第 25 卷第 8 期 Volume 25 Number 8 2015 年 8 月 August 2015

文章编号: 1004-0609(2015)08-2251-08

Mo_{*m*}**S**_{*n*}(*m*+*n*≤8)团簇的结构、稳定性和 电子性质

周岳珍^{1,2},卢 勇^{1,2},刘大春^{1,2,3},陈秀敏^{1,2,3},李 玮^{1,2},徐俊杰^{1,2}

(1. 昆明理工大学 真空冶金国家工程实验室,昆明 650093;
2. 昆明理工大学 云南省有色金属真空冶金重点实验室,昆明 650093;
3. 昆明理工大学 云南省复杂有色金属资源清洁利用国家重点实验室(培育基地),昆明 650093)

摘 要:采用密度泛函理论(DFT)中的广义梯度近似(GGA)对 Mo_mS_n(m+n≤8)团簇进行结构优化,通过计算其二阶能量差分 Δ₂E_m、分裂能 D(m)、平均结合能 E_b、最高占据轨道(HOMO)、最低空轨道(LUMO)和 HOMO-LUMO 能隙 HLG,以表征与分析团簇总原子数对 Mo_mS_n团簇基态结构稳定性的影响。计算结果表明:随着总原子数(m+n)的增大,Mo_mS_n团簇的基态结构由较为松散的平面结构向紧凑型的空间结构转变,其基态几何构型与 S_n团簇以及 Mo_m 团簇的基态几何构型密切相关;Mo_mS_n 团簇结构稳定性随团簇原子总数(m+n)的增加而增大,Mo_mS_n 团簇的平均结合能要大;MoS_n 团簇、Mo₂S_n 团簇、Mo₃S_n 团簇的幻数(n)分别为 5、4、3;在 Mo_mS_n 团簇中,电荷均是由 Mo 原子向 S 原子转移的,并以共价键和离子键共存。
 关键词:密度泛函理论;Mo_mS_n 团簇;基态结构;振动频率;平均结合能;Mulliken 布局
 中图分类号:O641

Geometries, stabilities and electronic properties of $Mo_mS_n(m+n \le 8)$ clusters

ZHOU Yue-zhen^{1, 2}, LU Yong^{1, 2}, LIU Da-chun^{1, 2, 3}, CHEN Xiu-min^{1, 2, 3}, LI Wei^{1, 2}, XU Jun-jie^{1, 2}

(1. National Engineering Laboratory for Vacuum Metallurgy,

Kunming University of Science and Technology, Kunming 650093, China;

2. Key Laboratory of Vacuum Metallurgy for Non-ferrous Metal of Yunnan Province,

Kunming University of Science and Technology, Kunming 650093, China;

3. State Key Laboratory Breeding Base of Complex Non-ferrous Metal Resources Clear Utilization in Yunnan Province,

Kunming University of Science and Technology, Kunming 650093, China)

Abstract: The geometries of the $Mo_mS_n(m+n \le 8)$ clusters were optimized using density functional theory(DFT) with generalized gradient approximation(GGA) for exchange-correlation functional. Several parameters, such as the second difference of energies($\Delta_2 E_m$), the fission energy(D(m)), average binding energy(E_b), highest occupied molecular orbital(HOMO), lowest unoccupied molecular orbital(LUMO) and the HOMO-LUMO energy gap(HLG), were calculated to characterize and analyze the influence of total atom number on the structural stabilities of Mo_mS_n clusters. The calculated results show that the ground state structures change from incompact planar structures to closed-packed structures with the increase of total atom number (m+n), the ground state structures are mainly based on the ground state structures of S_n clusters and Mo_m clusters. And the structural stabilities of Mo_mS_n clusters increase with the increase of

基金项目: 国家自然科学基金和云南省联合基金资助项目(U1202271); 国家自然科学基金青年科学基金资助项目(51104078); 教育部创新团队发展 计划项目(IRT1250)

收稿日期: 2014-12-09; 修订日期: 2015-05-18

通信作者:刘大春,教授,博士;电话: 13608858239; E-mail: lcd_2002@sina.com

total atom number, and the average binding energy of Mo_mS_n clusters is higher than those of S_n clusters and Mo_m clusters. when the magic numbers (*n*) of MoS_n clusters, Mo_2S_n clusters and Mo_3S_n clusters are 5, 4, and 3, respectively, the charge transfers from Mo atom to S atom in Mo_mS_n clusters and the co-existence of covalent and ionic bond can be found. **Key words:** density functional theory; Mo_mS_n cluster; ground state structure; vibrational frequency; average binding energy; Mulliken population

近年来,随着基本物质结构理论研究的深入,VIB 族元素团簇及其掺杂元素引起了人们的关注。钼原子 具有特殊的价电子组态(4d⁵5s¹),即 d、s 壳层均处于 半满填充。因此,对钼及其硫化物的显微结构和形成 机理的探索引起了研究人员的广泛关注。目前,有关 Mo_n团簇的研究,已有大量的文献报道。DELLY 等^[1] 采用自洽场局域自旋密度近似方法计算了 Mo₂基态结 构的键长和离解能;ZHANG 等^[2]采用 GGA-PW91 方 法计算了 Mo_n(*n* 为 2~55)团簇在一维、二维、三维的 平衡几何结构;陈杭等^[3]采用密度泛函理论下的广义 梯度近似(GGA)方法,通过团簇的平衡几何结构、二 阶能量差分、垂直电离势、能隙和磁性等性质对过渡 金属团簇 Mo_n(*n* 为 2~10)进行系统的探讨;LEI 等^[4] 采用密度泛函理论下的 GGA 方法,研究了 Mo_n(*n* 为 2~8)团簇的平衡几何结构及其对 N,分子的吸附行为。

目前,对 Mo-S 团簇的研究已有少量报道。WU 等^[5]研究了 MoS₆⁻和 MoS₆团簇的结构和电子性质;章 永凡等^[6]研究了 Mo₂S₄ 团簇的电子结构和光谱性质; MURUGAN 等^[7-8]研究了 Mo₅S_n(n 为 5~15)团簇、 Mo_nS_m(n 为 1~6, m 为 n~3n)团簇的基态结构及相关性 质。然而,上述研究主要集中于某一或某一区间的原 子总数范围中的 Mo-S 团簇的基态结构及相关性质的 计算。本文作者主要计算了包含 Mo_mS_n 团簇随原子总 数(m+n)值由 2 递增至 8 的所有的 28 种团簇的基态结 构及相关性质。

区别于传统的辉钼矿处理的火法和湿法工艺,辉 钼矿真空热分解工艺具备高金属回收率、低生产成本 和无环境污染等优势,有着良好的应用前景。二硫化 钼作为辉钼矿中钼元素存在的主要形式,其在真空下 热分解的反应机理以及钼、硫元素在高温、真空条件 下的挥发行为对于辉钼矿真空热分解制备金属钼具有 重要意义。因此,以本实验的计算结果为基础,后续 将进行高温、真空条件下 Mo_m、S_n和 Mo_mS_n团簇的从 头算分子动力学模拟的计算工作。综合分析模拟计算 结果和试验结果,从而为辉钼矿真空热分解制备金属 钼的冶金新工艺提供理论指导。

1 计算方法

采用密度泛函的方法对 Mo_mS_n(m+n≤8)团簇进行 结构优化和电子结构计算,全部计算均在量子化学计 算程序 Materials Studio 6.0下的 Dmol3 软件包中进行。 在结构优化过程中,力、位移和能量的收敛标准分别 为 0.002 Ha/Å、0.005Å 和 10⁻⁵ Ha。在电子结构计算中, 采用带极化的双数值原子基组(DNP),交换关联泛函 为 GGA^[9],关联梯度修正为 PW91 自洽过程以体系的 能量是否收敛为依据,自洽场收敛标准为 10⁻⁶ a.u.^[10]。 为了加速自洽场收敛,使用 DIIS 方法,轨道计算中使 用的 Smearing 标准为 0.005 Ha。

为了考察所选择的方法是否合理,计算了 Mo₂和 S₂的键长、平均结合能与振动频率,并将计算结果与 前人的理论计算值和实验值相比较,如表1所列。由 表1可知,所选择方法计算的结果基本上与前人的理 论计算值相一致,部分数值优于前人的理论计算值, 总体上与实验值十分接近。

表1 Mo₂和 S₂的键长、平均结合能(E_b)和振动频率(ω)的实验值和理论计算值

Table 1 Experimental values and theoretical calculated values of bond length, average binding energy and vibration frequency of Mo_2 and S_2

Value	Mo ₂			S ₂			
value	Bond length/Å	$E_{\rm b}/({\rm eV}\cdot{\rm atom}^{-1})$	ω/cm^{-1}	Bond length/Å	$E_{\rm b}/({\rm eV}\cdot{\rm atom}^{-1})$	ω/cm^{-1}	
Theoretical value in this work	1.986	1.38	529.38	1.940	2.197	684.98	
The section 1 and a section of	1.986 ^[11]	1.50 ^[11]		1.90 ^[12]	3.24 ^[12]		
I neoretical value in other work	1.980 ^[4]		523 ^[4]				
Experiment value ^[12–15]	1.94	1.68~2.44	477	1.88		734.78	

在考虑团簇的初始几何构型时,由于随着原子数 目的增大,团簇几何构型种类呈现数量级的增大。因此,主要参照了前人研究中涉及到的 S_n和 Mo_m团簇 的基态几何结构,同时还参照了其他单元素团簇(如 B_n、W_n、Pt_n、Cd_n、Ni_n、Cu_n 团簇等)的基态几何构 型^[16-21],确定了 Mo_m和 S_n团簇的基态几何构型,并 选用这些构型作为 Mo_mS_n团簇合理的起始构型。以上 述起始构型为基础,参照 Ga_nAs、W_nNi_m 团簇等的基 态几何构型^[22-24],进行合理的替换、添加等操作,得 到 Mo_mS_n团簇的候选构型。最后,对于每个几何结构, 首先允许总磁矩(自旋度)在 Dmol3 软件的自动设置下 被优化到最优状态(S₂),接着考虑设置近邻态(S₂±2)或 更大范围的自旋态进行再次优化,这两步可以确保所 获得的自旋态是团簇的最低能量态^[25]。最终,对所有 可能的最低能量构型进行能量和频率的计算,把能量 最低且振动频率全为正值的构型确定为 Mo_mS_n团簇的 基态几何构型。

2 计算结果与讨论

2.1 团簇的基态几何构型

图 1~3 所示分别为 S_n团簇、Mo_m团簇和 Mo_mS_n团簇的基态几何构型。

通过对比分析可知, Mo_mS_n 团簇的基态几何构型 与 S_n 团簇、Mo_m 团簇的基态几何构型密切相关, Mo_mS_n 团簇的基态几何构型往往以 S_n 团簇、Mo_m 团簇的基态 几何构型作为基础,通过替换或添加若干个原子从而

Fig. 1 Ground-state geometric structures of $S_n(2 \le n \le 8)$ clusters

Fig. 2 Ground-state geometric structures of $Mo_m(2 \le m \le 8)$ clusters

Fig. 3 Ground-state geometric structures of $Mo_m S_n(m+n \le 8)$ clusters

形成基态几何构型的。如 MoS₂团簇是以 S₃团簇为基础,用1个钼原子替换1号硫原子形成的; Mo₄S 团簇 是以 Mo₄团簇为基础,添加1个硫原子而形成的。同时,部分 Mo_mS_n 团簇的基态几何构型并不依赖于 S_n 团簇、Mo_m团簇的基态几何构型,如 Mo₂S₅ 团簇。同时,随着团簇尺寸的增大,Mo_mS_n 团簇的基态结构由 较为松散的平面结构向紧凑型的空间结构转变,主要 以三角或四角双锥结构为基本单元,通过边戴帽或面 戴帽的方式形成稳定的基态结构。

2.2 团簇的稳定性及电子性质

为了确定 Mo_mS_n 团簇的稳定性,计算了不同尺寸 Mo_mS_n 团簇的二阶能量差分 $\Delta_2 E_m$ 、平均结合能 $E_b(Mo_mS_n)、分裂能 D(m)、最高分子占据轨道 HOMO、最低分子空轨道 LUMO 和能隙 HLG,其计算结果如 图 4~6 所示。$

二阶能量差分的定义如式(1)所示:

 $\Delta_2 E_m = E(\operatorname{Mo}_{m-1} S_n) + E(\operatorname{Mo}_{m+1} S_n) - 2E(\operatorname{Mo}_m S_n)$ (1)

式中: *E*(Mo_mS_n)为 Mo_mS_n团簇的总能量。 分裂能的定义如式(2)所示^[26]:

$$D(m) = E(\operatorname{Mo}_{m-1}S_n) + E(\operatorname{Mo}_mS_n)$$
(2)

二阶能量差分与分裂能均可用于表征团簇稳定性 随尺寸的变化,二阶能量差分与分裂能越大说明其对 应的团簇的稳定性越高。

图 4 所示为 Mo_mS_n 团簇的二阶能量差分和分裂能 随团簇尺寸的变化。由图 4 可知,当 n=4 时,Mo₂S_n 团簇的二阶能量差分与分裂能出现峰值,说明 Mo₂S₄ 团簇比邻近的 Mo₂S₃ 团簇和 Mo₂S₅ 团簇更稳定。因此, n=4 应该是 Mo₂S_n 团簇的幻数。然而,对于 Mo₃S_n 团 簇的幻数,通过二阶能量差分与分裂能得出的结论是 不同的,前者认为 n=2,后者认为 n=3。因此,n为 2、 3 可能是 Mo₃S_n 团簇的幻数,有待进一步对比分析。

平均结合能的定义如式(3)所示:

$$E_{b}(Mo_{m}S_{n}) = [mE(Mo) + nE(S) - E(Mo_{m}S_{n})]/(m+n)$$
(3)

式中: *E*(Mo)、*E*(S)分别为自由 Mo 原子的能量和自由 S 原子的能量,用于表征原子数(*m*+*n*)对 Mo_{*m*}S_{*n*}团簇几 何和能态结构的影响^[27]。

图 5 所示为 Mo_mS_n团簇的平均结合能随团簇尺寸的变化。由图 5 可知,所有 Mo_mS_n团簇的平均结合能明显高于 S_n 团簇的平均结合能,绝大多数的 Mo_mS_n 团簇的平均结合能高于 Mo_m团簇的平均结合能,说明

图 4 $Mo_mS_n(m+n \leq 8)$ 团簇的二阶能量差分 $\Delta_2 E_m$ 和分裂能 D(m)

Fig. 4 Second-order difference energy $\Delta_2 E_m$ (a) and fission energy D(m) (b) of Mo_mS_n(m+n \le 8) clusters

图 5 Mo_mS_n(*m*+*n*≤8)团簇的平均结合能 **Fig. 5** Average binding energy of Mo_mS_n(*m*+*n*≤8) clusters

Mo 原子的添加有利于提高主体 S_n 团簇的稳定性。同理,S 原子的添加有利于提高主体 Mo_m 团簇的稳定性。 当 n=4 时,Mo₂S_n 团簇的平均结合能出现峰值,说明 Mo₂S₄ 团簇比邻近的 Mo₂S₃ 团簇和 Mo₂S₅ 团簇更稳定, 这和分析二阶能量差分、分裂能时所得到的结论是一 致的。因此,n=4 是 Mo₂S_n 团簇的幻数。另外,当 n 为 3、5 和 n 为 2、3 时, MoS_n团簇和 Mo₃S_n团簇的平 均结合能出现峰值,但是峰值并不明显,因此无法作 为判定 MoS_n团簇和 Mo₃S_n团簇幻数结构的依据,有 待进一步对比分析。

为了进一步验证 Mo_mS_n团簇的稳定性及其幻数结构,计算了 Mo_mS_n团簇的 HOMO、LUMO 以及 HGL 值,图 6 所示为其值随 Mo_mS_n团簇尺寸的变化。

最高分子占据轨道(HOMO)的负值近似等于该物质的第一电离能,其值越大,对应的团簇分子越易失

图 6 $Mo_mS_n(m+n \leq 8)$ 团簇的 HOMO、LUMO、HLG Fig. 6 HOMO(a), LUMO(b), HLG(c) of $Mo_mS_n(m+n \leq 8)$ clusters

去电子。最低分子空轨道(LUMO)的能级数值上与该物质的电子亲和势相当,其值越小,该分子越易得到电子。HOMO和 LUMO的能隙(HLG)反映了电子从HOMO能级跃迁到LUMO能级的能力,在一定程度上代表了该分子参与化学反应的能力^[28],其值越大,团簇分子的化学活泼性越低,对应的团簇化学稳定性就越强。由图6可知,当*n*为5和3时,MoS_n团簇和Mo₄S_n团簇能隙的对应位置分别出现峰值,且峰值明显。即较 MoS_n团簇和 Mo₄S_n团簇和 Mo₄S_n团族和 Mo₄S_n团族和 Mo₄S_n团族和 Mo₄S_n团族和 Mo₄S_n团族和 Mo₄S_n团族和 Mo₄S_n团族和 Mo₄S_n团族和 Mo₄S₁团族和 Mo₄S₁团族和

总之,通过分析不同尺寸 Mo_mS_n 团簇的二阶能量 差分 $\Delta_2 E_m$ 、平均结合能 $E_b(Mo_mS_n)$ 、分裂能 D(m)、最 高占据轨道 HOMO、最低空轨道 LUMO 和能隙 HLG, 可得如下结论: MoS_n 团簇、 Mo_2S_n 团簇、 Mo_3S_n 团簇 的幻数分别为 5、4、3。

2.3 团簇的 Mulliken 布局分析

为了分析 Mo_mS_n团簇中的键合性质,即离子键与 共价键的成分,对 Mo_mS_n团簇中的 S 原子和 Mo 原子 进行 Mulliken 布局分析。由于在 Mo_mS_n团簇中电荷的 转移主要发生在 S 和与 S 成键的 Mo 之间,少量地发 生在 Mo 与 Mo 之间。因此,仅对 Mo_mS_n团簇中的 S 和与 S 成键的 Mo 进行 Mulliken 布局分析,表 2 所列 为计算结果。

由表 2 可知,所有的 S 原子均带负电,电荷为 -0.069~-0.587 e;所有的 Mo 原子均带正电,电荷为 0.004~0.867 e,说明在 Mo_mS_n团簇中电荷均由 Mo 原 子向 S 原子转移,符合 Mo、S 电负性的一般规律, Mo—S 键具有离子键的特性。

3 结论

1) Mo_mS_n团簇的基态几何构型与 S_n团簇、Mo_m团 簇的基态几何构型密切相关,前者往往以后者作为基 础,通过替换或添加若干个原子从而形成基态几何构 型的。

2) Mo 原子的添加有利于提高主体 S_n团簇的稳定性; S 原子的添加有利于提高主体 Mo_m 团簇的稳定性。

3) 通过二阶能量差分、平均结合能、分裂能、最高分子占据轨道和最低分子空轨道间的能隙等的详细

表 2 S 和与 S 成键的 Mo 的布局分析

Table 2	Mulliken	population	analysis	for	S	and	Mo	binding
with S								

Cluster	Charge/e					
Cluster -	S	Мо				
MoS	-0.364	0.364				
MoS_2	-0.362	0.724				
MoS_3	-0.276	0.827				
MoS_4	-0.099, -0.139, -0.314	0.867				
MoS_5	-0.137, -0.301, -0.308	0.822				
MoS_6	-0.162, -0.311	0.729				
MoS_7	-0.069, -0.097, -0.146	0.693				
Mo_2S	-0.519	0.253, 0.266				
Mo_2S_2	-0.470	0.470				
Mo_2S_3	-0.422, -0.431	0.608				
Mo_2S_4	-0.318, -0.399	0.717				
Mo_2S_5	-0.278, -0.453	0.783				
Mo_2S_6	-0.180	0.384				
Mo ₃ S	-0.528	0.297				
Mo_3S_2	-0.519, -0.523	0.382				
Mo_3S_3	-0.462, -0.447, -0.477	0.561				
Mo_3S_4	-0.428, -0.449	0.491, 0.631				
Mo_3S_5	-0.249, -0.257, -0.502	0.481, 0.552				
Mo_4S	-0.563	0.217, 0.223				
Mo_4S_2	-0.460	0.230				
Mo_4S_3	-0.548	0.356, 0.578				
Mo_4S_4	-0.540	0.540				
Mo ₅ S	-0.502	0.004, 0.097, 0.152				
Mo_5S_2	-0.541	0.224, 0.490				
Mo_5S_3	-0.530	0.363, 0.608				
Mo ₆ S	-0.587	0.213				
Mo_6S_2	-0.544	0.196/0.313				
Mo ₇ S	-0.544	0.063, 0.220				

分析, MoS_n 团簇、 Mo_2S_n 团簇、 Mo_3S_n 团簇的幻数(n) 分别为 5、4、3。

4) 在 Mo_mS_n团簇中, 电荷均是由 Mo 原子向 S 原 子转移的, 表明 Mo—S 键具有离子键的特性。

5) 计算得到的 Mo_mS_n(m+n≤8)团簇的最低能量 结构,将作为后续计算中的高温、真空条件下 Mo_mS_n 团簇动力学模拟的重要参考依据,从而为硫化钼的真 空热分解实验的组分挥发问题提供理论解释。

REFERENCES

- DELLEY B, FREEMAN A J, ELLIS D E. Metal-metal bonding in Cr-Cr and Mo-Mo dimers: Another success of local spin-density theory[J]. Physical Review Letters, 1983, 50(7): 488–491.
- [2] ZHANG Wen-qin, RAN Xiao-rong, ZHAO Hai-tao, WANG Li-chang. The nonmetallicity of molybdenum clusters[J]. The Journal of Chemical Physics, 2004, 121(16): 7717–7724.
- [3] 陈 杭,雷雪玲,刘立仁,祝恒江. Mo_n(n=2~10)团簇结构和 性质的密度泛函理论研究[J]. 原子与分子物理学报, 2009, 26(6): 1048-1056.
 CHEN Hang, LEI Xue-Lin, LIU Li-reng, ZHU Heng-jiang.
 Density functional theory study of the structures and electronic

properties of Mo_n(n=2-10) clusters[J]. Journal of Atomic and Molecular Sciences, 2009, 26(6): 1048-1056.
[4] LEI Xue-ling. Theoretical study of small Mo clusters and

- molecular nitrogen adsorption on Mo clusters[J]. Chinese Physics B, 2010, 19(10): 107103.
- [5] WU Ni, ZHANG Chang-fu, ZHOU Qi, HUANG Xin, ZHANG Yong-fan, Ding Kai-ning, WANG Bin. DFT study on the electronic and structural properties of MoS₆^{-/0}clusters[J]. Chinese Journal of Structural Chemistry, 2013, 32(7): 1046–1054.
- [6] 章永凡,吴立明,李 俊,黄尊行,胡建明,周立新. 簇合物 Mo₂X₄(X=S,O)电子结构和光谱性质的 Ab Initio 研究[J]. 高等 学校化学学报, 1998, 19(10): 1659–1665.

ZHANG Yong-fan, WU Li-ming, LI Jun, HUANG Zun-xing, HU Jian-ming, ZHOU Li-xin. Ab initio study on the electronic structures and the spectra properties of the $Mo_2X_4(X=S,O)$ clusters[J]. Chemical Journal of Chinese Universities, 1998, 19(10): 1659–1665.

- [7] MURUGAN P, KUMAR V, KAWAZOE Y, OTA N. Understanding the structural stability of compound Mo-S clusters at sub-nanometer level[J]. Materials Transactions, 2007, 48(4): 658–661.
- [8] MURUGAN P, KUMAR V, KAWAZOE Y, OTA N. Ab initio study of structural stability of Mo-S clusters and size specific stoichiometries of magic clusters[J]. The Journal of Physical Chemistry A, 2007, 111(14): 2778–2782.
- [9] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(33): 13244–13249.
- [10] DELLY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. The Journal of Chemical Physics, 2000, 92(1): 508–517.
- [11] 陈 杭. 钼团簇及氮化钼团簇几何结构和电子性质的密度泛 函理论研究[D]. 乌鲁木齐: 新疆师范大学, 2010: 25-26.
 CHEN Hang. Density functional theory studies on the structures

and electronic properties of Mo and Mo₂N clusters[D]. Wulumuqi: Xinjiang Normal University, 2010: 25–26.

- [12] BAI Yu-lin, CHENG Xiang-rong, YANG Xiang-dong, LU Peng-fei. Structures of small sulfur clusters S_n(n=2-8) from Langevin molecular dynamics methods[J]. Acta Physico-Chimica Sinica, 2003, 19(12): 1102–1107.
- [13] EFREMOV Y M, SAMOILOVA A N, KOZHUKHOVSHY V B. On the electronic spectrum of the Mo₂ molecule observed after flash potolysis of Mo(CO)₆[J]. Journal of Molecular Spectroscopy, 1978, 73(3): 430–440.
- [14] HOPKINS J B, LANGRIDGE-SMITH P R R, MORSE M D, SMALLEY R E. Supersonic metal cluster beams of refractory metals: spectral investigations of ultracold Mo₂[J]. The Journal of Chemical Physics, 1983, 78(4): 1627–1637.
- [15] 李俊玉. 硫微团簇分子离子的结构与解析势能函数研究[D]. 新乡: 河南师范大学, 2005: 26-27.
 LI Jun-yu. Ab initio calculation of molecular and ionic structures and potential energy function of small sulfur clusters[D].
 Xinxiang: Henan Normal University, 2005: 26-27.
- [16] 王剑锋. 过渡金属 Sc, Ti 掺杂硼团簇结构与稳定性的密度泛 函理论研究[D]. 临汾: 山西师范大学, 2012: 20-24.
 WANG Jian-feng. Structure and stability of TiB_n, ScB_n and Ti_mB_n clusters[D]. Linfen: Shanxi Normal University, 2012: 20-24.
- [17] 张秀荣,康张李,李 扬. W_nC^{0±}(n=1, …, 6) 团簇结构与电子 性质的理论研究[J]. 计算物理, 2011, 28(4): 598-604.
 ZHANG Xiu-rong, KANG Zhang-li, LI Yang. Structure and electronic properties of W_nC^{0,±}(n=1, …, 6) clusters[J]. Chinese Journal of Computational Physics, 2011, 28(4): 598-604.
- [18] 吴 珊, 王怀谦, 李嘉琪, 李颖钰, 余逸男, 韩 佳. 铂金团 簇结构与稳定性的密度泛函研究[J]. 华侨大学学报(自然科学 版), 2015, 36(1): 35-39.
 WU Shan, WANG Huai-qian, LI Jia-qi, LI Ying-yu, YU Yi-nan, HAN Jia. Density functional theory study of the structures and

relative stabilities of platinum clusters[J]. Journal of Huaqiao University (Natural Science), 2015, 36(1): 35–39.

- [19] 智丽丽,李艳青,古丽娜,张保花,赵高峰. Cd 团簇的第一性 原理研究[J]. 原子与分子物理学报,2012,29(1):76-80.
 ZHI Li-li, LI Yan-qing, GU Li-na, ZHANG Bao-hua, ZHAO Gao-feng. Density functional study of the Cd clusters[J]. Journal of Atomic and Molecular Sciences, 2012, 29(1):76-80.
- [20] YAN Shi-ying, JIANG Hai. Structure of small Ni_n($n \le 8$) clusters[J]. Chinese Journal of Computational Physics, 2012, 29(4): 611–619.
- [21] 杨宗献,谢罗刚. Cu_x(x=1~4)团簇在 CeO₂(111)表面的吸附[J]. 物理化学学报, 2011, 27(4): 851-857.

YANG Zong-xian, XIE Luo-gang. Adhesion of small $Cu_x(x=1-4)$ clusters on a CeO₂(111) surface[J]. Acta Physico-Chimica Sinica, 2011, 27(4): 851–857.

- [22] 马德明,乔红波,李恩玲,施 卫,马优恒. 富镓 Ga_nAs (n=1~9)团簇稳定性及缺陷特性的密度泛函理论研究[J]. 原子 与分子物理学报, 2014, 31(2): 223-228.
 MA De-ming, QIAO Hong-bo, LI En-ling, SHI Wei, MA You-heng. Density functional theory study on stability and defect feature of Ga-rich Ga_nAs(n=1-9) clusters[J]. Journal of Atomic
- and Molecular Sciences, 2014, 31(2): 223-228.
 [23] 张秀荣,李 扬,杨 星. W_nNi_m(n+m=8)团簇结构与电子性 质的理论研究[J]. 物理学报, 2011, 60(10): 236-245.
 ZHANG Xiu-rong, LI Yang, YANG Xing. Theoretical study on structural and electronic properties of W_nNi_m(n+m=8) clusters[J].
 Chinese Journal of Physics, 2011, 60(10): 236-245.
- [24] 董 闯, 羌建兵, 袁 亮, 王 清, 王英敏. 合金相的"团簇+连接原子"模型与成分设计[J]. 中国有色金属学报, 2011, 21(10): 2502-2510.
 DONG Chuang, QIANG Jian-bing, YUAN Liang, WANG Qing, WANG Ying-min. A cluster-plus-glue-atom model for composition design of complex alloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2502-2510.
- [25] 秦健萍,梁瑞瑞,吕 瑾,武海顺. Co_mAl_n(m+n≤6)团簇的结构和磁性理论研究[J]. 物理学报, 2014, 63(13): 133102. QING Jian-ping, LIANG Rui-rui, LÜ Jin, WU Hai-shun. Structural, electronic and magnetic properties of Co_mAl_n(m+n≤6) clusters[J]. Chinese Journal of Physics, 2014, 63(13): 133102.
- [26] 阮 文,谢安东,余晓光,伍冬兰.NaB_n(n=1~9)团簇的几何结构和电子性质[J].物理学报,2012,61(4):043102.
 RUAN Wen, XIE An-dong, YU Xiao-guang, WU Dong-lan. Geometric structure and electronic characteristics of NaB_n(n=1-9) clusters[J]. Chinese Journal of Physics, 2012, 61(4):043102.
- [27] ZHANG Xiu-rong, ZHANG Fu-xing, CHEN Chen, YUAN Ai-hua. Structure and magnetic properties of Os_n (*n*=11-22) clusters[J]. Chinese Physics B, 2013, 22(12): 123102.
- [28] 侯 茹,郭 平,陈永庄,张继良,李书婷,任兆玉. Nb₂Si_n⁻(*n*=1~6)团簇的几何构型、电子性质和磁性的理论研究
 [J]. 原子与分子物理学报, 2014, 31(3): 385–392.
 HOU Ru, GUO Ping, CHEN Yong-zhuang, ZHANG Ji-liang, LI Shu-ting, REN Zhao-yu. A density functional of investigation of Nb₂Si_n⁻ (*n*=1-6) clusters[J]. Journal of Atomic and Molecular Sciences, 2014, 31(3): 385–392.

(编辑 王 超)