AZ41M 镁合金流变曲线表现出典型的动态再 结晶特征,其显微组织演变证明热变形过程中动态再 结晶的发生。

2)处理实验数据所得的 ln*θ*-*ε* 曲线均具有拐点特征,对应的--∂(ln*θ*)/∂*ε*-*ε* 曲线均出现最小值。利用此拐点判据,可以确定 AZ41M 镁合金在温度 300~450 、应变速率 0.005~1 s⁻¹条件下发生动态再结晶的临界条件,且其临界应变预测模型函数关系可表示为

 $\varepsilon_{\rm c}$ =2.58 × 10⁻⁴Z^{0.17356}.

3) 动态再结晶临界应变随变形温度的降低和应 变速率的增加而增大,且峰值应变和临界应变的比值 满足 $\epsilon_{\rm p}/\epsilon_{\rm c}=1.97$ 。

REFERENCES

- YU Hui, YU Hua-shun, KIM Young-min, YOU Bong-sun, MIN Guang-hui. Hot deformation behavior and processing maps of Mg-Zn-Cu-Zr magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(3): 756–764.
- [2] KARAMI M, MAHMUDI R. Hot shear deformation constitutive analysis and processing map of extruded Mg-12Li-1Zn BCC alloy[J]. Materials and Design, 2014, 53: 534–539.
- [3] XU Yan, HU Lian-xi, SUN Yu. Dynamic recrystallization kinetics of as-cast AZ91D alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(6): 1683–1689.
- [4] 陈振华, 许芳艳, 傅定发, 夏伟军. 镁合金的动态再结晶[J]. 化工进展, 2006, 25(2): 140-146.
 CHEN Zhen-hua, XU Fang-yan, FU Ding-fa, XIA Wei-jun. Dynamic recrystallization of magnesium alloy[J]. Chemical Industry and Engineering Progress, 2006, 25(2): 140-146.
- [5] 童小山,彭 建,石大伟,潘复生,彭 毅. ZM21及ZM61合 金的热变形行为与动态再结晶临界条件的表征[J]. 中国有色

金属学报,2013,23(8):2069-2076.

TONG Xiao-shan, PENG Jian, SHI Da-wei, PAN Fu-sheng, PENG Yi. Thermal compression behavior and characterization of dynamic recrystallization critical conditions for ZM21 and ZM61 magnesium alloys[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(8): 2069–2076.

[6] 黄光杰,钱宝华,汪凌云,JONAS J J. AZ31 镁合金初始动态 再结晶的临界条件研究[J].稀有金属材料与工程,2007, 36(12):2080-2083.

HUANG Guang-jie, QIAN Bao-hua, WANG Ling-yun, JONAS J J. Study on the critical conditions for initial dynamic recrystallization of AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2007, 36(12): 2080–2083.

- [7] WANG Shou-ren, SONG Ling-hui, KANG Suk-bong, CHO Jaeh-yung, WANG Ying-zi. Deformation behavior and microstructure evolution of wrought magnesium alloys[J]. Chinese Journal of Mechanical Engineering, 2013, 26(3): 437–447.
- [8] 王忠军,乐启炽,郭世杰,崔建忠,张彩碚.低频电磁铸造 AZ41 镁合金的热压缩流变与组织[J].中国有色金属学报, 2006,16(1):123-129.
 WANG Zhong-jun, LE Qi-chi, GUO Shi-jie, CUI Jian-zhong, ZHANG Cai-bei. Thermal compressing flow and microstructure

of AZ41 magnesium alloy cast by low frequency electrical magnetic field[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(1): 123-129.

- [9] 陈振华. 变形镁合金[M]. 北京: 化学工业出版社, 2005: 21.
 CHEN Zhen-hua. Wrought magnesium alloy[M]. Beijing: Chemical Industry Press, 2005: 21.
- [10] LI Hui-zhong, WEI Xiao-yan, OUYANG Jie, JIANG Jun, LI Yi. Hot deformation behavior of extruded AZ80 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(11): 3180–3185.
- [11] 申利权,杨 旗,靳 丽,董 杰. AZ31B 镁合金在高应变速
 率下的热压缩变形行为和微观组织演变[J]. 中国有色金属学
 报, 2014, 24(9): 2195-2204.
 SHEN Li-quan, YANG Qi, JIN Li, DONG Jie. Deformation

behavior and microstructure transformation of AZ31B Mg alloy under high strain rate compression[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(9): 2195–2204.

[12] LIAO Ching-hao, WU Horng-yu, LEE Shyong, ZHU Feng-jun, LIU Hsu-cheng, WU Cheng-tao. Strain-dependent constitutive analysis of extruded AZ61 Mg alloy under hot compression[J]. Materials Science and Engineering A, 2013, 565: 1–8.

- [13] WU Horng-yu, WU Cheng-tao, YANG Jie-chen, LIN Ming-jie. Hot workability analysis of AZ61 Mg alloys with processing maps[J]. Materials Science and Engineering A, 2014, 607: 261–268.
- [14] QUAN Guo-zheng, SHI Yu, WANG Yi-xin, KANG Beom-soo, KU Tae-wan, SONG Woo-jin. Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data[J]. Materials Science and Engineering A, 2011, 528: 8051–8059.
- [15] RAGHUNATH B K, RAGHUKANDAN K, KARTHIKEYAN R, PALANIKUMAR K, PILLAI U T S, ASHOK GANDHI R. Flow stress modeling of AZ91 magnesium alloys at elevated temperature[J]. Journal of Alloys and Compounds, 2011, 509(15): 4992–4998.
- [16] POLIAK E I, JONAS J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127–136.
- [17] 欧阳德来, 鲁世强, 黄 旭, 雷力明. TA15 钛合金 β 区变形动态再结晶的临界条件[J]. 中国有色金属学报, 2010, 20(8): 1539–1544.
 OUYANG De-lai, LU Shi-qiang, HUANG Xu, LEI Li-ming. Critical conditions of dynamic recrystallization during deformation of β area in TA15 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(8): 1539–1544.
- [18] 鲁世强,王克鲁,李 鑫,刘诗彪.一种模拟和预测金属锻造
 过程动态再结晶的新方法[J].金属学报,2014,50(9):
 1128-1136.

LU Shi-qiang, WANG Ke-lu, LI Xin, LIU Shi-biao. A new method for simulating and predicting dynamic recrystallization in metal forging[J]. Acta Metallurgica Sinica, 2014, 50(9): 1128–1136.

- [19] 孙朝阳, 栾京东, 刘 廣, 李 瑞, 张清东. AZ31 镁合金热变 形流动应力预测模型[J]. 金属学报, 2012, 48(7): 853-860.
 SUN Chao-yang, LUAN Jing-dong, LIU Geng, LI Rui, ZHANG Qing-dong. Predicted constitutive modeling of hot deformation for AZ31 magnesium alloy[J]. Acta Metallurgica Sinica, 2012, 48(7): 853-860.
- [20] REN Ling-bao, WU Jing, QUAN Gao-feng. Plastic behavior of AZ80 alloy during low strain rate tension at elevated temperature[J]. Materials Science and Engineering A, 2014, 612: 278–286.
- [21] SELLARS C M, WHITEMAN J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3): 187–194.

(编辑 王 超)