2015年6月 June 2015

文章编号: 1004-0609(2015)06-1480-10

热处理对 4.5%Re 单晶镍基合金 高温蠕变行为的影响

舒德龙,田素贵,吴 静,李秋阳,蒋崇亮

(沈阳工业大学 材料科学与工程学院, 沈阳 110870)

摘 要:通过对一种 4.5%Re(质量分数)镍基单晶合金进行不同工艺热处理、蠕变性能测试及组织形貌观察,研究 了固溶时间对该合金组织结构与高温蠕变行为的影响。结果表明:铸态合金中各元素存在较大的成分偏析,经高 温长时间固溶及时效处理后,合金中各元素在枝晶间/臂的偏析程度明显降低;将固溶时间由 10 h 延长至 24 h 后, 合金在 1100 ℃、137 MPa 的蠕变寿命由 101 h 提高至 164 h;其中,10 h 固溶处理合金中仍存在较大程度的元素 偏析,并且在蠕变期间,析出针状 TCP 相。合金在高温蠕变期间的变形机制是位错在基体中滑移和剪切筏状 y' 相;蠕变后期,大量位错剪切筏状 y'相,致使近断口区域的筏状 y'相扭曲,在筏状 y/y'两相界面发生裂纹的萌生, 并沿垂直于应力轴方向扩展,直至发生蠕变断裂。这是合金的高温蠕变断裂机制。 关键词:单晶镍基合金; Re; TCP 相;元素偏析;蠕变

中图分类号: TG111.2 文献标志码: A

Effects of heat treatment on creep behaviors of 4.5%Re nickel-based single crystal superalloy at high temperature

SHU De-long, TIAN Su-gui, WU Jing, LI Qiu-yang, JIANG Chong-liang

(School of Mechanical Engineering, Shenyang University of Chemical Technology, Shenyang 110870, China)

Abstract: By means of heat treatment at different regimes and creep property measurement, combining with microstructure observation, the effects of the solution time on the microstructure and creep behaviors of a 4.5%Re (mass fraction) nickel-based single crystal superalloy at high temperature were investigated. The results show that the segregation extent of the elements in the as-cast alloy may be obviously reduced by means of heat treatment at high temperature. When extended the solution time from 10 h to 24 h, the creep life of the alloy enhances from 101 h to 164 h. Thereinto, bigger segregation extent of the elements appears still in the alloy treated by technique 1, which results in the precipitation of the needle-like TCP phase. The deformation mechanism of the alloy during creep is dislocations slipping in the γ matrix and shearing into the rafted γ' phase. At the later stage of creep, the significant amount of dislocations shearing into the rafted γ' phase results in the twist of the rafted γ' phase, which may promote the initiation and propagation of the micro-cracks at the interfaces of γ/γ' phases up to the occurrence of creep fracture. This is thought to be the fracture mechanism of alloy during creep at high temperature.

Key words: nickel-base single crystal superalloy; Re; TCP phase; element segregation; creep

镍基单晶合金的组织结构由高体积分数的立方 γ' 相以共格方式嵌镶在基体所组成,并具有优异的高温 力学及蠕变性能,因而,被广泛应用于制造先进航空 发动机和燃气轮机的叶片部件^[1]。随着发动机工作效 率的提高,要求发动机的热端部件具有更高的承温能 力,加入难熔元素 W、Ta、Mo 和 Re 等可提高合金的

基金项目: 国家自然科学基金资助(51271125)

收稿日期: 2014-08-01; 修订日期: 2015-03-23

通信作者:田素贵,教授,博士;电话: 024-25494089;传真: 024-25496768; E-mail: tiansugui2003@163.com

合金化程度和承温能力^[2-5]。郑运荣等^[6]认为加入 3% 和 6%的 Re 是第二代和第三镍基单晶合金的主要成分 特点。但随着难熔元素含量的提高,合金在凝固期间 的偏析程度加剧^[7],同时,热处理期间元素的扩散速 率降低,难以获得均匀的化学成分和组织结构,同时,随难熔元素 W 和 Re 含量的提高,合金在服役期间析 出了 TCP 相^[8-9],大幅度降低合金的高温蠕变性能。

高温固溶处理可使合金中 y/y'两相共晶组织完全 溶解,进而降低难熔元素在枝晶间/臂的偏析程度,改 善合金组织结构的均匀化程度^[10]。研究表明^[11],对合 金在固溶线到固相线温度区间连续加热进行固溶处 理,可以使合金的均匀化程度提高,并避免产生初熔 相。尽管固溶温度对含 Re 单晶镍基合金中温蠕变行 为的影响,以及含 Re 合金在高温、低应力条件下的 蠕变行为已有文献报道^[12-14],但高温固溶处理时间对 高 Re 单晶镍基合金均匀化程度及蠕变行为的影响并 不清楚。

据此,本文作者通过对一种 4.5%Re 镍基单晶合 金进行不同工艺热处理,并进行高温蠕变性能测试, 结合 SEM 和 TEM 形貌观察,研究高温固溶处理时间 对该 4.5%Re 镍基单晶合金蠕变行为的影响,通过位 错组态的衍衬分析,研究了合金在蠕变期间的变形机 制。

1 实验

采用选晶法在高温度梯度真空定向凝固炉中,将成分为 Ni-Cr-Co-W-Mo-Al-Ta-4.5%Re(质量分数,%)的母合金制取[001]取向的单晶镍基合金试棒,样品的生长方向与[001]取向的偏差在 7°以内,为考察高温固溶处理时间对合金成分偏析及蠕变性能的影响,选用不同时间的高温固溶处理,其选用的热处理工艺如表 1 所列。

单晶镍基合金经不同工艺热处理后,采用线切割 将试棒加工成横断面为 4.5 mm×2.5 mm、标距为 20 mm 的片状试样,试样表面经机械研磨后,将其置入 GWT504 型高温蠕变试验机中进行不同条件的蠕变性 能测试,根据测定的蠕变曲线,计算出合金在稳态蠕 变期间的激活能及应力指数。在 SEM/ TEM 下对蠕变 断裂后的试样进行组织形貌观察,考察合金的组织演 化规律,结合位错组态的衍衬分析,考察合金在蠕变 期间的微观变形机制。

2 结果与分析

2.1 热处理对成分偏析的影响

由于合金中含有高浓度的 Ta、Mo、W 和 Re 等难 熔元素,凝固期间在枝晶间/臂区域存在明显的成分偏 析。采用固溶处理可使合金中元素得到充分扩散,降 低元素的偏析程度。采用 SEM 和 EDS 成分分析,测 定出不同状态单晶合金在枝晶间/臂的成分分布(见表 2),并计算出偏析系数,将结果列于表 3 中。合金枝 晶间/臂的成分偏析系数由式(1)计算:

$$K = \frac{c_2 - c_1}{c_1} \times 100\%$$
(1)

式中: *K* 为偏析系数; *c*₁ 为枝晶臂区域的元素浓度; *c*₂ 为枝晶间区域元素的浓度。

由表 3 可以看出,铸态合金中各元素均有较大程 度的偏析,元素 Mo、Cr、Re 和 W 富集于枝晶臂,元 素 Al、Ta 和 Co 富集于枝晶间。其中,Re 为最强负偏 析元素,偏析系数达-36.38%,其次是 W 的偏析系数 达-27.41%;最强正偏析元素 Al 的偏析系数达 25.0%。 单晶合金经 1325 ℃保温 10 h 及两次时效处理后,合 金中 Re 元素的偏析系数由-36.38%降低到-25.44%, 元素 W 的偏析系数由-27.41%降低到-18.35%,元素 Al 的偏析系数由 25.0%降低到 11.52%;当固溶时间提 高到 24 h 后,元素 Re 的偏析系数进一步降低至 -14.65%,仅为铸态合金中元素 Re 偏析系数的 2/5, 元素 W 的偏析系数降低到-9.96%;元素 Al 的偏析系 数进一步降低到 4.68%。综上所述,在高温延长固溶 处理时间可有效降低合金中难熔元素的偏析程度,大 幅度提高合金的均匀化程度。

表1 4	4.5%Re	镍基单晶合金采用的热处理工艺	
------	--------	----------------	--

 Table 1
 Heat treatment regimes of 4.5%Re single crystal nickel-based alloy

Technique No.	Homogenous treatment	Solution	First aging	Secondary aging
1	(1280 °C, 2 h)+(1310 °C, 4 h)	1325 °C, 10 h	1150 °C,4h	870 °C, 32 h
2	(1280 °C, 2 h)+(1310 °C, 4 h)	1325 °C, 24 h	1150 °C,4h	870 °C, 32 h

表2 4.5%Re 镍基单晶合金枝晶间/臂中的元素分布

Table 2 Element distribution in inter-dendrite/dendrite regions of 4.5% Re single crystal nickel-based superalloy

Allow state	Area		Mass fraction/%						
Anoy state		Al	Та	W	Cr	Re	Мо	Co	
	Dendrite	5.32	6.88	6.02	4.77	6.57	-	4.12	
As-cast	Inter-dendrite	6.65	8.54	4.37	5.41	4.18	-	4.87	
Technique 1	Dendrite	5.64	7.22	5.61	4.85	5.66	-	4.19	
	Inter-dendrite	6.29	8.35	4.58	5.26	4.22	-	4.65	
Technique 2	Dendrite	5.77	7.87	5.42	4.93	5.12	-	4.22	
	Inter-dendrite	6.04	8.23	4.88	5.14	4.37	-	4.47	

表3 4.5%Re 镍基单晶合金枝晶间/臂中的元素偏析系数

Table 3 Segregation coefficients of elements in inter-dendrite/dendrite regions of 4.5% Re single crystal nickel-based superalloy

			<i>K</i> /%				
Alloy state	Al	Та	W	Cr	Re	Мо	Co
As cast	25.00	24.13	-27.41	13.42	-36.38	-	18.20
Technique 1	11.52	15.65	-18.36	8.45	-25.44	-	10.98
Technique 2	4.68	4.57	-9.96	4.26	-14.65	-	5.92

图1 合金经工艺2热处理后的组织形貌

Fig. 1 Morphology of alloy after heat treated by technique 2

合金经工艺 2 完全热处理后的组织形貌如图 1 所示。由图 1 可以看出,合金中尺寸约为 0.4 μm 的立方 γ'相镶嵌在基体相中,并沿 (001) 方向规则排列,基体 通道的尺寸约为 50 nm。经工艺 1 热处理合金的组织 结构及 γ'/γ 两相的尺寸与图 1 无明显差别。

2.2 热处理对高温蠕变行为的影响

单晶合金分别经 1325 ℃保温不同时间固溶及两级时效处理后,在 1100 ℃、137 MPa 测定的蠕变曲线如图 2 所示。由经工艺 1 热处理合金的蠕变曲线(见图 2 中曲线 1)可以看出,合金蠕变约 10 h 进入稳态阶段,测定出合金在稳态蠕变阶段的应变速率为 6.4×

图 2 经不同热处理合金在 1100 ℃、137 MPa 条件下的蠕 变曲线

Fig. 2 Creep properties of alloy at 1100 °C, 137 MPa after treated by different regimes

10⁻⁴ h⁻¹,持续约 70 h 后进入蠕变加速阶段,直至 101 h 发生蠕变断裂。由经工艺 2 热处理合金在相同条 件下的蠕变曲线(见如图 2 中的曲线 2)可以看出,合金 经蠕变 25 h 进入稳态阶段,在稳态蠕变期间,应变速 率为 4.6×10⁻⁴ h⁻¹,蠕变寿命为 164 h。这表明经工艺 2 热处理的合金具有较好的高温蠕变性能,与工艺 1 热处理合金相比,经工艺 2 热处理合金蠕变寿命提高 的幅度达 62.4%,这归因于合金经高温长时间固溶处 理,提高了合金成分的均匀化程度。 经工艺 2 处理合金在高温不同条件下的蠕变曲线 如图 3 所示。其中,合金在不同温度时施加 137 MPa 的蠕变曲线如图 3(a)所示。可以看出,合金具有较短 的初始蠕变阶段,测定出合金在 1070 ℃稳态蠕变期 间的应变速率为 1.6×10⁻⁴ h⁻¹,稳态期间持续的时间 约为 220 h,蠕变寿命为 320 h。随温度提高到 1085 ℃, 测定出合金在稳态蠕变期间的应变速率为 2.9×10⁻⁴ h⁻¹,蠕变寿命为 230 h。随温度进一步提高到 1100 ℃, 合金在稳态期间的应变速率为 4.5×10⁻⁴ h⁻¹,蠕变寿 命为 164 h。

经工艺 2 处理的合金在 1070 ℃施加不同应力时的蠕变曲线如图 3(b)所示。其中,当施加 160 MPa 应力时,测得合金在稳态阶段的应变速率为 3.5×10⁻⁴ h⁻¹,蠕变寿命约为 206 h,蠕变寿命降低幅度为 55.3%。 当施加应力提高到 180 MPa,测定出合金在稳态期间的应变速率为 4.3×10⁻⁴ h⁻¹,蠕变寿命约 163 h。表明, 该合金在 1070 ℃施加应力大于 137 MPa 时,表现出

图 3 经工艺 2 完全热处理合金在不同条件下的蠕变曲线

Fig. 3 Creep curves of alloy treated by technology 2 at different conditions: (a) Applied stress of 137 MPa at different temperatures; (b) At 1070 $^{\circ}$ C and different applied stresses

较强的施加应力敏感性。

在高温施加载荷的瞬间,产生瞬间应变,并激活 大量位错在基体中滑移,随时间延长,合金中的位错 密度增加,由此产生应变硬化效应,致使合金的应变 速率降低。同时,热激活促使位错在基体中滑移和攀 移,发生回复软化,可减缓局部区域的应力集中,当 应变硬化与回复软化达到平衡时,合金的蠕变进入稳 态阶段,此时,合金的应变速率可用 Dom 定律表示:

$$\dot{\varepsilon}_{\rm ss} = A \sigma_{\rm a}^n \exp(\frac{-Q}{RT}) \tag{2}$$

式中: A 为与材料相关的常数; R 为摩尔气体常数; n 为表观应力指数; σ_a 为施加应力; T 为绝对温度; Q 为表观蠕变激活能。

根据图 3 蠕变曲线数据,在 1070~1100 ℃和 137~180 MPa 施加温度和应力范围内,测算出不同工 艺热处理合金在稳态蠕变期间的应变速率(经工艺 1 热处理合金的蠕变曲线略去),进一步根据式(2),合金 在稳态期间的应变速率与温度倒数和施加应力之间服 从关系式 ln $\dot{\epsilon}_{ss}$ -1/*T*和 ln $\dot{\epsilon}_{ss}$ -ln σ_a ,其结果如图 4(a) 和(b)。由此,计算出经工艺 1和 2 热处理合金在稳态 期间的表观蠕变激活能分别为 Q_1 =452.5 kJ/mol 和 Q_2 =530.7 kJ/mol;表观应力指数分别为 n_1 =5.14 和 n_2 =3.78。根据测定的应力指数,可推断出该合金在高 温/低应力稳态蠕变期间的变形机制是位错在基体中 滑移和攀移越过筏状 γ /相。

2.3 高温蠕变期间的组织演化

经工艺 1 热处理合金在 1100 ℃、137 MPa 蠕变 101 h 断裂后,在不同区域的组织形貌如图 5 所示。施 加应力方向如图 5(a)中双箭头所示。可以看出,由于 蠕变温度较高,在无应力的区域 *A* 中 γ'相仅转变成类 球形结构,未形成完整筏形结构,但在合金中已有细 小针状 TCP 相析出,且横穿若干 γ'相,析出的针状相 与应力轴呈约 45° 夹角,如图 5(b)中箭头所示。在远 离断口的区域 *B* 承受较大的拉应力,故 γ'相已经完全 转变成筏形结构^[15],其筏形化的取向与应力轴垂直, 如图 5(c)所示。同时,有较多针状 TCP 相至基体中析 出。SEM 和 EDS 能谱分析结果表明,该针状 TCP 相 中富含 Cr、W、Ta 和 Re 等难熔元素。在近断口的区 域 *C* 蠕变期间发生较大的塑性变形,故筏状 γ'相扭曲 及粗化程度加剧,如图 5(d)所示,其中,析出的针状 TCP 相已转变成球形结构。

经工艺 2 热处理合金在 1100 ℃、137 MPa 蠕变 164 h 断裂后的组织形貌如图 6 所示。图 6(a)所示为试

图 4 经不同工艺处理后稳态蠕变期间应变速率与温度和应力之间的关系

Fig. 4 Dependence of strain rates of alloy during steady state creep on applied temperature and stress after heat-treated by various regimes: (a) Strain rate-temperature; (b) Strain rate-applied stress

图 5 经工艺 1 热处理合金蠕变断裂后试样不同区域的组织形貌

Fig. 5 Microstructures in different regions of alloy crept up to fracture at 1100 $^{\circ}$ C and 137 MPa for 101 h after treated by technique 1: (a) Schematic diagram of marking observed regions in specimen; (b)–(d) SEM images corresponding to regions *A*, *B* and *C*, respectively

图 6 经工艺 2 热处理合金蠕变断裂后试样不同区域的组织形貌

Fig. 6 Microstructures in different regions of alloy after crept up to fracture at 1100 $^{\circ}$ C and 137 MPa for 164 h after treated by technique 2: (a) Schematic diagram of marking observed regions in specimen; (b)–(d) SEM images corresponding to regions *A*, *B* and *C*, respectively

样观察区域。合金中 γ'相仅发生球形化转变,未形成 完整的筏状组织(见图 6(b))。在承受拉应力的区域 *B*, γ'相已沿垂直于应力轴方向形成了完整的筏形结构(见 图 6(c))。近断口区域 *C* 的组织形貌如图 6(d)所示,该 区域的 γ'相已经粗化至约 0.7 μm,其曲折程度进一步 加剧,筏状 γ'相取向己不与应力轴垂直,其夹角约为 70°,并出现筏状 γ'相折断的特征。

2.4 TCP 相对 4.5%Re 镍基单晶合金高温蠕变行为 的影响

在 1100 ℃、137 MPa 条件下, 经 10 h 高温固溶 处理的 4.5%Re 合金在蠕变期间, 其中 TCP 相沿与应 力轴呈约 30°方向双向析出(见图 5),其蠕变寿命为 101 h; 而当固溶时间延长到 24 h 后,合金在蠕变期间无 TCP 相析出(见图 6),并且蠕变寿命提高至 164 h,提 高幅度达到 62.4%。结果表明,TCP 相可明显缩短 4.5%Re 镍基单晶合金的高温蠕变寿命。

对 TCP 相影响 4.5%Re 合金蠕变寿命的原因分析 认为: 4.5%Re 合金中析出的 TCP 相会消耗合金中 y/y' 两相的固溶强化元素,使固溶强化效果减弱^[16],并且 会使高温蠕变过程中的筏状 y'相中断,降低了合金在 蠕变过程中筏状 y'相对位错运动的阻力。合金中的针 状 TCP 相在性能测试期间易产生应力集中,促使其在 应力集中区域发生裂纹萌生和扩展,加速合金的恒载 应力断裂^[17],这是使该合金较大幅度降低持久寿命的 另一主要原因。

2.5 蠕变期间的位错组态分析

合金经工艺 2 处理后,在 1100 ℃、137 MPa 蠕 变不同时间的组织形貌如图 7 所示。图 7(a)所示为蠕 变 100 h 的组织形貌,施加应力轴方向如图中双箭头 所示。可以看出,该区域的 y'相已完全转变成 N 型筏 形结构,且筏状 y'相内无位错的事实表明,合金在稳 态蠕变期间的变形机制是位错攀移越过 y'相。另一方 面,筏状 y/y'两相界面存在位错网,如图 7(a)中箭头所 示,且位错网具有较小的间距,由此,可以推断,合 金具有较大的晶格错配度^[18-19]。

分析认为,蠕变稳态阶段,在基体中的蠕变位错运动到 y/y'两相界面,与位错网反应,可改变原来的运动方向,促进位错攀移越过筏状 y'相。因而,位错网的存在可延缓应力集中,延迟位错剪切筏状 y'相。

合金蠕变 164 h 断裂后,由近断口区域的微观组 织形貌(见图 7(b))可以看出,在两相界面的位错网已被 损坏(见图 7(b)中箭头)。并有大量位错切入筏状 γ'相。 分析认为,蠕变后期,应力集中致使合金中主/次滑移

图 7 合金在 1100 ℃、137 MPa 下蠕变不同时间的显微组织 Fig. 7 Microstructures of alloy crept at 1100 ℃ and 137 MPa for different times: (a) Crept for 100 h; (b) Crept for 164 h up to fracture

系的交替开动,损坏两相界面的位错网,可使大量位 错切入 y'相,是合金在蠕变后期的变形机制。

工艺 2 热处理合金经 1100 °C、137 MPa 蠕变 164 h 断裂后,筏状 y'相内的位错分别标注为 A₁、A₂、B 和 C,如图 8 所示。可以看出,衍射矢量 $g=2\overline{2}0$ 、g=133及 $g=1\overline{3}1$ 时,互相平行的位错 A₁、A₂显示衬度;当 衍射矢量 g=002 时,A₁、A₂显示弱衬度,根据 $b\cdot g=0$ 位错不可见判据,确定出位错 A₁、A₂的柏氏矢量 $b_A=[\overline{1}10]$;当衍射矢量 $g=2\overline{2}0$ 、g=133及g=002 时, 位错 B 显示衬度,当衍射矢量 $g=1\overline{3}1$ 时,位错 B 显示 弱衬度,由此确定出位错 B 的柏氏矢量 $b_B=[10\overline{1}]$;当 衍射矢量 g=133及 $g=1\overline{3}1$ 时,位错 C 显示衬度,当衍 射矢量 $g=2\overline{2}0$ 和g=002时,位错 C 显示衬度,当衍 射矢量 $g=2\overline{2}0$ 和g=002时,位错 C 显示衬度,当衍 射矢量 $g=2\overline{2}0$ 和g=002时,位错 C 和度消失,故确定 出位错 C 的柏氏矢量 $b_C=g_{2\overline{2}0} \times g_{002}=[110]$ 。确定出 各位错的线矢量分别为 $\mu_A=1\overline{2}1$ 、 $\mu_B=022$ 、 $\mu_C=\overline{2}\overline{3}1$, 可求出位错 A、B、C 的滑移面分别为(111)、(1\overline{1})和 ($\overline{1}1$)。

合金在 1100 ℃蠕变后期的变形机制是位错剪切 进入筏状 y'相,其中,切入 y'相内的位错均在{111}面

图 8 单晶合金在 1100 ℃、137 MPa 蠕变断裂后 y'相内的位错组态 **Fig. 8** Dislocation configuration in y' phase after alloy crept up to fracture at 1100 ℃ and 137 MPa: (a) *g*=220; (b) *g*=133; (c) *g*=002; (d) *g*=131

滑移。分析认为,虽然合金中含有较高浓度的 Re 元 素,可有效提高合金中 γ'/γ 两相界面的稳定性^[20],但 由于在 1100 ℃高温蠕变期间,合金的变形机制主要 是位错在 γ'相的{111}面滑移,即使有位错由{111}面 交滑移至{100}面,形成 K-W 锁,但其热激活作用也 可使在{100}面滑移的位错重新交滑移至{111}面,释 放 K-W 锁。故该合金在 1100 ℃蠕变期间,仅发生位 错在{111}面滑移。

2.6 蠕变期间的断裂特征

单晶合金在1100 ℃、137 MPa蠕变164 h 断裂后, 在近断口区域的裂纹萌生与扩展形貌如图 9 所示,施 加应力的方向如图中双箭头标注所示。

蠕变后期,合金中的 y'相已沿垂直于应力轴方向

图9 经1100 ℃蠕变断裂后近断口区域裂纹萌生与扩展

形成 N-型筏状结构,由于大量位错剪切进入 y'相,导 致筏状 y'/y 两相发生扭折,并在 y/y'两相界面产生尺寸 较小的微型孔洞,当多个微孔洞相互连接,致使其在 筏状 y'两相界面发生裂纹的萌生,示于图 9(a)中的区 域 A。随蠕变进行,裂纹在筏状 y'相界面沿垂直于应 力轴方向发生裂纹的扩展,如图 9(b)中区域 B₁和 B₂ 所示。随蠕变继续进行,裂纹尖端的区域 B₁、B₂再次 产生应力集中,故致使筏状 y'/y 两相界面沿垂直于应 力轴的方向发生裂纹扩展,如图 9(c)所示。由此认为, 蠕变后期,随蠕变进行,裂纹在筏状 y'/y 两相界面萌 生及沿垂直于应力轴方向发生扩展,直至蠕变断裂, 是合金在高温蠕变期间的断裂机制。

3 讨论

难熔元素 W、Mo 和 Re 是先进单晶合金的重要强 化元素,随其含量提高,可明显提高合金的高温强度 和蠕变抗力,但当难熔元素发生偏聚使其超过临界值 时,合金中可析出 TCP 相。试验选用的 4.5%Re 单晶 合金中含有高浓度的难熔元素,且难熔元素 W、Mo 和 Re 主要偏聚在枝晶干区域。尽管铸态合金中各元 素在枝晶间/臂区域存在较大的偏析程度,但随高温固 溶处理时间延长,各元素的偏析程度明显减小,如表 2 所列。经 1325 ℃保温 4 h 固溶处理,合金中 Re 元 素的偏析系数由-36.38%降低到-25.44%,元素 W 的 偏析系数由-27.41%降低到-18.35%,随着固溶处理时 间延长到 24 h 时,元素 Re 的偏析系数进一步降低至 -14.65%,元素 W 的偏析系数降低到-9.96%。尤其是 经工艺 2 处理合金在高温蠕变期间无 TCP 相析出,因 此合金有良好的高温蠕变性能;而经工艺1处理的合 金在高温蠕变期间,有TCP相自基体中析出(见图2), 可大幅度降低合金的蠕变性能。这表明,元素的偏析 程度对合金中析出TCP相及高温蠕变性能有重要影 响。如果认为元素Re、W偏析系数大于-14.6%和 -9.96%是合金在高温蠕变过程中析出TCP相的临界 条件,而其他成分相同的含4.5%Re合金经1325 ℃固 溶处理10h后,元素W的偏析系数仍高达-18.35%, 这表明元素Re及与W的相互作用可明显降低其他元 素的扩散速率,增大元素的偏析程度。

与其他元素相比,元素 Re、W 在镍基合金中具 有较小的扩散系数和较大的扩散激活能,因此,可用 元素 Re、W 的扩散系数分别表示 Ni-W-Me 和 Ni-Re-Me(Me = Mo, Cr, Ta, Al)合金在 *T* 温度下热处理 期间元素 Re、W 的扩散速率。当合金中同时含有元 素 Re、W 时,元素之间的相互作用,可进一步降低 Re 或 W 原子的扩散系数,其扩散系数的表达式可由 式(3)表示:

$$D = D_{\rm Re} D_{\rm W} = D_0 \exp(-\frac{Q_{\rm Re} + Q_{\rm W}}{RT})$$
(3)

式中: D_0 为常数; Q_{Re} 和 Q_W 分别为元素 Re 和 W 在 镍中的扩散激活能。

式(3)表明,随温度提高元素的扩散系数增大,元 素之间的相互作用可进一步提高元素的扩散激活能, 降低元素的扩散系数。

设热处理期间合金中化学成分的均匀化过程服从 菲克第二定律,难熔元素由枝晶干区域扩散至枝晶间 区域,单位面积内的扩散通量为*D*(*∂c*/*∂x*)*dt*,在 *dt* 时间内,原子由枝晶干区域向枝晶间区域扩散的距离 为 dx, 元素 Re 和 W 在枝晶干区域的浓度之和为 c₁(*t*), 在枝晶间区域的浓度之和为 c₂(*t*),则

$$D\frac{\partial c(x,t)}{\partial x}dt = [c_2(t)-c_1(t)]dx$$
(4)

对式(4)求解,获得枝晶间/干难熔元素浓度差 Δ*c* 与扩散时间 *t* 和距离 *x* 的关系式:

$$\Delta c(x,t) = A \frac{\sqrt{\pi}}{2} \operatorname{erf}(\frac{x}{2\sqrt{Dt}}) + B$$
(5)

式中: $A 和 B 均为常数, erf(\frac{x}{2\sqrt{Dt}})$ 为误差函数。由

于难熔元素由枝晶干扩散至枝晶间的距离 x 为定值, 因此,式(5)表明,随时间的延长,枝晶间/臂之间的偏 析程度 Δc 减小。本实验中选用的 4.5%Re 镍基单晶合 金中含有多种高浓度难熔元素,故当 W、Mo、Re 等 难熔元素在枝晶干区域偏聚时,可促使 TCP 相析出。 由于合金中析出 TCP 相可消耗合金中的难熔元素,降 低 γ/γ′两相的固溶强化程度,加之,析出的针状 TCP 相在蠕变期间易产生应力集中,促使裂纹的萌生和扩 展^[21]。因此,一旦析出 TCP 相,可大幅度降低合金的 蠕变寿命。但随高温固溶处理时间的延长,合金中元 素得到充分扩散,避免了合金中的成分偏析和 TCP 相 析出,并使合金中 γ/γ′两相得到高度强化,故可大幅度 提高合金的高温蠕变性能,如图 2 所示。

4 结论

1) 铸态 4.5%Re 合金中元素 Al、Ta、Co 富集于 枝晶间区域,W、Mo、Cr、Re 富集在枝晶干区域; 经高温固溶处理,各元素在枝晶间/臂的偏析程度明显 降低;随着固溶时间的增加,元素在枝晶间/臂的偏析 程度降低。

2) 与固溶处理 10 h 相比,高温长时间固溶处理 合金在 1100 ℃、137 MPa 的蠕变寿命由 101 h 提高至 164 h;其中,固溶处理 10h 合金中存在较大程度的元 素偏析,致使蠕变期间析出针状 TCP 相,是使合金具 有较短蠕变寿命的主要原因。

3) 合金在高温蠕变期间的变形机制是位错在基体中滑移和剪切筏状 y'相,蠕变后期,大量位错剪切 筏状 y'相,致使近断口区域的筏状 y'相扭曲,并在两相界面发生裂纹的萌生,并沿垂直于应力轴方向扩展,直至发生蠕变断裂,是合金在高温蠕变期间的断裂机制。

REFERENCES

胡壮麒, 刘丽荣, 金 涛, 孙晓峰. 镍基单晶高温合金的发展
 [J]. 航空发动机, 2005, 31(5): 1-6.

HU Zhuang-qi, LIU Li-rong, JIN Tao, SUN Xiao-feng. Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31(5): 1–6.

 [2] 杨曼利,周志华,王 祯,陈兴福,王延斌.时效处理对K487 合金组织和性能的影响[J].材料热处理技术,2008,37(8): 63-69.

YANG Man-li, ZHOU Zhi-hua, WANG Zhen, CHEN Xing-fu, WANG Yan-bin. Effects of aging heat treatment on microstructure and properties of superalloy K487[J]. Material & Heat Treatment, 2008, 37(8): 63–69.

[3] KINDRACHUK V, WANDERKA N, BANHART J. Effect of rhenium addition on the microstructure of the superalloy Inconel 706[J]. Acta Materialia, 2008, 56: 1609–1618.

[5] 郑 亮,谷臣清,张国庆. Ta 对低 Cr 高 W 铸造镍基高温合金 显微组织的影响[J].稀有金属材料与工程,2005,34(2): 194-198.

ZHENG Liang, GU Chen-qing, ZHANG Guo-qing. Effect of Ta addition on microstructure of cast nickel base superalloys containing low level of Cr and high level of W[J]. Rare Metal Materials and engineering, 2005, 34(2): 194–198.

- [6] 郑运荣, 韩雅芳. 燃气涡轮用单晶高温合金的成本因素[J]. 金属学报, 2002, 38(11): 1203-1209.
 ZHENG Yun-rong, HAN Ya-fang. Cost considerations of single crystal superalloys for gas turbine[J]. Acta Metallurgica Sinica, 2002, 38(11): 1203-1209.
- [7] 田素贵,李秋阳,郭忠革,薛永超,曾 征,舒德龙,谢 君. 固溶温度对单晶镍基合金成分偏析和蠕变行为的影响[J].中 国有色金属学报, 2014, 24(3): 668-677.
 TIAN Su-gui, LI Qiu-yang, GUO Zhong-ge, XUE Yong-chao, ZENG Zheng, SHU De-long, XIE Jun. Influence of solution temperature on composition segregation and creep behaviors of single crystal nickel based superalloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(3): 668-677.
- [8] FENG Q, NANDY T K, TIN S, POLLOCK T M. Solidification of high-refractory ruthenium-containing superalloys[J]. Acta Materialia, 2003, 51: 269–284.
- [9] YEH A C, TIN S. Effects of Ru and Re addition on the high

temperature flow stresses of Ni-base single crystal superalloys[J]. Scripta Materialia, 2005, 52(6): 519–524.

[10] 马文有,李树索,乔 敏,宫声凯,郑运荣,韩雅芳. 热处理 对镍基单晶高温合金微观组织和高温持久性能的影响[J]. 中 国有色金属学报,2006,16(6):937-944.

MA Wen-you, LI Shu-suo, QIAO Min, GONG Sheng-kai, ZHENG Yun-rong, HAN Ya-fang. Effect of heat treatment on microstructure and stress rupture life of Ni-base single crystal superalloy[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(6): 937–944.

- [11] HEGDE S R, KEARSEY R M, BEDDOES J C. Designing homogenization-solution heat treatments for single crystal superalloy[J]. Materials Science and Engineering A, 2010, 527: 5528–5538.
- [12] 田素贵,曾征,张超,刘臣,李泊松. 一种含Re单晶镍基合金的中温蠕变行为及影响因素[J]. 稀有金属材料与工程,2013,43(3):494-499.
 TIAN Su-gui, ZENG Zheng, ZHANG Chao, LIU Chen, LI Bo-song. Creep behavior and its effect factors of a single crystal nickel-based superalloy containing 4.5%Re at medium temperature[J]. Rare Metal Materials and Engineering, 2013, 43(3): 494-499.
- [13] TIAN Su-gui, LIANG Fu-shun, LI A-nan, LI Jing-jing, QIAN Ben-jiang. Microstructure evolution and deformation feature of single crystal nickel-based superalloy containing 4.2% Re during creep[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7): 1532–1537.
- [14] 田素贵,梁福顺,黎阿男,李晶晶,王晓亮,张 特. 一种含 Re 单晶镍基合金的组织结构与蠕变性能[J]. 稀有金属材料与 工程, 2012, 41(6): 1017-1020.

TIAN Su-gui, LIANG Fu-shun, LI A-nan, LI Jing-jing, WANG Xiao-liang, ZHANG Te. Microstructure and creep properties of a

single crystal nickel-based superalloy[J]. Rare Metal Materials and Engineering, 2012, 41(6): 1017–1020.

- [15] 郭喜平,傅恒志,孙家华.单晶高温合金中 y'筏形组织的形成及转动[J].金属学报,1994,30(7):321-325.
 GUO Xi-ping, FU Heng-zhi, SUN Jia-hua. Formation and rotation of y' rafts in Ni-base single crystal superalloy NASA IR100[J]. Acta Metallurgica Sinica, 1994, 30(7): 321-325.
- [16] YANG J X, ZHENG Q, SUN X F, GUAN H R, HU Z Q. Topologically close-packed phase precipitation in a nickel-base superalloy during thermal exposure[J]. Materials Science and Engineering A, 2007, 465(1/2): 100–108.
- [17] QIN X Z, GUO J T, YUAN C, YANG G X, ZHOU L Z, YE H Q. μ-phase behavior in a cast Ni-base superalloy. Journal of Materials Science, 2009, 44(18): 4840–4847.
- [18] ZHANG J X, WANG J C, HARADA H, KOIZUMI Y. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep[J]. Acta Materialia, 2005, 53: 4623–4633.
- [19] YEH A C, SATO A, KOBAYASHI T, HARADA H. On the creep and phase stability of advanced Ni-base single crystal superalloys[J]. Materials Science and Engineering A, 2008, 490: 445–451.
- [20] KNOWLES D M, CHEN Q Z. Superlattice stacking fault formation and twinning during creep in γ/γ' single crystal superalloy CMSX-4[J]. Materials Science and Engineering A, 2003, 340: 88–102.
- [21] TIAN S G, WANG M G, LI T, QIAN B J, XIE J. Influence of TCP phase and its morphology on creep properties of single crystal nickel-based superalloys[J]. Materials Science and Engineering A, 2010, 527: 5444–5451.

(编辑 龙怀中)