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Abstract: The analysis of variance (ANOVA), multiple quadratic regression and radial basis function artificial neural network 
(RBFANN) methods were used to study the springback and tensile strength in age forming of 2A97 aluminum alloy based on 
orthogonal array. The ANOVA analysis indicates that the springback reaches the minimum value when age forming is performed at 
210 °C for 20 h using a single-curvature die with a radius of 400 mm, and the tensile strength reaches the maximum value when age 
forming is performed at 180 °C for 15 h using a single-curvature die with a radius of 1000 mm. The orders of the importance for the 
three factors of pre-deformation radius, aging temperature and aging time on the springback and tensile strength were determined. By 
analyzing the predicted results of the multiple quadratic regression and RBFANN methods, the prediction accuracy of the RBFANN 
model is higher than that of the regression model. 
Key words: aluminum alloy; age forming; springback; tensile strength; orthogonal experiment; artificial neural network 
                                                                                                             
 
 
1 Introduction 
 

Al−Li alloys have been widely applied in aircraft 
manufacturing due to their low density, high elastic 
modulus and high specific strength [1,2]. 2A97 alloy was 
developed primarily in an attempt to be used for plates 
and forgings as a promising aerospace material [3]. 
However, there are some limits in forming integral 
aircraft wing panels by traditional forming techniques 
(such as brake forming, roll forming and shot peen 
forming) due to their poor assembling ability and the 
increase of mass. Therefore, a new forming technique is 
a key for 2A97 alloys to be used to manufacture 
complex-shaped panel parts. Age forming technique has 
then been regarded for it can form large integrally 
stiffened light mass structures [4,5]. 

Age forming, combining both the aging treatment 
and forming process, is currently applied to the 
production of aerospace metal structures. And it has been 
proven to be very useful for forming components with 
these shape characteristics and good mechanical 
properties [6,7]. One of the greatest challenges to 
improve the efficiency of the age forming technique is to 
predict the exact amount of springback that will arise, in 
order that a tool shape may be defined to compensate for 
it. While in age forming process, springback can be 

influenced by many parameters, such as aging 
temperature, aging time and pre-deformation radius. The 
prediction of the ultimate mechanical properties is also 
necessary for optimizing the process schedule of age 
forming. The predictive model can be created using the 
regression and artificial neural network (ANN) methods 
based on orthogonal array. Orthogonal design is a 
method for test design aiming to multifactor and 
multilevel based on orthogonal theory. Since it presents 
equilibrium distribution and regular comparability, the 
optimum scheme can be rapidly obtained by analysis of 
variance, largely reducing testing number, shortening test 
time, and minimizing cost. The regression method has 
successfully been used for obtaining the machining 
performance by many researchers [8,9]. On the other 
hand, the ANN has the ability to approximate many 
functions accurately and hence is suitable for the use in 
model development of highly non-linear processes. 
Unlike the regression methods, an artificial neural 
network does not need to postulate a mathematical model 
or identify its parameters [10,11]. The ANN learns from 
training data and recognizes patterns in a series of input 
and output values without any prior assumptions about 
their nature and interrelations [12]. They have been 
successfully applied to solving many practical  
problems [13,14]. 

However, the study about the age forming of 2A97 
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aluminum alloy has not been found. It is of great 
significance to determine the relationship between the 
two parameters (springback and tensile strength) and the 
three factors (pre-deformation radius, aging temperature 
and aging time) in age forming of 2A97 aluminum alloy. 
In the present work, the analysis of variance (ANOVA), 
multiple quadratic regression and radial basis function 
artificial neural network (RBFANN) methods were 
carried out based on orthogonal array. And the prediction 
capacities of the multiple quadratic regression and 
RBFANN models were compared. 
 
2 Experimental 
 
2.1 Materials and procedures 

The experiments were carried out on a 2A97 alloy 
rolled plate with composition (mass fraction) of 3.7% Cu, 
1.5% Li, 0.50% Zn, 0.37% Mg, 0.30% Mn, 0.14% Zr 
and balance Al. Sheet specimens with dimensions of  
400 mm × 80 mm × 1.5 mm were used for age forming 
tests. All specimens under as-received conditions were 
solution treated at 520 °C for 1.5 h before water 
quenched to room temperature, and the transfer time 
must be less than 15 s. Then, the processed samples were 
kept under a refrigerated condition to prevent from 
natural aging. In the end, age forming was performed 
under controlled conditions of temperature and time, 
using single-curvature dies with different radii. The 
bended direction was along the rolling direction. The 
experimental procedures are shown in Fig. 1. 
 

 

Fig. 1 Material preparation and test program 
 

The amount of springback (SP) is defined by  
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where Rf is the radius after springback, and R0 is 
pre-deformation radius. SP=0 indicates the absence of 
springback, and SP=1 indicates a complete springback of 
the plate. 

Tensile tests were carried out according to ASTM 

standard E−8M to evaluate the mechanical properties of 
the samples. The tensile samples were machined directly 
from the sheets after age forming. The samples were 
taken in the longitudinal (L) orientation (parallel to the 
rolling direction). The gauge length was 60 mm. These 
samples were stretched at room temperature and a 
constant extension rate of 1 mm/min. Three tensile tests 
were performed for every specimen to ensure the 
reproducibility of the tensile results. 
 
2.2 Experimental design 

In the experimental plan, the factors selected as 
controllable ones in this work were the pre-deformation 
radius (R0), aging temperature (θ) and aging time (t), and 
four levels for each factor were selected. The factors and 
levels are tabulated in Table 1. Normally, one needs to 
conduct 43(64) experiments with three factors, and each 
varies at four levels considered, using full factorial 
experimental design. In order to save experimental cost 
and time, orthogonal array was applied to obtaining the 
springback (SP) and tensile strength (Rm) of the specimen 
after age forming. An L16 (43) orthogonal array was 
found to be appropriate and was chosen in this work. The 
layout of the L16 (43) orthogonal array and the measured 
values of the SP and Rm are shown in Table 2. 
 
Table 1 Assignment of levels to factors 

Level R0 (A)/mm θ(B)/°C t(C)/h 
1 400 120 5 
2 600 150 10 
3 800 180 15 
4 1000 210 20 

 
Table 2 Orthogonal array L16 (43) and experimental results 

Level 
Test No.

A B C
SP/% Rm/MPa 

1 1 1 1 59.104 389.54 
2 1 2 2 47.862 443.46 
3 1 3 3 30.683 509.14 
4 1 4 4 9.674 453.75 
5 2 1 2 56.033 419.39 
6 2 2 1 59.673 412.42 
7 2 3 4 31.034 512.59 
8 2 4 3 16.704 473.78 
9 3 1 3 54.883 449.49 

10 3 2 4 48.262 481.23 
11 3 3 1 58.502 471.89 
12 3 4 2 29.364 509.14 
13 4 1 4 57.334 464.58 
14 4 2 3 54.753 487.08 
15 4 3 2 47.703 527.17 
16 4 4 1 50.731 487.57 
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3 Results and discussion 
 
3.1 Analysis of variance (ANOVA) 

An ANOVA of the data was done with the 
springback and the tensile strength for analyzing the 
influence of the pre-deformation radius, aging 
temperature and aging time of the contact on the total 
variance of the results, respectively. Tables 3 and 4 show 
the results of the ANOVA with the springback and tensile 
strength, respectively. The last columns of Tables 3 and 4 
show the percentage of contribution (P) of each factor to 
the total variation indicating the degree of influence on 
the result. From Table 3, we can observe that factor B, 
the aging temperature, with ontribution of 56.49%, has 
the greatest influence on the springback. The relative 
influence of the factors on the springback was in the 
following order: aging temperature > aging time > 
pre-deformation radius. 
 
Table 3 Analysis of variance for springback test 

Source of 
variance 

Deviation 
Degree of 
freedom

Variance Test F P/%

A 595.0114 3 198.3371 23.91 14.96
B 2178.2628 3 726.0876 87.53 56.49
C 988.6978 3 329.5659 39.73 25.29

Error 49.7720 6 8.2950 − 3.26
Total 38811.7440 15 − − 100

 
Table 4 Analysis of variance for tension test 

Source of 
variance 

Deviation 
Degree of 
freedom 

Variance Test F P/%

A 4794.07 3 1598.03 7.53 18.38
B 12337.46 3 4112.49 19.39 51.75
C 4207.12 3 1402.37 6.61 15.80

Error 1272.83 6 212.138 − 14.07
Total 22611.48 15 − − 100

 
From Table 4, it can be observed that the percentage 

of contribution (P=51.75%) of factor B, the aging 
temperature, is much larger compared with that for the 
other two factors, viz., the pre-deformation radius and 
aging time. The relative influence of the factors on the 
tensile strength is in the following order: aging 
temperature >> pre-deformation radius > aging time. 

The performance of the individual factor (the 
pre-deformation radius, aging temperature and aging 
time) at different levels for the springback (SP) and 
tensile strength (Rm) is depicted in Fig. 2. It can be seen 
from Fig. 2(a) that the springback and tensile strength 
constantly increase with the increase of pre-deformation 
radius. As for the factor of the aging temperature in   
Fig. 2(b), the increase of the aging temperature leads to  
a significant decrease of the springback. The tensile 

 

 
Fig. 2 Performance of individual factor at different levels for 
springback and tensile strength: (a) Pre-deformation radius;  
(b) Aging temperature; (c) Aging time 
 
strength increases with the increase of the aging 
temperature, reaches the maximum value at the aging 
temperature of 180 °C, and then decreases. It can be seen 
from Fig. 2(c) that the springback constantly decreases 
with the increase of aging time, and the tensile strength 
increases at first and then decreases with the increase of 
aging time. It can be found that the springback reaches 
the maximum at the pre-deformation radius of 1000 mm, 
aging temperature of 120 °C and aging time of 5 h, 
respectively, and the tensile strength reaches the 
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maximum value at the pre-deformation radius of    
1000 mm, aging temperature of 180 °C and aging time of 
15 h, respectively. Therefore, it can be concluded that the 
springback reaches the minimum value when age 
forming is performed at 210 °C for 20 h using a 
single-curvature die with a radius of 400 mm and the 
tensile strength specimen reaches the maximum value 
when age-forming is performed at 180 °C for 15 h using 
a single-curvature die with a radius of 1000 mm. 
 
3.2 Regression analysis 

The correlations between the factors (pre- 
deformation radius, aging temperature and aging time) 
and the measured parameters (the springback and tensile 
strength) were obtained by multiple quadratic regressions, 

respectively. The equations obtained are as follows: 
 
SP=0.013R0+0.783θ−0.743t+5.297×10−6R0

2−0.03θ2+  
0.091t2+5.608×10−5R0θ−0.013θt−0.001R0t+12.149,  
R=0.996                                (2)  

Rm=−0.249R0+4.685θ+21.245t+5.056×10−5R0
2−  

0.014θ2−0.363t2+0.001R0θ−0.044θt−0.001R0t  
−31.822, R=0.897                          (3)  
In order to confirm the verification of regression 

model, the comparison was done between the predicted 
values from the regression models (Eqs. (2) and (3)), 
with the values obtained experimentally. The errors 
calculated with respect to the calculated results were also 
given. The results are shown in Tables 5 and 6. It is clear 
that the errors of experimental results with respect to the  

 
Table 5 Comparison of RBFANN and regression model results for springback with experimental values  

Level Test No. 
A B C 

Actual SP/% Predicted SP by  
RBFANN/% 

Error by 
RBFANN/%

Predicted SP by  
Eq. (2)/% 

Error by 
Eq. (2)/%

1 1 1 1 59.104 59.101 0.005 60.41 2.22 
2 1 2 2 47.862 47.860 0.004 49.68 3.80 
3 1 3 3 30.683 30.684 0.004 34.20 11.47 
4 1 4 4 9.674 9.674 0.003 10.98 13.55 
5 2 1 2 56.033 56.031 0.004 56.72 1.23 
6 2 2 1 59.673 59.671 0.003 62.66 5.01 
7 2 3 4 31.034 31.033 0.004 34.39 10.83 
8 2 4 3 16.704 16.703 0.004 20.43 22.34 
9 3 1 3 54.883 54.881 0.003 56.01 2.06 
10 3 2 4 48.262 48.263 0.003 49.16 1.87 
11 3 3 1 58.502 58.504 0.004 60.61 3.61 
12 3 4 2 29.364 29.365 0.002 33.86 15.33 
13 4 1 4 57.334 57.333 0.002 58.28 1.66 
14 4 2 3 54.753 54.750 0.005 53.89 1.57 
15 4 3 2 47.703 47.700 0.006 52.55 10.17 
16 4 4 1 50.731 50.733 0.003 54.26 6.96 

 
Table 6 Comparison of RBFANN and regression model results for tensile strength with experimental values 

Level Test No. 
A B C 

Actual Rm/MPa Predicted Rm by 
RBFANN/MPa 

Error by
RBFANN/%

Predicted Rm by  
Eq. (3) 

Error by
Eq. (2)/%

1 1 1 1 389.54 389.59 0.006 354.02 9.12 
2 1 2 2 443.46 443.45 0.001 430.57 2.91 
3 1 3 3 509.14 509.12 0.004 450.57 11.50 
4 1 4 4 453.75 453.76 0.003 414.02 8.76 
5 2 1 2 419.39 419.38 0.002 386.93 7.74 
6 2 2 1 412.42 412.43 0.003 375.88 8.86 
7 2 3 4 512.59 512.61 0.004 443.98 13.39 
8 2 4 3 473.78 473.78 0.004 418.83 11.60 
9 3 1 3 449.49 449.51 0.005 403.74 10.18 

10 3 2 4 481.23 481.25 0.005 440.79 8.40 
11 3 3 1 471.89 471.90 0.003 388.59 17.65 
12 3 4 2 509.14 509.15 0.002 411.54 19.17 
13 4 1 4 464.58 464.57 0.002 404.44 12.95 
14 4 2 3 487.08 487.06 0.004 430.49 11.62 
15 4 3 2 527.17 527.20 0.006 426.39 19.12 
16 4 4 1 487.57 487.56 0.002 392.14 19.57  
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calculated ones lie in the range of 1.23%−22.34% for the 
springback, 2.91%−19.57% for the tensile strength. 
 
3.3 Artificial neural network 

Artificial neural networks (ANNs) are the best 
known methods for solving non-linear problems. Their 
potential has been investigated with topics ranging from 
image processing and speech recognition to financial 
forecasting, as well as with material processing [14,15]. 
Among neural networks, the most popular one is the 
multilayer feed-forward net with the back-propagation 
areificial neural network (BPANN) learning algorithm. 
Recently, the radial basis function artificial neural 
network (RBFANN) model has been noted for its simple 
network structure that avoids lengthy calculations as 
compared with the BPANN, and has good robustness, as 
well as improved sensitivity to noisy data. In this work, 
the values of orthogonal arrays in Table 2 have been used 
to construct the RBFANN model. Two RBFANN models 
were established with three inputs (pre-deformation 
radius, aging temperature and aging time) and one output 
(either springback or tensile strength) for the prediction 
of springback and tensile strength, respectively. Before 
the training of the network, both input and output 
variables should be normalized within the range from 0 
to 1 in order to obtain a usable form for the network to 
read. The following equation was used widely for 
unification: 
 

minmax

min8.01.0
xx

xxx
−

−
+=′                      (4) 

 
where x is the original data, x′ is the unified data of the 
corresponding x, xmin and xmax are the minimum and 
maximum values of x, respectively. 

The parameter SPREAD is a unique parameter which 
needs to be determined for establishing reliable 
RBFANN models of the springback or tensile strength, 
respectively. According to the experience, the parameter 
SPREAD=2 was selected for the springback and SPREAD=10 
was selected for the tensile strength. 

In order to confirm the verification of two 
RBFANN models, the comparison was done between the 
predicted values from the two RBFANN models, with  

the values obtained experimentally. The errors calculated 
with respect to the calculated results are also given 
(Tables 5 and 6). It is clear that the errors of the 
springback and tensile strength for the RBFANN are 
very small. Furthermore, other four tests were performed 
for investigating the prediction capacity of RBFANN 
model. The four experiment test data and the 
corresponding values predicted by RBFANN models as 
well as the errors are listed in Table 7. It can be seen that 
the error is very low, which shows that the well-trained 
RBFANN model has a great accuracy in predicting the 
springback and tensile strength. 

 
3.4 Comparison between RBFANN and regression 

results 
From Tables 5 and 6, we can observe that the test 

errors for the RBFANN model are lower than those of 
the regression model. This indicates that the RBFANN 
model is more suitable for estimating the springback and 
tensile strength in an acceptable error range. Furthermore, 
for the comparison of the prediction capacity of the 
RBFANN model and regression model, Fig. 3 shows the 
simulation variation of the springback and tensile 
strength as a function of the pre-deformation radius by 
the regression model and RBFANN model at θ=120 °C 
and t=10 h; θ=150 °C and t=20 h; θ=180 °C and t=15 h; 
θ=210 °C and t=5 h, respectively. Figure 4 shows the 
simulation variation of the springback and tensile 
strength as a function of the aging temperature by the 
regression model and RBFANN model at R0=400 mm 
and t=20 h; R0=600 mm and t=15 h; R0=800 mm and   
t=5 h; R0=1000 mm and t=10 h, respectively. Figure 5 
shows the simulation variation of the springback and 
tensile strength as a function of the aging time by the 
regression model and RBFANN model at R0=400 mm 
and θ=150 °C; R0=600 mm and θ=180 °C; R0=800 mm 
and θ=210 °C; R0=1000 mm and θ=120 °C, respectively. 
From Figs. 3−5, most of the simulation results deviate 
from the experimental values. Nevertheless, the 
simulation results of the RBFANN models are in good 
agreement with the experimental results under all the 
conditions. This indicates that the prediction accuracy of 
the RBFANN model is higher than that of the regression 
model. 

 
Table 7 Results of experiment tests and predictions by RBFANN 

Level 
Test No. 

A B C 
Actual SP/% 

Predicted SP by 
RBFANN/% 

Error of
SP / % 

Actual Rm/MPa
Predicted Rm by 
RBFANN/MPa 

Error of 
Rm/%

1 1 2 4 35.66 34.76 2.52 513.28 515.07 0.35 

2 2 3 3 34.78 34.80 0 524.72 527.20 0.47 

3 3 4 1 48.03 48.21 0.38 448.57 446.79 0.40 

4 4 1 2 60.03 59.50 0.88 383.61 380.35 0.85 
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Fig. 3 Simulation variation of springback (a) and tensile strength (b) as function of pre-deformation radius by regression model and 
RBFANN model, respectively 
 

 

Fig. 4 Simulation variation of springback (a) and tensile strength (b) as function of aging temperature by regression model and 
RBFANN model, respectively 
 

 
Fig. 5 Simulation variation of springback (a) and tensile strength (b) as function of aging time by regression model and RBFANN 
model, respectively 
 
 
4 Conclusions 
 

1) The ANOVA indicates that the springback 
reaches the minimum value under age forming 

conditions of  210 °C for 20 h using a single-curvature 
die with a radius of 400 mm and the tensile strength 
reaches the maximum value at under age-forming 
conditions of 180 °C for 15 h using a single-curvature 
die with a radius of 1000 mm. 
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2) The importance order for the factors to the 
springback, in sequence, is the aging temperature, the 
aging time, and the pre-deformation radius. The 
importance order to the tensile strength, in sequence, is 
the aging temperature, the pre-deformation radius and 
the aging time. 

3) Both the regression and RBFANN methods can 
be used to obtain the model; however, the predicted 
results of the RBFANN models are in better agreement 
with the experimental results under any conditions. This 
indicates that the prediction accuracy of the RBFANN 
model is higher than that of the regression model. 
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2A97 铝合金时效成形过程中的回弹量和抗拉强度 
 

李红英，鲁晓超 

 
中南大学 材料科学与工程学院，长沙 410083 

 
摘  要：基于正交实验，运用方差分析、多元二次回归和径向人工神经网络研究 2A97 铝合金时效成形过程中的

回弹量和抗拉强度。方差分析结果表明，在预弯半径为 400 mm、时效温度为 210 °C 时效 20 h 后试样具有最小的

回弹量；而在预弯半径为 1000 mm、时效温度为 180 °C 下时效 15 h 后试样具有最大的抗拉强度。确定了预弯半

径、时效温度和时效时间这 3 个因素对试样回弹量和抗拉强度影响大小的顺序。多元二次回归方法和径向人工神

经网络的预测结果表明，径向人工神经网络模型具有更高的预测精度。 

关键词：铝合金；时效成形；回弹量；抗拉强度；正交试验；人工神经网络 
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