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GPR simulation based on rotated staggered grid
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Abstract: Based on the rotated staggered grid finite-difference, forward simulation in inhomogeneous media with strong
discontinuities for ground penetrating radar (GPR) was implemented. By using the rotating staggered difference operator,
the GPR wave field components and other physical parameters were distributed in the elementary cells of RSG, in which
all field components of one physical property were located at one elementary unit in computational domain, then the
difference of field components and physical parameters along the coordinate axes were calculated by using the linear
combination value of them across the diagonal coordinate axes, no averaging of elementary cell was needed even in
grids-domain with strong heterogeneities, which relax the limitation of the numerical stability condition. The rotated
staggered grid finite difference scheme for GPR and the corresponding update equations was deduced in TM,, polarization
mode, then the numerical simulation of GPR wave field in TM, polarization mode was implemented, in addition, the
comparation between the standard staggered grid and RSG was presented from three respects of the analytic solutions, the
simulated sections and the field snapshots. The results show that with the more relaxed limitation of the numerical
stability condition and the better controlling of numerical dispersion degree, the RSG difference algorithm improves the
efficiency and accuracy of simulation, which can effectively guide the GPR data inversion and interpretation in the
inhomogeneous media with strong heterogeneities.
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