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Abstract: Rolling process of symmetrical non-bonded sandwich sheets was investigated by the method of upper bound. A 
deformation model was proposed and the mathematical relations of the velocity components were developed. The internal, shear and 
frictional power terms were derived and used in the upper bound model. Through the analysis, the rolling force, mean contact 
pressure and final thickness of each layer were determined. The validity of the proposed analytical model was discussed by 
comparing the theoretical predictions with the experimental data found in the literatures. Effects of various rolling conditions such as 
the flow stress ratio, initial thickness ratio of the raw sheets and total thickness reduction upon the rolling torque were analyzed. The 
accuracy of the developed analytical model was very high. 
Key words: flat rolling; sandwich sheet; upper bound method 
                                                                                                             
 
 
1 Introduction 
 

Multilayer sheets, consisting of two or more 
different material layers, make it possible to combine 
properties of dissimilar sheet metals. For example, one 
metal may be used for its strength and another for its 
ability to conduct heat, or to offer greater resistance to 
wear or corrosion. Multilayered sheet metal products are 
used in a variety of industries, such as fabrication of 
containers, pressure vessels and atomic energy 
applications. One of the most widely used multilayered 
sheet materials are sandwich sheet materials consisting 
of two different kinds of sheets. Because of the contact 
pressure and the relative sliding between sheets in flat 
rolling of sandwich sheets, this process is a suitable 
choice for producing sandwich sheet materials [1,2]. In 
this process, accurate prediction of the required torque, 
the roll force and final thickness of each layer is a major 
issue. 

Among various methods of solution to metal 
forming processes, the upper bound method as an 
analytical method and finite element method has been 
widely used in the analysis of rolling process effectively. 
In spite of the recent developments of the finite element 
method, the appeal of the upper bound method among 
metal forming researchers is still strong and stems from 
its ability to represent material behavior, helping them in 

understanding the existing processes and screening ideas 
for new developments. 

In the past, a number of investigators have 
presented mathematical analyses for the flat rolling of 
sandwich sheet materials. Based on the upper bound 
theorem, HWANG et al [3,4] proposed theoretical 
models to investigate the deformation behavior of the 
multilayer sheets in the rolling process. A mathematical 
model using stream functions and the upper bound 
method has been proposed by the present authors to 
investigate the plastic deformation behavior of sheets at 
the roll gap with the assumption that the bonding is 
completed after rolling [5,6]. MALEKI et al [7] 
developed an analytical model based on upper bound 
method for flat rolling of bimetal strips. The deformation 
region was divided into six rigid regions and for 
constructing each deformation region, a large number of 
assumptions were made. ZHANG et al [8] proposed a 
three-dimensional velocity field for single layer plate 
rolling by global weighted method assuming that 
cross-sections remained plane and vertical lines 
remained straight. The rolling force and torque were 
calculated and compared with those of experimental ones. 
MARTINS [9] presented an approach based on a solution 
resulting from the combination of the upper bound 
method with the weighted residuals method for analysing 
plane strain single layer rolling. He assumed 
that the plastic deformation zone was bounded by two  
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planes perpendicular to the symmetry axis and contact 
surface. DOGRUOGLU [10] presented a method for 
constructing kinematically admissible velocity fields, 
which were necessary in the analysis of the flat rolling 
process by the upper bound method. It was assumed that 
the trajectories followed by the material point in the 
plastic deformation zone could be represented as a 
one-parameter family of curves in Cartesian coordinates. 
In the analysis, he assumed that one of the entry or exit 
surfaces to the deformation zone was plane perpendicular 
to the symmetry axis. 

In the current research, the kinematically admissible 
velocity field for the rolling of sandwich sheets, 
non-bonded before rolling, and discussion of some 
mathematical aspects involved in this method are 
presented in details. The internal, shear and frictional 
power terms are derived. The analytical rolling torque 
and roll separating force are compared with the 
experimental data in Refs. [4,6]. 
 
2 Rolling process of sandwich sheets 
 

Figure 1 shows the rolling process of a sandwich 
sheet where sheet layers are not bonded before rolling. 
The process has one symmetry plane, and then, only half 
of the section is considered. An initially symmetrical 
sandwich sheet, made of two different ductile materials 
with the mean flow stresses σ0o and σ0i, is considered. 
The subscripts “o” and “i” denote outer and inner layers, 
respectively. The material starts as an un-bonded 
sandwich sheet with initial thicknesses t1o and t2o for 
outer and inner layers, respectively and it rolls into a 
completely bonded sandwich sheet with thickness of t1f 
and t2f for the outer and inner layers, respectively. 

Through the analysis, the following assumptions are 
employed: 1) The roll is rigid material; 2) The sandwich 
sheet is symmetric on both the material and the thickness 
about symmetry axis; 3) The sheets are rigid plastic 
materials; 4) The deformation of the sheet is plane strain; 
5) A constant friction factor is applied on the frictional 
surfaces; 6) At the exit of deformation region, a unified 
velocity distribution is obtained, which means that the 
bonding of the sheets after the rolling process is 
completed and there is no relative motion between the 

two layer materials; 7) The frictional force between the 
two materials before entering the deformation zone is 
neglected. 

The general deformation model, where the outer 
and inner layers are rolled with different thickness ratios, 
is shown in Fig. 1. The material under deformation of 
each layer is divided into three regions. In regions Io, Ii, 
IIIo and IIIi, the materials are rigid and move as rigid 
bodies. Before entering the deformation region, the two 
materials move at different speeds v1o and v2o; after 
rolling, the two materials move at the same velocity vf in 
the axial direction. 

Since it is assumed that there is no change in width 
and because of volume constancy, the following relation 
holds 
 

1o 1o f 1f 2o 2o f 2f,v t v t v t v t= =                    (1) 
 

Regions IIo and IIi are the deformation regions. 
Region IIo is surrounded by two cylindrical velocity 
discontinuity surfaces, S1 and S2, and the interface 
surface A3 as well as the contact surface S3. Region IIi is 
bounded by two cylindrical velocity discontinuity 
surfaces A1 and A2 as well as the interface surface A3. 
Two cylindrical coordinate systems with origins O1 and 
O2 are used to describe the positions of the four surfaces 
of velocity discontinuity, contact surface S3, interface 
surface A3, and the velocity components in deformation 
regions. The center of the cylindrical boundaries of the 
deformation region IIo, S1 and S2, is O1 and they are 
located at distances r1o and r1f from the origin O1, 
respectively. The mathematical equations for radial 
positions of surfaces S1 and S2 are given respectively by 
 

o f
1o 1f,   

sin sin
t e t e

r r
α α
− −

= =                        (2) 
 
where e is the distance of origin O1 from the axis of 
symmetry and to=t1o+t2o and tf=t1f+t2f. Minimization of 
the total power determines the value of parameter e. 
From Fig. 1, it can be seen that when e=0, origin O1 
coincides with O2 and both layers deform to the same 
reduction. When e=t2o, the inner layer remains 
un-deformed while the outer layer deforms to cover the 
inner layer and for 0<e<t2o, the layers deform to different 
reductions. 

 

 
Fig. 1 Schematic diagram of rolling of non-bonded sandwich sheets and deformation regions 
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Angle α is the angle of the line connecting the initial 
point of the contact arc to the final point of the contact 
arc with axis of symmetry. The equation, which relates 
the processing parameters to the angle α is 
 

1 o f

o f f o
arctan

( )(2 )
t t

t t R t t
α −

⎡ ⎤−
= ⎢ ⎥

− + −⎢ ⎥⎣ ⎦
            (3) 

 
The center of cylindrical surfaces A1 and A2 is O2 

and they are located at distances r2o and r2f from the 
origin O2, respectively. The mathematical equations for 
radial positions of them are defined by 
 

2o 2f
2o 2f,   

sin sin
t t

r r
β β

= =                       (4) 
 
where β, as shown in Fig. 1, is the angle of the line 
connecting the initial point of the interface surface to the 
final point of the interface with axis of symmetry and it 
is determined by 
 

2o

o
sin sin

t e
t e

β α
−

=
−

                          (5) 

 
The angular position of the arc of contact as a 

function of the radial distance from the origin O1, ψ(r), is 
given by solving the following equation: 
 

2 2 2f
f( sin ) ( cos )

tan
t e

r R t e r Rψ ψ
α
−

− − + + − =       (6) 

 
3 Upper bound analysis 
 

The accuracy of predictions based on the upper 
bound method strongly depends on the kinematically 
admissible velocity field chosen. In each individual 
region, the velocity field and its derivatives should be 
continuous. The velocity field that has been derived from 
incompressibility condition and satisfies the velocity 
boundary conditions is a kinematically admissible 
velocity field. 
 
3.1 Velocity components in deformation regions 

In region IIo, the velocity of outer layer can be given 
by assuming proportionality distances from the 
horizontal line which goes through origin O1, as 
 

1o
1o

1o 1o

sin cos
sin
sin cot sin
sin

0

r

z

r
U v

r

U v r
r

U

θ

α θ
ψ
α ψ ψ θ
ψ

⎧ = −⎪
⎪

∂⎪
= −⎨ ∂⎪

⎪
=⎪

⎩

&

&

&

              (7) 

 
The method presented in this work is similar to the 

method proposed in Refs. [12,13] for constructing 
kinematically admissible velocity fields for plane strain 

problems to analyse the deformation of the material in 
extrusion process. It can be verified that the velocity 
field expressed in Eq. (7) is a kinematically admissible 
velocity field, which means that it satisfies all the 
velocity boundary conditions and volume constancy. 
From Fig. 1, it is known that the velocity field satisfies 
all the velocity boundary conditions. 

Within deformation region IIi, the outer layer 
material acts as a curved die for deformation of the inner 
layer and the outer material flows as if it is flowing 
through a curved die having an equation ψi(r), which is 
the angular position of the interface surface as a function 
of the radial distance from the origin O2. The governing 
equations for the velocity field of the deformation zone 
IIi in the cylindrical coordinate system with origin O2 are 
similar to those presented in Eq. (7). They are 
 

2o
2o

i

i
2o 2o i

i

sin cos
sin
sin cot sin
sin

0

r

z

r
U v

r

U v r
r

U

θ

β θ
ψ

ψβ ψ θ
ψ

⎧ = −⎪
⎪
⎪ ∂

= −⎨ ∂⎪
⎪

=⎪
⎩

&

&

&

            (8) 

 
Based on the developed velocity fields for inner and 

outer layers, the strain rate field can be obtained by 
 

1,   ,   

1 1( )
2
1 1( )
2
1 ( )
2

r r z
rr zz

r
r

z
z

r z
zr

UU U U
r r r z

U UU
r r r

U U
z r

U U
z r

θ
θθ

θ θ
θ

θ
θ

ε ε ε
θ

ε
θ

ε
θ

ε

⎧ ∂∂ ∂
= = + =⎪ ∂ ∂ ∂⎪

⎪ ∂ ∂
= + −⎪⎪ ∂ ∂

⎨
∂ ∂⎪ = +⎪ ∂ ∂

⎪
∂ ∂⎪ = +⎪ ∂ ∂⎩

&& & &
& & &

& &&
&

& &
&

& &
&

      (9) 

 
For deformation region IIo,  

1o
1o 2

2
21o

1o 2 2

2 2 2

2 2

sin (1 cot )cos
sin

1 sin [1 cot
2 sin

        (1 cot )( )

       cot ( ) cot ]sin

0

rr

r

zz z zr

r
v r

rr
r

v r
r r

r
r

r
r r

θθ

θ

θ

α ψε ε ψ θ
ψ

α ψε ψ
ψ

ψψ

ψ ψψ ψ θ

ε ε ε

∂⎧ = − = +⎪ ∂⎪
⎪ ∂

= − +⎪
∂⎪

⎪ ∂⎪ + +⎨ ∂⎪
⎪ ∂ ∂

+⎪
∂ ∂⎪

⎪ = = =⎪
⎪⎩

& &

&

& & &

   (10) 

 
where / rψ∂ ∂  can be obtained by differentiation of  
Eq. (6) as  

f
f

f
f

( ) sin cos
tan

[( ) cos sin ]
tan

t er R t e

t er r R t e

ψ ψψ α

ψ ψ
α

−
− + − −∂

=
−∂ + − −

         (11) 
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The strain rate field for deformation region IIi,  
2o i

2o i2
i

2
22o i

2o i2 2
i

2 2 2i
i

2 2i i
i i

sin (1 cot ) cos
sin

1 sin [1 cot
2 sin

        (1 cot )( )

       cot ( ) cot ]sin

0

rr

r

zz z zr

r
v r

rr
r

v r
r r

r
r

r
r r

θθ

θ

θ

ψβε ε ψ θ
ψ

ψβε ψ
ψ

ψ
ψ

ψ ψ
ψ ψ θ

ε ε ε

∂⎧ = − = +⎪ ∂⎪
⎪ ∂

= − +⎪
∂⎪

⎪ ∂⎪ + +⎨
∂⎪

⎪ ∂ ∂⎪ +
∂ ∂⎪

⎪
= = =⎪

⎪⎩

& &

&

& & &

 (12) 

 
The velocity fields for the inner and the outer layers, 

during rolling of sandwich sheets, are used to estimate 
the various energy deformation rates. The total 
deforming power required for the process can be split up 
into three parts: 1) internal power of deformation for 
inner and outer layers sheets; 2) the power losses due to 
shear at surfaces of the velocity discontinuities; and    
3) the power losses due to friction along the interface and 
contact surfaces. 
 
3.2 Determination of power terms of outer layer 

The internal power of regions Io and IIIo are zero 
and the equation to calculate the internal power of 
deformation in region IIo is 
 

1o

o 1f 1i

( ) 2 2o
iII ( )

2
d d

3
r r

rr rr r
W r r

ψ
θψ

σ
ε ε θ= +∫ ∫& & &         (13) 

 
where σ0o is the mean flow stress of outer layer and is 
determined by 
 

o
0 o1

0o
f1

d 2, ln
3

t
t

ε
σ ε

σ ε
ε

= =
∫

            (14) 

 
where 1i ( )rψ  is the angular position of the interface 
surface as a function of the radial distance from the 
origin O1 and is given by 
 

1
1i

sin( ) arcsin sin ( )
sin

r rβψ ψ
α

− ⎡ ⎤= ⎢ ⎥⎣ ⎦
               (15) 

 
The equation for the power loss along a shear 

surface is 
 

0
S d

3 S

W v S
σ

= Δ∫&                            (16) 

 
where |∆v| is the absolute value of the difference between 
the velocity components tangent to the boundary, S is the 
velocity discontinuity surface. The velocity discontinuity 
between the regions is determined using the velocity of 
the neighboring region and the direction of motion in 
each region as 
 

1o 1o 1o(1 cot )sinv v r
r
ψ α θ∂

Δ = +
∂

              (17) 
 

1f
2o 1o 1o

1o
(1 cot )sin

t
v v r

t r
ψ α θ∂

Δ = +
∂

            (18) 

 
At the entrance and the exit discontinuity surfaces 

S1 and S2, by placing 1o( ,   )r rψ α= = and ( ,ψ α=  
1f )r r=  into Eq. (11), it follows that 

 
o f

1o
2( )

tan
sin 2
t t

r
r R
ψ α

α
−∂

= −
∂

                   (19) 
 

1f tanr
r
ψ α∂

= −
∂

                           (20) 
 

Then, the shear power losses along surfaces S1 and 
S2, respectively, become 
 

1

o o f
, 1o 1o 2

cos cos
3 sinS S

t t
W v r

R
σ β α

α
− −

=&           (21) 
 

2, 0S SW =&                                 (22) 
 

The power dissipated over the contact surface 
between the rigid roll and the outer layer can be 
calculated using 
 

0
f 1 d

3 S

W m v S
σ

= Δ∫&                          (23) 

 
where the constant friction factor, m1, is the friction 
factor between the upper layer and roll surface and it can 
take on values from 0 to 1. 

The element of the surface of contact surface (per 
unit with of sheet) is 
 

2d 1 ( ) dS r r
r
ψ∂

= +
∂

                        (24) 
 

Since the velocity vector at a point on the contact 
surface is tangential to the roll surface and since the 
tangential velocity discontinuity is in the same direction 
with the tangent of the contact surface, the amount of 
velocity discontinuity can be expressed as follows: 
 

cos sinrv U U Rθη η ωΔ = + +& &                  (25) 
 
where ω is the angular velocity of the roll, Rω is the 
peripheral velocity of the roll and η is the local angle of 
the contact surface with respect to the local radial 
velocity component and 
 

22 )(1
sin,

)(1

1cos

r
r

r
r

r
r

∂
∂

+

∂
∂

=

∂
∂

+

=
ψ

ψ

η
ψ

η     (26) 

 
Placing Eqs. (24)−(26) into Eq. (23), the frictional 

power loss per unit width of sheet along contact surface 
can be determined as 
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1o

3 1f

 2o
f , 1 1o 1o  

1 sin sin ( )
tan tan3

r
S r

W m v r r
r r

σ α α ψ
ψ ψ

∂
= + −

∂∫&  

 

2

1o 1o
1 ( ) dR r r

v r r
ω ψ∂

+
∂

                  (27) 

 
3.3 Determination of power terms of inner layer 

The internal powers of regions Ii and IIIi, are zero 
and the equation to calculate the internal power of 
deformation in region IIi is determined as 
 

2o i

2f

( ) 2 2i
i,IIi 0

2
d d

3
r r

rr rr
W r r

ψ
θ

σ
ε ε θ= +∫ ∫& & &          (28) 

 
where σoi is the mean flow stress of the inner layer 
material and is determined as 
 

i
0 2o

0i
2f

d 2, ln
3

t
t

ε
σ ε

σ ε
ε

= =
∫

             (29) 

 
where ψi(r) is the angular position of the interface 
surface as a function of the radial distance from the 
origin O2 and is given by 
 

1 1i
i

1 1i

sin
tan

cos
tan

e r
er

ψ
ψ

ψ
β

+
=

+
                    (30) 

 
And the radial distance r of the interface surface 

from origin O2 is defined by 
 

2 2
1 1i 1 1i( sin ) ( cos )

tan
er e r rψ ψ
β

= + + +        (31) 

 
where r1 is the radial distance of the radial position from 
the origin O1. 

The velocity discontinuity between the neighboring 
regions is 
 

i
1i 2o 2o(1 cot )sinv v r

r
ψ

α θ
∂

Δ = +
∂

             (32) 

2f
2i 2o 2o

2o
(1 cot )sin

t
v v r

t r
ψ α θ∂

Δ = +
∂

           (33) 

 
Substituting Eqs. (32) and (33) into Eq. (16), the 

shear power losses (per unit of width) along surfaces A1 
and A2, respectively, become 
 

1

i i
, 2o 2o 2o0

(1 cot )sin d
3S AW v r r

r
βσ ψ

α θ θ
∂

= +
∂∫&     (34) 

 

2

i 2f
, 2o 2o 2o0

2o
(1 cot )sin d

3S A
t

W v r r
t r

βσ ψ α θ θ∂
= +

∂∫&   (35) 

 
3.4 Power consumption due to relative motion 

between sheet layers 
While the sandwich sheet is rolled into the 

deformation region, there is a relative sliding at the 

interface between regions IIo and IIi and the frictional 
power is consumed along the interface surface between 
the inner and outer layers due to the difference in 
velocities. The power consumption over interface per 
unit with of sheet may be expressed as 
 

3

i o
f , 2 m i,o( )

2 3AW m v l
σ σ+

= Δ&                  (36) 
 
where m i,o( )vΔ  is the absolute value of the difference 
of mean values of velocity of inner and outer layers over 
the interface, m2 is the friction factor between the two 
layers and l is the length of the interface curve and is 
given by 
 

1o

1f

 21i
 

1 ( ) d
r

r
l r r

r
ψ∂

= +
∂∫                      (37) 

 
The mean value of velocity of outer layer over the 

interface surface is 
 

1o

1f

 21i
 1i 1i

m 1o 1oo

1 sin sin ( ) d
tan tan

( )

r

r
r r

r r
v r v

l

ψα α
ψ ψ

∂
+

∂
Δ =

∫
(38) 

 
Similarly, for inner layer, we have 

 
2o

2f

 2i
 i i

m 2o 2oi

1 sin sin ( ) d
tan tan

( )

r

r
r r

r r
v r v

l

ψα α
ψ ψ

∂
+

∂
Δ =

∫
 (39) 

 
The resultant tangential mean velocity discontinuity 

at the interface surface between the inner and the outer 
layers, may be expressed as 
 

m i,o m i m o( ) ( ) ( )v v vΔ = Δ − Δ                   (40) 
 

Substituting for l and m i,o( )vΔ  from Eqs. (37) and 
(40), respectively into Eq. (36), the frictional power loss 
per unit width, over interface surface A3 can be 
determined. 
 
4 Position of neutral point 
 

In the neutral point, the peripheral velocity of roll is 
equal to the material velocity. Hence, the relative 
velocity between the outer layer and the roll is zero at the 
neutral point, point N in Fig. 1 with radial and angular 
positions rN and ψN, respectively. On the left hand of the 
point N, the roll surface moves faster than the sheet 
material, whereas on the right hand of the point N, 
material moves faster than the roll surface. The velocity 
vector at a point on the roll surface is coinciding with the 
tangential line passing through that point. Since the 
velocity discontinuity is in the same direction with the 
tangent of the roll surface, their values are the same in 
neutral point N, then 
 

cos sinrU U Rθη η ω+ = −& &                    (41) 
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Placing coordinates of the neutral point N (r=rN, 
θ=ψN) into Eq. (7), the values of the velocity components 
of the neutral point N can be determined. Substituting the 
velocity components of the neutral point N into the above 
equation and simplification, it follows that 
 

21o
1o 1o 1o

N

sin sin ( )
tan tanN

N N

r
v v r r

r r
α α ψ
ψ ψ

∂
+ =

∂
 

 
21 ( )R r

r
ψω ∂

+
∂

                       (42) 

 
5 Rolling torque, rolling force and contact 

pressure 
 

By the upper bound model, the externally supplied 
power is less than or equal to the sum of the powers 
described in the previous sections. If one assumes the 
equality, then the total power is 
 

o i 1 1 2 3 3i,II i,II , , , f , f ,S S S A S A A SJ W W W W W W W∗ = + + + + + +& & & & & & &  
                                    (43) 

The total upper bound solution for rolling torque is 
given by 
 

*JT
ω

=                                    (44) 
 
where T is the required rolling torque per unit width of 
the sheet. 

Neglecting the contribution of the horizontal forces, 
the roll separating force per unit of width is calculated by 
the following equation [3] 
 

*JF
Lω

=                                   (45) 
 
where F, J*, L and ω are the rolling force per unit width 
of sheet, the rolling power calculated by the upper bound 
solution, the projected contact length and the angular 
velocity of roll, respectively. The contact length L is 
calculated as 
 

f
o

o
2 ,  1

t
L Rt h h

t
= = −                        (46) 

 
where h is the reduction in total thickness. 

The mean contact pressure at the interface between 
sheets may be expressed as 
 

m
i

FP
L

=                                  (47) 

 
where Li is the projected length of the interface between 
the outer and inner layers at the deformation region and 
with referring to Fig. 1, it is determined by 
 

i 2o 2f( ) cosL r r β= −                         (48) 
 

Equation (43) reveals that the torque required for 

rolling of a symmetrical sandwich sheet becomes a 
function of the process parameters (thicknesses of initial 
and final sheet, friction factor, roll radius and roll angular 
velocity, etc.) and the two independent parameters, 
quantity rN which determines the radial position of the 
neutral point and value of e. Therefore, minimization of 
Eq. (44) with respect to two independent parameters e 
and rN will yield a lower upper bound solution for the 
rolling torque. In the present investigation, the integrals 
that are present in the power terms are evaluated by 
numerical integration. A computer program was used to 
perform the minimization process. 
 
6 Results and discussion 
 

A MATLAB program has been implemented for the 
previously derived equations and the rolling torque is 
calculated for a set of rolling conditions and a field 
giving the lowest torque is found. In this calculation, 
minimization of the total rolling power determines the 
values of two independent parameters e and rN where e is 
limited between 0 and t2o. 

In order to verify the validity of the upper bound 
approach for rolling process of sandwich sheets 
presented in the present research, the results obtained 
from the theoretical model are compared with the 
available experimental data in Ref. [4]. The radii of the 
rolls are both 100 mm. The peripheral speeds of the rolls 
are both 5 m/min. Aluminum and mild steel sheets are 
employed as specimens. The flow stresses for mild steel 
and aluminum at room temperature are obtained as [6] 
 

0.046193.8 ( )σ ε= MPa for aluminum (Al) sheet with 
thickness of 1 mm; 
 

0.045183.2 ( )σ ε= MPa for aluminum (Al) sheet with 
thickness of 1.4 mm; 
 

0.14944.8( )σ ε= MPa for mild steel (SPCC) 
 

Two combinations of sandwich sheets Al/SPCC/Al 
were tested. Figure 2 shows the comparisons of rolling 
force between the theoretical predictions and the 
experimental values for the first case. In this case, the 
initial total thickness of sandwich sheet is 3.8 mm. The 
rolling conditions and the combination of raw sheet are 
shown in Fig. 2. It is noted that the inner layer material is 
harder than the outer material. In the computation, the 
friction factors m1 and m2 which represent the friction 
factor between the roll and sheet and that between sheets, 
respectively, are taken to be 0.8 and 1.0, which are 
generally close to the conditions for dry friction. From 
this figure, the theoretical predictions coincide with the 
experimental data. 

Figure 2 also shows that an increase in the reduction 
tends to increase the rolling force. 

Figure 3 illustrates the comparison of the rolling 
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force between the theoretical predictions and the 
experimental measurements for the second case. In the 
second case, the total thickness is 3 mm and the rolling 
conditions of initial sandwich sheet are shown in the 
figure. Very high agreement between the predicted 
rolling forces and the experimental values is found. From 
Figs. 2 and 3, it is known that the rolling force increases 
with increasing the initial thickness ratio of the inner 
layer to the total thickness, because the inner layer 
material SPCC is harder than the outer layer material Al. 
 

 

Fig. 2 Comparison of calculated rolling forces per unit of width 
with experimental data for different total thickness reductions 
for first case 
 

 

Fig. 3 Comparison of calculated rolling forces per unit of width 
with experimental data under different total thickness reduction 
for second case 
 

For further validating the proposed deformation 
model, for rolling process of sandwich sheets, the results 
obtained from the theoretical analysis are also compared 
with the experimental data of Ref. [6]. In the 
computation, the friction factors m1 and m2 are taken to 
be 0.7 and 0.9, respectively. 

Figure 4 illustrates the comparisons of the rolling 
force between theoretical predictions and experimental 
measurements. Figure 4 clearly reveals that the 
predictions show good agreement with the experimental 
results. Figure 5 illustrates the comparisons of the rolling 
force between the theoretical predictions and the 
experimental measurements. The results show a good 
agreement between the upper bound data and the 
experimental values. It can be seen that the mean contact 
pressure is increased by increasing the reduction in 
thickness. 
 

 
Fig. 4 Comparison of analytical roll force per unit of width 
with experimental values 
 

 

Fig. 5 Comparison of calculated mean contact pressure per unit 
of width with experimental values 
 

It is observed that the proposed velocity field leads 
to a computationally efficient procedure which gives 
good agreement with the experimental data. From the 
comparison, it is clear that the proposed velocity field 
employed in the model of sandwich sheet rolling is valid 
for simulating the general rolling of initially non-bonded 
sandwich sheets. 

The calculations have been carried out under 
various rolling conditions and the effects of the reduction, 
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friction factors, ratio of roll radius to total sheet thickness, 
etc., are considered in the analysis. The roll radius R and 
the flow stress of the outer layer σ0o are fixed. The radii 
of the rolls are both 100 mm. The peripheral speeds of 
the rolls are both 40 mm/s. 

The effect of the total thickness of sandwich sheet 
upon the rolling force is plotted in Fig. 6. 

The rolling conditions employed are shown in the 
figure. As it is expected, for a given value of the 
thickness reduction, the rolling force increases with 
increasing the total thickness of the sandwich sheet. 
From this figure, it is seen that an increase in the 
thickness reduction tends to increase the rolling force. 

The relation between the values of the final 
thickness of each layer can also be assessed. Figure 7 
shows the effects of the thickness reduction upon the 
thickness ratio of the outer layer at the exit, t1f/tf. From 
Fig. 7, we know that the final thickness ratios of outer 
layer are always less than that at the entrance, t1o/to, 
which is 0.4. This is reasonable because the outer layer is 
softer than the inner layer. It is also found that t1f/tf 
decreases with increasing reduction, which means that 
 

 
Fig. 6 Effect of initial total thickness on rolling force per unit 
of width 
 

 
Fig. 7 Effect of total thickness upon final thickness ratio of 
outer layer 

the greater the reduction is, the more non-uniform the 
plastic deformation of sheets becomes. Accordingly, the 
difference between t1f/tf and t1o/to increases as the 
reduction increases. 

Figure 8 illustrates the effects of the friction factor 
between the roll and the sheet on the total rolling power. 
Apparently, the total rolling power increases with 
increasing reduction and friction factor, m1. From Fig. 8, 
it can be seen that the difference between rolling power 
curves increases as the reduction increases. 
 

 

Fig. 8 Effect of friction factor m1 on rolling power per unit of 
width as function of thickness reduction 
 

The effect of the friction factor between inner and 
outer layer m2 on the rolling torque is also examined and 
it is shown in Fig. 9. It is clear that the rolling torque 
increases with the friction at the interface and reduction.  

The effects of the reduction and the roll radius, R, 
upon the rolling torque are indicated in Fig. 10. As it is 
expected, apparently, the rolling torque increases with 
increasing reduction for R=50, 200 or 300 mm, whereas 
T increases little with increasing reduction for R=100 or 
75 mm. 

 

 
Fig. 9 Effect of friction factor m2 between layers on roll torque 
as function of thickness reduction 
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Fig. 10 Effect of roll radius upon roll torque per unit of width 
as function of thickness reduction 
 
7 Conclusions 
 

1) An admissible velocity field for use in upper 
bound analysis of rolling process was developed. 

2) Equations for the strain rate field, power 
dissipation within the plastic region, at the velocity 
discontinuities and at the friction surface, have been 
developed in terms of ordinary integrals. These allow the 
calculation of the total power required for the rolling 
process. 

3) The theoretical predictions of rolling torque are 
found to be in very good agreement with those obtained 
experimentally. 
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非粘接夹层板轧制过程的上界分析 
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摘  要：利用上界方法研究非粘接夹层板的轧制过程。提出了一个变形模型，建立各速率分量间的数学关系。将

获得的内功。剪切功和摩擦功的表达式应用到上界模型中。通过分析，得到了轧制力、平均接触压强和各层的最

终厚度。通过对比理论预测结果和文献中的实验数据，讨论了分析模型的有效性。分析了不同轧制条件(流变应力

比，原料板材初始厚度比，总压下量)对轧制力矩的影响。建立的分析模型具有高的准确性。 

关键词：平面轧制；夹层板；上界方法 
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