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Abstract: Li;Mg) V,,(POy4)3/C (x=0, 0.05, 0.1, 0.2) composites were synthesized by carbothermic reduction, using a self-made
MgNH,PO/MgHPO, compound as Mg-doping agent. X-ray diffraction (XRD), scanning electron microscope (SEM),
electrochemical performance tests were employed to investigate the effect of Mg doping on Li3V,(PO,);/C samples. The results
showed that a proper quantity of Mg doping was beneficial to the reduction of charge transfer resistance of Li;V,(PO,);/C compound
without changing the lattice structure, which led to larger charge/discharge capacity and better cycle performance especially at high
current density. LizMg,,V,5,(POy4);/C sample with x=0.05 exhibited a better performance with initial charge/discharge capacity of
146/128 mA-h/g and discharge capacity of 115 mA-h/g at 5C, while these two figures were 142/118 mA-h/g and 90 mA'h/g
respectively for samples without Mg doping, indicating that a proper amount of doped Mg can improve the electrochemical
performance of LVP sample. All of these proved that, as a trial Mg dopant, the synthesized MgNH,PO,/MgHPO, compound

exhibited well doping effect.
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1 Introduction

Lithium-ion rechargeable batteries have seized the
most share in electronics consumption market due to
their relatively high energy density and capacity [1,2].
The cathode is particularly critical in determining the
capacity and cyclability of lithium-ion batteries [3,4]. In
recent years, framework materials based on the
phosphate polyanion have been identified as highly
competitive cathode materials for lithium ion
battery [5,6]. Without exception, Liz;V,(POy,); (LVP) has
also attracted extensive attention [7—9]. In LVP structure,
two lithium ions can be extracted between 3.0 and 4.3 V
(vs Li/Li") based on the V’*/V'™ redox couple, which
correspond to a theoretical capacity of 133 mA-h/g [10].
However, the low electrical conductivity of this material,
which is about 1x10® S/cm, deteriorates the electro-
chemical performance seriously [11]. Therefore, hot
spots about research of LVP concentrate on the
improvement of conductivity. To achieve this, plenty of
work has been done such as optimizing synthesis process
[12—17], surface coating [18—20] and doping [4,21-29].

It has been proved that Mg can effectively enhance

the capacity and rate performance of LiFePO,, without
any change to its olivine structure [30]. In this work,
Mg®" is used to take the place of V*" in LizV,(POy)s,
which is expected to create electron hole in Li;V,(POy);
lattice and enhance ionic conductivity. Many kinds of
Mg sources have been used as doping agent such as
MgO,  Mg(OH),,  Mg(Ac),,  Mg(NO;),  and
Mg(OH),-4MgCO;-:6H,O [31-35], but here we
considered to synthesize a relatively complicated Mg
dopant, trying to improve the doping effect of Mg
dopant. So, in this work, we worked out a more active
Mg dopant, and synthesized a series of LizV,(POy);
samples with different Mg doping amounts using the
self-made Mg dopant by carbothermic reduction method.
A series of tests were carried out to made comparison of
these samples and proved that a proper amount of Mg
doping can improve the electrochemical capacity of LVP
as well as the cycle performance, especially at a high
current density.

2 Experimental

2.1 Synthesis of Mg dopant
A solution of 0.5 mol/L MgCl,-6H,O was dropped
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into a solution of 0.5 mol/L PO  with intense stirring,
adjusting the pH values at 9—10 by adding ammonia
solution. The mixed liquor was filtered before repeatedly
washed with de-ionized water. The filter cake was dried
in an oven followed by grinding to powders in a mortar
for later use.

2.2 Synthesis of Li;Mg,,V,,,(POy)/C

LisMg,,V,5,(PO,)5/C samples were synthesized by
the chemical pure materials of Li,CO; NH,VO;,
NH4H,PO, and self-made Mg dopant with carbothermic
reduction. Their stoichiometric amount was determined
according to the chemical formula LizMg,,V, 5 (POy)s,
and a calculated sucrose amount to get 3% carbon
residue of the synthesized samples was added. All the
reagents were firstly ball-milled together for 4 h with
pure ethanol as a dispersant. The mixture was dried at
80 °C for 10 h, and then heated at 350 °C in nitrogen for
2 h to expel NH; and H,O. After that, the mixture was
ground and heated at 800 °C under nitrogen atmosphere
for 10 h. The product was ground in an agate mortar for
later use.

2.3 Physical characterization and cell assembly

Power X-ray diffraction employing Cu K, radiation
was used to identify the crystalline phase of the Mg
dopant and the synthesized materials. The surface
morphologies were observed with a scanning electron
microscope (JSM—6360LV).

Electrochemical tests were carried out on a
coin-type cell based on the synthesized material. The
cathode was prepared by mixing 80% active material,
10% acetylene carbon black and 10%
polyvinylidenefluoride (PVDF) dissolved in
N-methylpyrrolidone (NMP). The slurry was coated on
an Al foil and dried at 130 °C for 10 h. A lithium foil was
used as anode. The electrolyte used was LiPFq. The cells
were assembled in an argon-filled glove box with H,O
and O, concentration below 1x10°°,

2.4 Electrochemical measurements

The electrochemical properties of the constructed
cells were measured by employing land testing system
(CT2001A) at various currents with a voltage range
from 3.0 V to 4.3 V. Electrochemical impedance
measurements were performed with a Princeton
electrochemistry workstation (VNC—4), and the applied
frequency range is between 100 kHz and 0.1 Hz.

3 Results and discussion
3.1 Structure and morphology characteristics

Figure 1 shows the XRD patterns and SEM image
of the Mg dopant synthesized at room temperature. The
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Fig. 1 XRD patterns (a) and SEM image (b) of prepared Mg
dopant

XRD diffraction peak shows that the resultant is a
mixture of MgNH,PO,-H,0 and MgHPO,-3H,0. Both of
them belong to orthorhombic system, which is the same
as the raw materials NH;VO; and NH,H,PO,, and the
similar structure may benefit polymerization and
promote the doping process. As shown in the SEM image
(Fig. 1(b)), the compound features sheet morphology and
its size is about 100 nm in thickness and 1 pm in
diameter. This kind of morphology could be beneficial to
the completed reaction with other reactant and promote
the doping process with respect to broad contact surface.
Figure 2 shows XRD patterns of LisMgy Voo~
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Fig. 2 XRD patterns of prepared LizMgy, Vo-p, (PO4)3(x=0, 0.05,
0.1, 0.2) samples
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(PO4);/C samples with various Mg contents. The samples
with x=0, 0.05, 0.1 are identified to be monoclinic
Li;V,(PO,4); phase with a p2,/n space group containing
no unwanted impurities, which means that a small
quantity of doped Mg would take the place of V in the
lattice without altering the structure. The electron holes
in the structure caused by this replacement can cause
p-type conductivity [36], and this improves the electronic
conductivity in the lithium vanadium phosphate material.
However, trace impurity was found in sample with
x=0.2, which indicated that the upper limit for Mg
doping is about x=0.2.

Figure 3 shows the morphology of the synthesized
samples. It can be seen from the images that the
synthesized LisMgy, V5, (PO4);(x=0, 0.05, 0.1, 0.2)
samples are composed of irregular particles with an
initial particle size distribution of 0.5-3 pm, and the
particles aggregate to form meso porous dusters. With x
increasing, the particle size decreased slightly, which
may be attributed to that the doped Mg formed more
crystallization center. The decrease of particle size can
shorten the diffusion path of the lithium ion as well as
increase the area for electrode reaction, which is in favor
of the electrochemical performance improvement.

3.2 Electrochemical performance

The  initial  charge/discharge  curves  of
LizMg,,V,5,(POy); (x=0, 0.05, 0.1, 0.2) composites with
different Mg-doping amounts under 0.1C rate in the
potential from 3.0 V to 4.3 V (vs Li'/Li) are shown in

Fig. 4. It demonstrated that the initial discharge specific
capacities of LisMg;, V,5(POy); (x=0, 0.05, 0.1, 0.2)
depended on the Mg doping amounts significantly. The
first charge/discharge specific capacities of LizV,(POy);,
LizMgo.1V19(POy)s, LisMgo, Vi 8(PO4)s and
LizMgo4V,16(PO,); are about 142/118, 146/128, 143/119
and 131/110 mA-h/g, respectively. The corresponding
coulombic efficiencies are 83.0%, 87.7%, 83.2% and
84.0%, respectively. It is clear that the discharge specific
capacity as well as the coulombic efficiency is enhanced
considerably when x=0.05. That may be attributed to the
moderate amount of Mg dopant which enhanced the
conductivity of the sample compared with the undoped
one.

3.3 Rate and cycle performance

All LizMgy,V,5,(POy); (x=0,0.05,0.1,0.2) samples
were cycled at various current densities (0.1C, 0.2C,
0.5C, 1C, 2C, 5C) between 3.0 and 4.3 V and the results
are shown in Fig. 5. Each current density was applied for
10 cycles. It was found that the composite material with
a Mg doping amount of x=0.05 exhibited the highest
capacity under all the tested current density owing to the
improvement of the Li" insertion/de-insertion kinetics
situation caused by Mg doping. When tested under
current densities from 0.1C to 2C, LizV,(PO4); and
LisMgy,V,5(PO,); samples exhibited a discharge
capacity with little difference. However, when the
current density was increased to 5C, the discharge
capacity of Li3 V,(PO,); rapidly decreased to ~90 mA-h/g

Fig. 3 SEM images of Li;Mg,,V,,(PO,); samples: (a) x=0; (b) x=0.05; (¢) x=0.1; (d) x=0.2
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Fig. 4 Initial charge/discharge curves of Li;Mg, Vs, (POy);
samples at 0.1C rate in voltage of 3.0—4.3 V: (a) x=0; (b) 0.05;
(c)0.1;(d) 0.2
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Fig. 5 Discharge capacities of LizMg,,V,,(POy); (x=0, 0.05,

0.1, 0.2 ) samples at current densities of 0.1C, 0.2C, 0.5C, 1C,

2C and 5C in voltage range of 3.0-4.3 V

(~115 mA-h/g at 2C) while Liz;Mg,,V;3(PO,4); sample
just decreased to ~110 mA-h/g. This phenomenon proved
that a certain amount of doped Mg can improve the
discharge performance of LVP materials at high current
density. It can be concluded that a low amount of Mg
doping can increase both the cycle stability and discharge
capacity for LVP materials, especially at a high current
density.

3.4 EIS measurement

Electrochemical impedance spectroscopy (EIS)
measurements were carried out to study the effect of Mg
doping on the impedance response. Figure 6 shows the
Nyquist plots of the LisMg,,V,2,(PO4); (x=0, 0.05, 0.1,
0.2) samples. All the electrodes were prepared in the
same way and activated at a current of 0.1C before EIS
measurement. All the Nyquist plots have a semicircle and
a sloping line. The semicircle can be attributed to the
charge transfer reaction, and the sloping line can be

attributed to the lithium diffusion in the solid phase. The
equivalent circuit for the Nyquist plots fitted by Zviewer
is shown in Fig. 7(a), where R. is the electrolyte
resistance; R is the charge transfer resistance; O denotes
the constant-phase element and Z, is the Warburg
impedance.
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Fig. 6 Nyquist plots of Li;Mg,,V,,,(POy); (x=0, 0.05, 0.1, 0.2)
samples
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Fig. 7 Equivalent circuit for Nyquist plots (a) and charge
transfer resistances (b) of LizMg, Vo, (POy); (x=0, 0.05, 0.1,
0.2) samples

A lower charge transfer resistance leads to larger
exchange current density [31]. Figure 7(b) shows the
charge transfer resistance (R.) of all the samples. When x
increased from 0 to 0.05, R decrecased from 475 to 293
Q, and then slightly increased to 314 Q at x=0.1, then a
quick increase to 735 Q at x=0.2. This change of R can
be attributed to two factors. A small amount of doped Mg
contributes to improving the conductivity of the material
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as well as increasing the area for electrode reaction by
refining crystal grain (Fig. 3). This factor can decrease
charge transfer resistance. However, Mg doping leads to
a smaller amount of V, thus lessen the active spot for
charge transfer of lithium ion, and the cation mixing
between Mg and Li will also impede the transition of Li".
This factor leads to the increase of the value of R... When
x is less than 0.05, the former is the main influencing
factor. While x increases from this point, the latter factor
gradually takes over and is much more obvious than the
former one when x goes to 0.2. Therefore,
LizsMgg 1 V199(POy); with a minimum R, value presents
the best high rate discharge capability among all the
samples in Fig. 7(b).

In the research of DAI et al [37], the study of Mg
doped LVP samples with Mg(Ac),'4H,O as dopant was
reported. They found that Li;Mg,,V,,,(PO,); sample
with x=0.1 as cathodic material exhibited the best
performance with a capacity of about 112 mA-h/g at a
rate of 0.5C and 109 mA-‘h/g at 1C. However, in our
research, samples achieved the best performance when
x=0.05, less than DAT’s result, but with a larger capacity
of about 127 mA-h/g at 0.5C and 125 mA-h/g at 1C. This
indicates that the self-made Mg dopant involved in the
doping process was more efficient than that of
Mg(Ac),"4H,0.

4 Conclusions

1) The LisMgy,V,2,(POs); (x=0, 0.05, 0.1, 0.2)
samples were successfully prepared by a carbothermic
reduction method with self-made MgNH,PO,/ MgHPO,
compounds as Mg dopant.

2) The influence of Mg doping amount on the
electrochemical performance was remarkable. It was
found that LizMg1V19(POy4); exhibited the best
electrochemical performance among all the compounds
with different doping ratios, batteries consisted of this
sample exhibited a initial discharge capacity of 128
mA-h/g at 0.1C and a discharge capacity of 115 mA-h/g
at 5Crate. Results also showed that batteries consisted of
Mg doped compound exhibit improved cycle
performance under large current density condition.
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